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Abstract: The run-time security guarantee is a hotspot in current cyberspace security research, especially on

embedded terminals, e.g., smart hardware, wearable devices, mobile devices. Typically, these devices use

universal hardware and software to connect with public network by internet, and are probably open to security

threats from Trojan, virus and other malware. As a result, not only personal sensitive data is threatened,

economic interests in industry are also compromised. To address the run-time security problems efficiently, first

a TrustEnclave-based secure architecture is proposed, and the trusted execution environment is constructed by

hardware isolation technology. Then the prototype system is implemented on real TrustZone-enabled hardware

devices. Last, both analytical and experimental evaluations are given in the end. The experimental results

demonstrate that the proposed security scheme is effective and feasible.
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1 Introduction

Embedded terminals (e.g., smart hardware, wearable
devices, mobile devices) have recently attracted lots
of attentions in cyberspace security community. On
one hand, embedded system has already been the
central part of control system and weapon system in
military field. On the other hand, sundry embedded
devices have been used by several infrastructure
control facilities in civil domain, automobile control,
industrial control, transportation system, electric
system, financial system, mobile communication, and
so forth. With the rapid development of Internet
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of Things technology and the promotion of mobile
embedded devices’ computation performance, the new
pattern informatization application has come into being,
for instance, Industrial 4.0, BYOD (Bring Your Own
Device), and so on. A lot of attention has been
drawn to embedded terminals, e.g. smart devices in
enterprise office network, smart hardware, wearable
devices, mobile devices. Typically, these devices use
universal hardware and software to connect with public
network by internet, and are probably open to security
threats from Trojan, virus and other malware. As a
result, not only personal sensitive data is threatened,
economic interests in industry are also compromised.
How do we handle the security problems of complex
embedded devices without killing innovation?

Different from traditional personal computers,
embedded architecture is limited by its functions and
resources. Mature security protection theoretics and
technologies are not capable of applying to embedded
devices’ protection mechanism directly. In fact, the
security problems of embedded systems are much more
complicated than desktop systems. As a matter of fact,
how to improve the security of embedded terminals has
been an urgent yet challenging problem. As we know,
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security vulnerabilities from OS (Operating System)
or third-party software are increasingly serious. It is
not an effective way to protect run-time systems by
preventing vulnerabilities and patching faulty programs
as before. Nowadays, it is lack of mature theories and
fundamental researches that focus on run-time security
of embedded devices. The mainstream implementation
schemes are based on virtualization technology and
secure coprocessor. Virtualization technology utilizes
supervisor to manage system resources to achieve
virtual machine (VM) introspection. The supervisor
monitors the conditions of guest virtual machine
(GVM) in real time and detects potential kernel attacks.
However, VM supervisor owns more vulnerabilities
than OS due to its complexity. Furthermore, the
performance overhead owing to hardware virtualization
is unacceptable for computation capability of embedded
devices. Additionally, not all the embedded devices
have virtualization support. Kernel vulnerabilities
detection scheme based on secure coprocessor has
already been proposed [1], but it only supplies isolated
execution environment with a lack of controlling
capability on system resources, such as memory and
other exterior equipment. Such a way would lead to
two negative results. One is that monitoring function
deployed in kernel’s address space is easy to be
tampered by attackers. Consequently, the monitoring in
real time would fail. The other is that the scheme based
on secure coprocessor can only detect system status
but cannot manage and control abnormal behaviors.
For example, the integrity measurement scheme of
Linux from IBM can measure and verify the running
processes [2], but cannot prevent the execution of
illegal processes.

In order to address the security problems for
embedded terminals effectively, this paper explores
several key technologies of operating system support
for run-time security (Section 3), proposes a
TrustEnclave-based secure architecture on embedded
terminals, and presents the implementation scheme
(Section 4). The major advantage of the proposed
architecture is that it builds a TrustEnclave in the
address space of OS kernel, which cannot be tampered
by the untrusted OS kernel itself. TrustEnclave,
protected by hardware isolation technology, is an
area of OS kernel. We implement the prototype
system on real TrustZone-enabled hardware devices,
construct a trusted execution environment by hardware
isolation technology, and provide both analytical and

experimental evaluations in the end (Section 5). The
experimental results demonstrate that the proposed
security scheme is effective and feasible. It is expected
that the proposed architecture and implementation
scheme would better support potential applications on
embedded terminals where run-time security is desired
(e.g., the smart devices).

The main contributions of this paper are:
(1)We explore mainstream technologies recent years

and compare existing implement schemes.
(2)We propose a novel TrustEnclave-based secure

architecture on embedded terminals, which builds a
TrustEnclave in the address space of OS kernel and
cannot be tampered by the untrusted OS kernel.

(3)We implement the prototype system on real
TrustZone-enabled hardware devices, and present both
analytical and experimental evaluations.

2 Overview

Embedded system is a custom-built measurement
system with demanding functions, reliability, cost,
volume, and power dissipation. It consists of embedded
microprocessor, hardware platform, embedded OS,
and applications. Embedded system is similar to
computer system, which owns three security attributes
of confidentiality, integrity, and availability. The
explanations of these attributes differ greatly based on
their environment.

What is a Trusted Execution Environment? Before
we answer this question, we need to define execution
environments in general. At a high level of
abstraction, an execution environment is the software
layer running on top of a hardware layer. Both
hardware and software layers are combined to form
a device. We focus on a class of devices that
contain two execution environments that are physically
separated. One environment contains the main OS
and applications, the other environment contains trusted
software components. We thus have a physical
separation between the Trusted Area and the Untrusted
Area. The trusted area is not intrinsically trusted; no
untrusted software executes in it, and no hardware is
attached to it, which offers stronger guarantees than an
equivalent outside of the security perimeter. However,
since the trusted area is separated by hardware from OS
and applications, its isolation is guaranteed. Everything
outside the trusted area is untrusted. Each area features
a different execution environment. In other words, a
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device has two different software stacks. We denote
the execution environment in the trusted area Trusted
Execution Environment (abbreviated to TEE), and the
one in the untrusted area Rich Execution Environment
(abbreviated to REE). Indeterministic software in the
REE cannot affect software running in the TEE.

Run-time security supplies an isolated secure
execution environment (i.e., TEE), where the code and
data are of confidentiality and integrity. The secure
characteristics include isolated execution, execution
files integrity, run-time code integrity, control flow
integrity, etc. The protected resources in run-time
security are OS kernel, memory, user process, files, and
peripherals, etc.

3 Background and Motivation

The research on key technologies of operation
system support for run-time security focuses on
virtualization technology, Trusted Platform Module
(TPM), Intel Software Guard Extensions (SGX), and
ARM TrustZone.

Owing to hypervisors with higher privilege compared
with OS, the security enhancement scheme based
on virtualization technology enhances system security
by isolating and monitoring. It usually deploys
monitoring tool outside the system. Thus, monitoring
tool can’t be manipulated by malicious software.
Besides, the untrusted software running in special
virtual machine, which are likely to be manipulated
by malicious software, can’t bypass hypervisors and
influence other virtual machines. Secvisor utilized
SVM (Secure Virture Machine) of AMD processor
to supply run-time kernel code integrity protection,
which results in much performance overhead and is
not portable for embedded system [3]. At present, the
virtualization products of mobile embedded terminal
field are vmware, L4Android, OKL4, Xen, LXC,
etc. Arc Lab of Zhejiang University utilized LXC in
Android 4.0 to implement a lightweight virtual machine
scheme [4], which isolated applications with different
security levels. Because several virtual machines still
shared sole kernel, the insufficience of the scheme was
that it didn’t supply the solution for kernel attacks.

Depending on hardware and software of current
system, TPM is a hardware module which is used to
generate and store security key, authenticate digital
signature, and produce certificate. LaGrande structure
proposed by Intel was an effective solution for both

PC system and embedded system [5]. Yu Zheng et al.
designed and implemented a scheme for trusted mobile
terminal based on hardware platform with OMAP730
processor. Shuyi Chen et al. proposed trusted mobile
platform architecture based on MTM (Mobile Trusted
Module) and gave the formal verification based on
predicate logic [6]. Bo Zhao et al. from Wuhan
University designed and implemented a trusted PDA
based on chip JetWay2810 [7]. Kim et al. from Korea
implemented a highly efficient hardware architecture
with SHA-1 and HMAC in 2007, and then in 2010
they designed the first small size MTM chip with
triple calculating speed of current TPM and less energy
consumption [8,9].

TPM uses secure key, and anything untrusted didn’t
know the key. Thus, anything encrypted by the key was
considered secure [10]. However, it can’t defense run-
time attacks. SGX(Intel Software Guard Extensions)
and TrustZone respectively adopted different methods
for run-time security.

Intel SGX is a set of new CPU instructions that
can be used by applications to set aside private
isolation regions of code and data [11]. It enables
applications to preserve the confidentiality and integrity
of sensitive code and data without disrupting the ability
of legitimate system software to schedule and manage
the use of platform resources. It helps to define secure
regions of code and data that maintain confidentiality
even when an attacker has physical control of the
platform and can conduct direct attacks on OS, VMM
and memory. SGX adds 18 instructions to extend Intel
ISA (Instruction Set Architecture) for software security.
Because SGX has been the newest security technology
of Intel since 2013, how to utilize it on embedded
platforms will be full of possibilities and deserve
more attention by researchers. Professor Ahmad-
Reza Sadeghi from Technische Universit Darmstadt
(CASED) of Germany pursued his studies on Trusted
Execution Environments of embedded system security
and gave the theoretical analysis for embedded system
security with Intel SGX support [12]. Georgia Institute
of Technology achieved a project openSGX simulating
SGX by QEMU, which is the first attempt to use SGX
in embedded field [13].

ARM defines TrustZone [14] as a hardware-
supported system-wide approach to security which is
integrated in high-performance processors e.g. Cortex-
A9, Cortex-A15, and Cortex-A12 [15]. Today,
TrustZone is implemented in most modern ARM
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processor cores including the ARM1176, Cortex-
A5/A7/A8/A9/A15, and the newest ARMv8 64-bit
Cortex-A53 and Cortex-A57. TrustZone supplies
isolated execution environment for key system modules
and protects system resources in security working
mode. Compared to complex hypervisors, TrustZone
is a more appropriate method for embedded system
security.

Motivated by the above research status, while
TrustZone [16] has been introduced more than 10 years,
it is only until recently that hardware manufacturers
such as Xilinx, Nvidia, or Freescale, and software
solutions e.g. Open Virtualization 19, TOPPERS
SafeG20, Genode21, Linaro OP-TEE, T622, or Nvidia
TLK have respectively proposed hardware platforms
and programming frameworks that make it possible
for the research community [17], as well as industry
to experiment and develop innovative solutions with
TrustZone. This turns towards an opener TrustZone
technology.

4 Design and implementation

4.1 TrustZone-based TEE architecture

In order to support TEE, a device needs to define a
security perimeter separated by hardware from the main
OS and applications, where only trusted code executes.
We show TrustZone-based TEE architecture in Fig.1.
We refer to this security perimeter as trusted area called
Secure World (SW). The trusted area is represented
on the right side of the figure (blue), where trusted
components execute in TEE. All components outside
the trusted area form the untrusted area called Normal
World (NW), where OS and applications execute in
REE. The untrusted area is represented on the left side
of the figure (yellow). Peripherals connected to the
system bus belong to either of the two areas, or both
of them. This depends on the specific technology.
TrustZone relies on the so-called NS bit, an extension of
the AMBA3 AXI system bus to separate the execution
between SW and NW.

4.2 Design challenges

The most powerful feature of TrustZone is that it
is capable of securing any peripheral connected to the
system bus (e.g., interrupt controllers, timers, and user
I/O devices) in a way that they are only visible from the
SW. One of the most difficult points is to gain the code,
data, and real-time status from any part of NW. When
real-time protection turns on, it will not only prevent
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Fig. 1 TrustZone Architecture

attacks through modifying kernel effectively, but also
defend the attacks when the two logical pages from
different processes are allocated to the same physical
page with malicious kernel behaviors.

In order to deprive NW of the access to hardware,
the support from hardware includes two aspects. One
is that higher privilege code can’t run in the lower
privilege mode. The other is the PXN (Privileged
eXecution Never) mode supported by ARM’s virtual
memory management. By setting the value of flag
bit, we can control the range of physical address space
where the privileged code is running. For example,
the instruction LDC and MCR, which access memory
by register, only run in the special segment of memory
space.

Then, we implement three technical points as
follows. First, sensitive codes, which can modify
crucial state of hardware, only run in the security
memory space in plan. Second, the security physical
memory space can’t be modified. Third, there does
not exist such address where it’s possible to get a
protosomatic sensitive code in the security physical
memory space. That means we artificially recode
the sensitive code. It is impossible to execute the
sensitive code by jumping into security space. The
result is twofold. One is that NW can’t execute
the sensitive code from normal memory because there
does not exist sensitive code in the normal memory.
The other is that the sensitive code can’t execute
in NW because NW can’t read sensitive code from
SW. Recoding can be achieved by two approaches,
similar to binary translation in fully-virtualization and
kernel modification in para-virtualization. The cost of
binary translation for ARM is lower than X86 because
of ARM’s 32 bits fixed instruction format. When
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NW ultimately executes sensitive code, CPU actually
executes a SMC call. When NW receives a SMC call, it
checks the value of register saved before, which is taken
as operation code, and jumps according to protocol. The
hardware functions are actualized in SW. Consequently,
it comes true that the instructions in NW have the same
functions as before and are secure as well.

4.3 TrustEnclave-based privilege mode

TrustZone introduces new states of security for
ARM architecture, which decide whether in SW or
NW. The hardware of SW has special design for
strengthening security, while it can isolate codes in
hardware conditions. Security software supplies basic
security services, meanwhile it provides interface to
link any other nodes of security chain, including smart
card, OS and normal applications. In general, ARM
processor has seven work modes divided into two
categories, i.e., user mode and privileged mode. Access
rights to certain resources are restricted in user mode,
but they are not constrained in the other six privileged
modes.

• User mode: Low-privileged mode, where user
code which is outside system code runs.

• System mode: Privileged code running in system
mode.

• Management mode: System using mode.

• DataAbort: Access data error.

• Fast interrupt: Rapid response to external interrupt.

• External interrupt: Normal interrupt mode.

• UndefiMd: Illegal instructions being executed.

In order to improve the design above, TrustZone-
based ARM processor adds security and non-security
modes to differentiate the state of processor. It also
adds a new processor mode (i.e., Monitor mode) besides
privileged mode and user mode. It differentiates the
state of processor by the lowest bit of coprocessor C1
(i.e., NS bit). If NS=0, it is secure and trusted. If
NS=1, it is non-secure and untrusted. The register can
be accessed if and only if it is privileged and in security
mode. The operational principle of differentiating
security and non-security is similar to privileged mode
and user mode. NS bit not only affects CPU core and
memory subsystem, but also affects the functions of
peripherals on chip.

NS bit indicates current running state of kernel.
The independently running mode (i.e., Monitor mode)

Table 1 The Mode List of TrustZone Support

Mode
Privilege State

Level NS bit=1 NS bit=0

user mode user untrusted trusted
fast interrupt privileged untrusted trusted
common interrupt privileged untrusted trusted
privileged mode privileged untrusted trusted
illegal access privileged untrusted trusted
undefined privileged untrusted trusted
system privileged untrusted trusted
monitor privileged trusted trusted

of processor is used to control the security state of
system, instructions, and access authority. It switches
between security and normal states by modifying NS
bit. Moreover, it saves the current context state and
clears registers as needed. The new eight processor
modes with NS bit are shown in Table 1. Each mode
of ARM processor corresponds to an interrupt vector
table. The offset addresses of interrupt vector tables are
shown in Table 2.

As shown in Table 2, system call(SVC) and security
call(SMC) use the same interrupt vector address. SVC
is used to switch user mode to privileged mode, while
SMC is used to switch privileged mode to security
mode. However, it will cause undefined instruction
exception if SMC is called in user mode.

The security feature of TrustZone can be used in
sundry safety applications. The extended security
features must be satisfied by the fundamental principles
as follows.

(1) Define a new operation switching security and non-
security state. The majority of codes run in NW,
and only trusted codes run in SW.

(2) Set a part of memory space as security space.
Access SW only in security state.

(3) Control strictly the entry of entering the SW.

(4) Quit from SW needs to be restricted.

We can modify NS bit only in privileged mode, viz.
we can switch state from security mode to non-security
mode by setting NS bit. On the contrary, we cannot
switch state from non-security mode to security mode
because NS bit can’t be modified in non-security mode.

If it is in non-security mode, calling system call SMC
is the only way to enter security mode. Yet if it is both
in user mode and non-security mode, it must call SVC
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Table 2 Interrupt vector table

Interrupt Exception Mode Offset
Types Address

reset privileged mode 0x00
undefined undefined mode 0x04
system call privileged mode(SVC) 0x08
secure call monitor mode(SMC) 0x08
prefetch failure illegal access 0x0c
access error overflow 0x10
common interrupt common interrupt 0x18
fast interrupt fast interrupt 0x1c
reset privileged mode 0x00

first. It is worthwhile to note that the modification of
mode is severely restricted. If it is in non-security mode,
calling security call SMC is the only way to change
into monitor mode. When it is both in privileged and
security mode, we can modify system mode directly.
All hardware resources can be accessed in monitor
mode.

4.4 TrustEnclave Construction

We construct protected isolation TrustEnclave, and
make corresponding authority policies of page table
mapping. The structure of TrustEnclave is shown in
Fig.2. Secure World is represented on the right side of
the figure (blue), where trusted components execute in
TEE. Normal World is represented on the left side of
the figure (yellow). TrustEnclave is the enclave which
is in NW’s address space with normal privilege level
but protected by trusted isolation environment. The
monitor codes and TrustEnclave couldn’t be tampered
by attacker.
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Fig. 2 The structure of TrustEnclave

The greatest challenge here is how to protect the

monitor code in NW’s address space. Because NW
owns the full control of its own system resources, e.g.
physical memory, page table, and corresponding control
register, it’s possible to bypass the security monitor.
SW must monitor the behavior of the monitor codes
and construct TrustEnclave in kernel space. The two
specific procedures are disposition of monitor points
and isolation protection of monitor area. It will make
a security world process control block (i.e., swpcb)
while each valid process is created inside SW. Swpcb
manages the state information of process, including
process page table base address, physical address of
security shared memory, process shadow stack, process
jump record table, etc. It can be used to provide help
for proof procedure of security policy. Binary codes
are recoded during kernel image loading, while system
image files don’t need to be modified. Instruction set
of ARM architecture has fixed-length (e.g., 16-bit in
Thumb and 32-bit in ARM), and instruction addresses
are one byte aligned. SW can pre-acquire kernel address
space arrangement, so it’s easy to locate and identify the
location of correlative code. This provides a facility to
recode binary codes. The monitored kernel codes are
replaced with SMC instructions by SW, and monitor
point type is identified by 4-bit immediate operand
of SMC instructions. Referencing the management
mechanism of shadow page table in virtual technology,
all physical memory mappings which include page table
are compulsively read-only. Whenever kernel updates
page table, it will trigger data abort exceptions owing
to page permission errors and jump to exception vector
table executing exception handler. Thus, we insert a
monitor point into data abort exception of exception
vector table. It makes sure that all updates of page tables
are intercepted by SW.

In order to assure memory page table mapped read-
only, we add new security strategy while switching
TTBR (Translation Table Base Register) and updating
page table, viz. we must make sure that all
physical memory page tables are read-only and writable
multimap does not exist. It requires recording the
physical address when all the page tables are created
in SW. ARM-Android uses the two-level page table by
default. In the following two situations, the first level
page table will be created. One is initializing page
table of kernel (i.e., swappg dir) itself and trying to
write it into TTBR. The other is the first time a process
is scheduled to execute after creation when TTBR is
switched. The second level physical page table will
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be created when the first level page table is updated.
Both of them can be intercepted by the existing monitor
points. Thus, the security strategies above can be
validated effectively by SW. We should insert two kinds
of monitor points into NW: control register modification
(MMU, WXN, TTBR) and data abort exception.

5 Evaluation

5.1 Analytical evaluation

We provide an analytical evaluation of our
contributions. We first provide an exhaustive security
analysis for each of them. Then, we look at the design
requirements we established and study how they are
met in SW. From a software point of view, any design
of a trusted service using TrustZone should rely on
three main components:

(1) Trusted operating system which represents a
specific way to organize TrustZone’s secure world,
and a commodity OS that supports the execution
of complex untrusted applications (i.e., innovative
services);

(2) A TrustZone driver that enables interactions
between secure and non-secure worlds;

(3) A set of trusted modules that implement the trusted
services in the TrustZone secure world.

Our design advocates for a high integration between
the two areas in order to support innovative services,
and this inevitably comes to the cost of exposing
components in the trusted area. Still, we will see
that we maintain the assumption that the untrusted
area (i.e., untrusted applications and commodity OS)
is completely untrusted, and the fact that it is
compromised does not affect neither the confidentiality
nor the integrity of sensitive assets.

There are two TrustZone components that are
exposed to the untrusted area, therefore are subject
to being compromised: the generic TrustZone driver
and the secure monitor. These two components are
closely related, since their locations in the untrusted
area respond to two different attack vectors. A third
attack vector that we cover is directly compromising the
secure area without using the interfaces exposed to the
untrusted area.

In this analytical evaluation we show our
contributions, i.e., resist a large percentage of the
attack vectors that we know of today, and comply
with the requirements we had established for them

in our design. Indeed, we have satisfied our main
objective: increasing the security of embedded system
with possible theoretical complex applications but
without killing innovation. The untrusted area,
where innovative applications execute, can be fully
compromised. However, by means of a series of run-
time security primitives, these applications can access
trusted services while guaranteeing the confidentiality
and integrity of sensitive data. More importantly, these
trusted services not only enable the outsourcing of
secure tasks to a trusted area protected by hardware,
they also allow sensitive data to leave such trusted area
and access to innovative, untrusted services, while still
guaranteeing its confidentiality and integrity.

5.2 Experimental evaluation

As mentioned above, when we started experimenting
with TrustZone, options are limited by both hardware
and software. We rely on CES-4412P development
board which is formed around Samsung newest
Exynos4412, viz. a quad-core ARM Cortex-A9
processor. The experimental platform is one of the few
platforms fully supporting TrustZone, where TrustZone
registers are available. More concretely, we use the
CES-4412P development board, which runs typically at
1.4∼1.6GHz with 32KB L1 cache and 1MB L2 cache.
The CES-4412P is depicted in Fig.3.

Fig. 3 Samsung CES-4412P development board

In our experiments, the TrustZone operating system
is Sierraware’s GPL version of Open Virtualization.
We use Linux Kernel (version 4.0.1) as the operating
system running in the NW, together with a light
command-based version of Ubuntu. These systems
respectively manage the secure space, kernel space, and
user space.
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Every time that a secure task (or trusted module) is
called from kernel space, a context switch takes place
between kernel and secure space. Even though this
process is implementation specific, it at least involves:
saving the untrusted state, switching software stack,
loading the secure state, dispatching the secure task,
and returning to kernel space (save secure state, change
software stack, load untrusted sate). We denote this
double context switch Secure Round Trip. The metric
we use is the overhead introduced by the secure space,
defined as:

Overhead =

Tsecure − Tkernel

Tkernel

(1)

We give a comprehensive evaluation for the influence
of our work by Lmbench, i.e., embedded platform
evaluation tool. It evaluates switching privileged mode,
memory mapping, page fault exception handling and so
forth. We contrast execution efficiencies of system call
between original OS and TrustEnclave-based. Then we
calculate the overhead. The experimental results are
shown in Fig.4.

fork write execve clone send open read

In Origin OS/ms 118.26 148.23 138.12 122.97 50.32 3.21 0.58

With TrustEnclave/ms 126.18 159.43 144.36 130.11 52.78 3.43 0.63
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Fig. 4 Performance evaluation for TrustEnclave

6 Discussion and future work

Different from the schemes based on secure
coprocessor, TEE architectures provide processor
secure environment, where a single core supports
multiple virtual cores that are mutually exclusive of
one another, i.e., when one is running, the other is
suspended. Generally there is some form of trigger
to allow the core to switch from one state to the
other. We implement one of TEE architectures which
is different from other international researchers’ work.
The comparison results are shown in table3.

Based on our experience designing and building
support for trusted embedded terminals, we now
propose a roadmap for future work. As demonstrated

in this work, hardware isolation is indeed an effective
solution to provide run-time security in commodity OS
without making assumptions on their trustworthiness.
Meanwhile, it simply introduces an affordable overhead
in terms of performance. On top of our initial
hypothesis, our future work include utilizing sensitive
assets, and serving as a basis for usage policy
enforcement via hardware isolation.

We divide this roadmap for future work in three
sections. First, we would like to further improve
the current architecture in terms of OS support and
security modules. Second, it would be interesting
to make improvements upon the current protection
modules. Here, we take the threat model and memory
protection mechanism separately. Finally, we would
also like to provide the memory integrity verification
by formalization in the future.

7 Related work

In consequence of size and overhead, the separate
TPM chip in embedded terminals is inadequate. TPM
module implemented in software is another choice.
Aaraj and Raghunathan et al. tested overhead and
execution time of software TPM instructions on PDA
[18]. Choi et al. from Korea implemented a
mobile trusted system based on micro-kernel [19].
Bugiel from Sweden introduced DRTM (Dynamic Root
of Trust for Measurement) to protect and measure
MTM [20], which tried to establish dynamic trusted
computing environment. Researchers Jan-Erik and
Markku from Nokia research institute implemented
simulator MTM based on simulator TPM [21]. MIPS
developed security processor core including extended
ISA to accelerate encryption and decryption functions
and security memory management. IBM produced a
coprocessor distorting authentication. Fengwei Zhang
from Georgia Mason University studied one of run-time
probable attacks and proposed implantation scheme
[22]. Igor Smolyar from Technion aimed at SRIOV [23]
utilizing a VM to control another VM.

In recent years, academic researchers focused
on ARM-Android platform for embedded terminals
security [24], and new technologies and ideas
emerged within combination of academia and industry
[25]. TrustZone-based technologies applied to mobile
terminal field [26], such as Apple SecureEnclave,
Samsung KNOX and so forth [27]. After establishing
Hypervisor-Based IMA(i.e. HIMA), Professor Azab
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Table 3 Comparison of TEE architectures with international researchers

Researchers Secure World Normal World Platform Hardware-assistent Memory Protection

S.Pinto [35] FreeRTOS Linux Xilinx ZC702 Yes Not-mentioned
Javier G [36] Open Virtualization Linux3.8.0 Xilinx ZC702 Yes Implement

Brian McGilliion [37] Linux Android/IOS/Linux Open-TEE No Not-mentioned
Johannes Winter [38] Linux Android/Linux QEMU emulator No Not-mentioned

Xia Yang [39] T-OS(Trust-E) Android4.0 SMDK210 Yes Not-mentioned
Yingjun Zhang [40] Open Virtualization Linux2.6.35 Xilinx7000 Yes Mentioned

Our work Open Virtualization Linux4.0.1 CES-4412P Yes Implement

and Professor Ning Peng from North Carolina State
University developed the applications for KNOX and
explored some new technologies [28]. Ge X and
Vijayakumar H et al. proposed a protection scheme
for kernel integrity on mobile embedded devices based
on TrustZone without implementation [29]. On .Net
platform, a security scheme based on TrustZone and
TEE was jointly developed by Microsoft Research and
Lisbon University [30]. Researchers from CASED
proposed a new code provisioning paradigm for the
code intended to run within execution environments
established on top of secure hardware [31].

Besides, Ruhr-Universitaet and Microsoft Research
Bochum utilized the newest SGX secure mode [32]
to isolate physical memory of individual nodes and
implemented trustworthy data analytics in the cloud
[33]. Seongwook Jin from Korea Advanced Institute of
Science and Technology proposed a scheme to monitor
hypervisor and protect client resources with hardware
assistance [34].

8 Conclusion

At the beginning of this paper, we argued that
one of the main factors enabling cyberattacks was
the increasing complexity of OS and software. Our
assertion was that complexity hides vulnerabilities in
the code, causing software to occasionally behave
nondeterministically. In our view, cyberattacks are
indeed about detecting unspecified behaviors and
finding ways to exploit them. The question that we
asked, and motivated our work, was: How do we handle
the security problems of complex embedded devices
without killing innovation?

We try to answer this question by focusing on run-
time security. With more system vulnerabilities and
much complex network environment, trusted kernel
hardly exists in execution. The key technologies
of operating system support for run-time security

become research hotspots. An efficient and feasible
implementation scheme is presented. We propose
an architecture to construct a trusted execution
environment isolated from OS kernel by hardware
isolation technology for embedded terminals. The
major advantage of the proposed architecture is that
it builds a TrustEnclave in the address space of OS
kernel, which cannot be tampered by the untrusted
OS kernel itself. TrustEnclave, protected by hardware
isolation technology, is an area of OS kernel. Hence,
system monitor program should be trusted. Our
experiments demonstrate that the proposed security
scheme is effective and feasible. It can be used to
protect memory, prevent malicious application, insulate
sensitive data, and deal with some other problems in
the field of embedded system security. It is expected
that the proposed architecture and implementation
scheme would better support potential applications on
embedded terminals where run-time security is desired
(e.g., the smart devices).
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