Dynamic Resource Scheduling Framework of Datacenter

Dynamic Resource Scheduling Framework of Datacenter

Motivation

The  biggest advantage of employing virtualization in cloud is the ability  to provision resource flexibly which makes “pay-as-use” model possible.  However, since the workload of virtual machine constantly changes, it is  still a challenge that efficiently schedule resource by migrating  virtual machines among lots of hosts, especially with multi-objective to  meet, like power and QoS constraints. In this research, we present a  dynamic resource scheduling solution, which can well determines when to  schedule, which to schedule, and where to schedule. It is an integrated  framework that aims to deal well with hotspot mitigation, load balancing  and server consolidation which are classic problems to solve in  on-demand clouds. The experimental results show that our framework  strikes a balance between efficiency, overhead and instantaneity.

How to deal well with hotspot mitigation, load balancing and server consolidation in a datacenter?

  • when to schedule

  • which to schedule

  • where to schedule

System Architecture

When to schedule

Single Exponential Smoothing (SES) prediction algorithm :

Forecast  value is a weighted sum of all the previous real observational values.  In addition, to avoid some incorrect information in the monitoring data,  we define a deviation variable:

SES makes use of all the historical data, so it has more stability and regularity.

Which to schedule

We  employ a more holistic approach that cpu utilization, memory usage and  net bandwidth usage are all considered before selecting the candidate  VM. We define a model to balance these factors:

Score is the harmonic mean of workload and cost, it would be arranged in descending order, our framework will choose the one with the highest score value as the migrated VM.

Where to schedule

The difference between VM placement and Bin Packing problem :

Vector Projection algorithm :

Algorithm getMigrated_VM(goal) get  the VM which should be migrated away firstly depends on the three  different goals described in Motivation section. Then we pass this VM as  a parameter to algorithm getTarget_PM (VM). This algorithm firstly generates a potentialPMlist by  adding those PMs whose RCV locates in the same triangle with the VM’s  RRV. At last , it chooses the most appropriate PM in the potentialPMlist whose RIV is of the same magnitude as the VM’s RIV and is in the opposite direction.

Experiment Result

It  is clear that the load of system is imbalanced and the resource  utilization of several machines exceeds 0.8 before scheduling as shown  in Fig. (a). While in Fig. (b), after scheduling, the load of system is  more balanced and none of resource utilization exceeds the upper  threshold. Similarly, in Fig. (c) we can see that the resource  utilization of several machines is under 0.2 while in Fig. (d), these  low utilization machines are taken offline and the others are load  balancing.

Members

  •   

Copyright Statement

This  material is presented to ensure timely dissemination of scholarly and  technical work. Copyright and all rights therein are retained by authors  or by other copyright holders. All persons copying this information are  expected to adhere to the terms and constraints invoked by each  author's copyright. In most cases, these works may not be reposted  without the explicit permission of the copyright holder.

<<< 返回