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Abstract With the rapid development of Internet of Things
technology and the promotion of embedded devices’ com-
putation performance, smart devices are probably open to
security threats and attacks while connecting with rich and
novel Internet. Attracting lots of attention in embedded sys-
tem security community recently, Trusted Execution Envi-
ronment (TEE), allows for the execution of arbitrary code
within environments completely isolated from the rest of a
system. However, existing memory protection methods in a
TEE are inadequate. In general, the software-based formal
methods are not practical and the hardware-based imple-
mentation approaches lack of theoretical proof. To address
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the memory isolation and protection problems in TEE, in
this paper, we propose a practical memory integrity protec-
tion method on an ARM-based platform, called MIPE, to
defend against security threats including kernel data attacks
and direct memory access attacks. MIPE utilizes TrustZone
technique to create a isolated execution environment, which
can protect the sensitive code and data against attacks. To
present the integrity protection strategies, we provide the
design of MIPE using B method, which is a practical for-
mal method. We also implement MIPE on the Xilinx Zynq
ZC702 evaluation board. The evaluation results show that the
automatic proof rate of machines using B method is about
78.32%, and the proposed method is effective and feasible in
terms of both load time and overhead.

Keywords TrustZone · B method · Threat tree model ·
Trusted execution environment ·Memory integrity protection

1 Introduction

With the rapid development of Internet of Things (IoT) tech-
nology and the promotion of embeddeddevices’ computation
performance [1], smart devices are probably open to secu-
rity threats and attacks while connecting with rich and novel
Internet [2]. Attracting lots of attention in embedded security
community recently, Trusted Execution Environment (TEE)
[3], allows for the execution of arbitrary code within envi-
ronments completely isolated from the rest of a system.

TEE is the secure isolation execution environment sup-
ported by different technologies. Trusted Platform Module
(TPM) focused on security key and encrypted objective [4].
However, it cannot defense against run-time attacks, which
might lead to severe vulnerabilities in a system [5]. Kernel
vulnerabilities detection schemebased on secure coprocessor
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has already been proposed [6], but it only supplies isolation
execution environment with a lack of controlling capabil-
ity on system resources, such as memory and other exterior
equipments. Intel Software Guard Extensions (SGX) has
been the newest security technology of Intel since 2013 [7],
but it is an open question how to utilize it on embedded
platforms [8]. Virtual Machine Introspection (VMI) [9] runs
a suspicious OS and the monitor programs on two VMs,
respectively. However, due to the large size of hypervisor, it
may contain a number of vulnerabilities that may be explored
by malware to threaten the hypervisor.

Most recently, new capabilities of modern trusted hard-
ware technologies allow for the execution of arbitrary code
within environments completely isolated from the rest of
the system [10–12]. The objective of trusted hardware tech-
nologies is to provide strong guarantees which ensure that
adversaries cannot tamper with the execution of sensitive
data. Due to the large code size and complexity of Operat-
ing System (OS) kernel, malicious codes can exploit known
and unknown kernel vulnerabilities to threaten the OS and
steal sensitive data from memory. However, existing mem-
ory protection methods in a TEE are inadequate. In general,
the software-based formal methods are not practical [13,14],
and the hardware-based implementation approaches lack of
theoretical proof.

Motivated by the above research status, it is practically
necessary to develop a memory integrity protection method
that can establish the trustworthiness of embedded devices.
In this paper, we first give the formal description of threat tree
model, and construct a threatmodel based on “AND/OR” tree
(Sect. 3). On the basis of threat tree model, then we provide
the design ofMIPE using Bmethod, including initial specifi-
cations and refinement (Sect. 4). Furthermore, we implement
MIPE on the Xilinx Zynq ZC702 evaluation board (Sect. 5).
Our MIPE utilizes TrustZone technique to create a isolated
execution environment, which can protect the sensitive code
and data against attacks. We present the security analysis
that MIPE can defend against security threats including ker-
nel data attacks and direct memory access attacks (Sect. 6).
The evaluation results show that the automatic proof rate of
machines using Bmethod is about 78.32%, and the proposed
method is effective and feasible in terms of both load time
and overhead (Sect. 7).

The main contributions of this paper are as follows:

(1) We propose a practical memory integrity protection
method on an ARM-based platform, called MIPE, to
defend against security threats including kernel data
attacks and direct memory access attacks.

(2) To present the integrity protection strategies, we provide
the design of MIPE using Bmethod, which is a practical
formal method.

(3) We implement MIPE on the Xilinx Zynq ZC702 eval-
uation board. The evaluation results show that the
automatic proof rate of machines using B method is
accepted and MIPE has small overhead.

2 Overview of trusted execution environment

Trusted Execution Environment is a hotspot in current
embedded system security research. TEE provides an iso-
lation security execution environment, where the codes and
data are of confidentiality and integrity. The secure charac-
teritics include isolation execution, execution files integrity,
run-time codes integrity, control flows integrity, etc.

TEE supplies more secure execution environment than
general-purposed OS, and more functions than Secure Ele-
ment (SE, e.g., smart card and SIM card). The devices
supporting TEE contain two execution environments (trusted
and untrusted) that are physically separated. On mobile
devices, TEE and mobile OS exist in parallel. They supply
secure functions for abundant mobile environments.

The research on key technologies of operation system sup-
port for TEE focuses on TPM [15], Intel SGX [16], andARM
TrustZone [17]. TPM focused on security key, and anything
untrusted didn’t know the key. Thus, anything encrypted by
the key was considered secure. However, it cannot supply
better support for flexible memory protection mechanism.
SGX and TrustZone respectively adopted different support
for memory protection mechanism in TEE.

Intel SGX adds 18 instructions to extend Intel Instruction
Set Architecture (ISA) for software security [18]. It helps to
define secure regions of code and data that maintain confi-
dentiality even when an attacker has physical control of the
platform and can conduct direct attacks on OS, VMM and
memory. As shown in Fig. 1a, the trusted area is formed by
the memory enclave, the rest belongs to the untrusted area.
Peripherals are only accessed from the untrusted area since
SGX does not extend to the system bus. The memory is sep-
arated into two domains and the secure domain is fixed.

ARM TrustZone is a hardware-based security exten-
sion technology, which is a hardware isolation mechanism
to improve software security. It enables a single physical
processor to execute codes in one of two possible operat-
ing worlds: Normal World (NW) and Secure World (SW).
Accordingly, the memory is separated into two domains to
run the dedicated OS and software. As shown in Fig. 1b,
the secure memory is not fixed but strictly controlled in the
isolation mechanism. The processor only runs in one world
at a time, and running in the other world requires context
switch. To date, TrustZone has been popularized and applied
bymanymainstreammobilemanufacturers to achieve secure
applications [19].
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(a) The architecture of SGX

(b) The architecture of TrustZone

Fig. 1 The dividing of secure world and normal world

3 Threat model

Security threats are potential events that probably lead to
unexpected results (e.g., Information Leakage and Denial of
Service) [20]. Threat model represents the possible threats
for a special system, describing the ways that the attackers
probably launch potential threats or attacks.

Researchers have proposed several abstract representa-
tions for threat modelling, which are divided into three
categories. Based on tree structure, they are fault tree,
threaten tree, and attack tree. Based on the network struc-
ture, they are Petri nets [23], Generalized stochastic Petri nets
[24], and aspect-oriented Petri nets [25]. Based on diagram
structure, they are attack diagram [26] and UML sequence
diagram [27].

3.1 Threat tree model

From an attacker’s point of view, the attacked system consists
of several targets of threats. Each target has vulnerability,
and each successful attack to the vulnerability will probably
do harm to the system. Threat model describes the decision-
making processwhere the components in the attacked system
go through. Threat model reflects attack methods which the
attackers select, so the process of constructing threat model
is the analysis process of possible potential threats.

We construct the threat model by “AND/OR” tree. Mem-
ory resource is taken as target of threats, and it is the root

Table 1 Notations and descriptions in TTM

Notations Descriptions

Tr The threat tree

N A set of nodes

R A set of relations

Pa A set of attack paths

Nroot The root node of the threat tree

Nlea f A set of leaf nodes

Nand A set of “AND” nodes

node of the tree. Root node is decomposed by several sub-
objectives. Whether the type of father node is “AND” or
“OR”depends on the logical relations of sub-objectives. Each
of sub-objectives is decomposed according to the above iter-
ation process until it is a leaf node. Such a way would finish
the threat model construction.

Definition 1 The formal description of TTM is a seven-
element set shown as follows: 〈 Tr, N, R, Pa, Nroot , Nlea f ,
Nand 〉. The notations and description in TTM are shown in
Table 1.

n, ntemp, Ni , N j are nodes of set N. Ri j is the element
of set R, and Ri j=(Ni , N j ). n.Children is a set of children
nodes. n.nodeType is the type of a node, whose value is either
“AND” or “OR”. VN is a set of visited nodes. QN is a queue
of nodes. Pa0 is a set of all the attack paths accessing to the
root node of the threat tree.
Assumptions We assume an ARM-based architecture that
implements the TrustZone extensions. We also assumes that
it runs as a part of the secure world, while the target OS
runs in the normal world. We also assumes that the whole
system is loaded securely, including both the secure and the
normal worlds. This process is straightforward using trusted
boot. Intuitively, trusted boot only guarantees the integrity
of the kernel during the boot-up process. It cannot guarantee
the integrity of the kernel after the system runs and starts to
interact with potential attackers.

There are three key algorithms for threat model construc-
tion as follows.

3.1.1 Threat tree construction algorithm

We construct the threat model by “AND/OR” tree. Root
node is decomposed by several sub-objectives, which depend
on the constitution of attacking means achieving the goal.
Whether the type of father node is “AND” or “OR” depends
on the logical relations of sub-objectives. A non-leaf node is
an “AND” node if and only if it is implemented after each of
its child nodes is implemented. The logical relations between
any child nodes of “AND” node are “AND”. It is worthwhile
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to note that the default implementationorder of its child nodes
is from left to right. A non-leaf node is an “OR” node if
and only if it is implemented when any of its child nodes is
implemented. The logical relations between any child nodes
of “OR” node are “OR”.

Above procedures are iterated to implement the stepwise
refinement of attacking means until the attack is indivisible
(i.e., it is a leaf node). While the iteration process is over, the
top-down construction is finished.

Algorithm 1: ThreatTreeConstruction(N, R)
Input: a set of nodes in the threat tree, N; a set of relations in the

threat tree, R
Output: a threat tree, Tr

1 Tr = null;
2 if Nroot = null then
3 Return;

4 Tr.root = Nroot ;
5 QN.enqueue(Nroot ); /* Enqueue operation */
6 while QN �= null do
7 n = QN.dequeue(); /* Dequeue operation */

8 if n /∈ Nlea f then
9 if n ∈ Nand then

10 n.nodeType = “AND”;

11 else
12 n.nodeType = “OR”;

13 for each relation Ri j ∈ Tr.R do
14 if n = Ri j .Ni then
15 n.Children.add(N j );
16 QN.enqueue(N j );

17 Return Tr;

3.1.2 Accessibility checking algorithm

We analyze accessibility of nodes and check whether the cir-
cles exist in threat treemodel. Based on breadth-first traversal
way, each of the nodes is accessed in layers. The accessed
nodes are added in an accessed set, and the accessed set is
checked whether it is equated with constructed threat tree. If
there exists a single node not in the accessed set, there is an
unaccessible node in the model, and vice versa.

3.1.3 Attack paths searching algorithm

Attack paths searching algorithm is basic to threat-perceived
based memory protection technology. Different attacking
means constitute several attack paths, and each attack path
represents one of potential attacking means in order to dam-
age the security. The following algorithm searches all the
attack paths accessing to the target.

Algorithm 2: AccessibilityChecking(Tr)
Input: a threat tree, Tr
Output: Boolean accessible

1 Accessible=true;
2 VN=null; QN=null; ntemp=null;
3 if Nroot = null then
4 Return;

5 else
6 VN.add(Tr.root)

7 for each relation Ri j ∈ Tr.R do
8 if Tr.root = Ri j .Ni then
9 QN.enqueue(N j );

10 while QN �= null do
11 ntemp = QN.dequeue();
12 if ntemp /∈ VN then
13 VN.add(ntemp);
14 for each relation Ri j ∈ Tr.R do
15 if ntemp = Ri j .Ni then
16 QN.enqueue(N j );

17 for each node n ∈ Tr.N do
18 if n /∈ VN then
19 Accessible=false;

20 Return Accessible;

Algorithm 3: AttackPathsSearching(Tr)
Input: a threat tree, Tr
Output: a set of all the attack paths accessing to the root node of

the threat tree, Pa0
1 Pa = null; Pa0 = null;
2 for j from Tr.N.size()-1 to 0 do
3 N j = Tr.N.get(j); /* get nodes reversely */
4 if N j ∈ nlea f then
5 Pa j = N j ;

6 else
7 if N j ∈ nand then
8 get all attack paths of N j s child nodes and the number

of them;
9 sum of the number is n;

10 for l from 0 to n-1 do
11 Paj.add(Paj[l]);

12 else
13 get the number of all attack paths of N j s child nodes;
14 sum of the number is n;
15 for i from l to k do
16 for t from l to Ni do
17 Pa j .add(Pa j [t]);

18 Return Pa0;

4 Design of MIPE using B method

The B method is a formal method enabling the develop-
ment of secure programs. It uses concepts of first order
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logic, set theory and integer arithmetics to specify abstract
state machines that represent software behaviour. The secu-
rity model can be verified using proof obligations to ensure
its consistency. B method provides a refinement mecha-
nism.

4.1 Initial specifications

The abstract descriptions of the specifications were refined
to the IMPLEMENTATION descriptions by converting the
nondeterministic sections to sequential processing. Initial
specifications are shown in Fig. 2. Variables and descriptions
are shown in Table 2.

4.2 Refinement

TheMACHINE Secure_Memory(Smem) provides several
operations respectively. They are shown as follows:

– MemPut, free memory blocks.
– MemGet, allocate memory blocks.
– MemCreate, create memory blocks.
– MemQuery, query the state of memory partition.
– MemDelete, delete the memory partition.
– ......

The MACHINE Normal_Memory(Nmem) also pro-
vides the operations above. B method covers software
development process from an abstract specification to an
implementation through successive refinement steps. Tak-
ing the precise mathematics semantics as the foundation,
B method supports rigorous development process. Take
MemGet as an example. The operations ofMemGet is shown
in Fig. 3, and the refinement of Secure_Memory(Smem) is
shown in Fig. 4.

As shown above, the concrete model phase consists in
completing the abstract model to get to a completely imple-
mentable B project. The only input of this phase is the
abstract model and the goal is to implement it completely
through refinement and importation breakdown. When the
concrete model is fully proved, we are sure that the concrete
model complies with the abstract model. The specifications
of memory integrity protection in the proposed architecture
are described in B.

5 Implementation of MIPE

In order to support TEE, a device needs to define a secu-
rity perimeter separated by hardware from the main OS
and applications, where only trusted code executes. We
show TrustZone-enabled TEE architecture in Fig. 5. SW
is represented on the right side of the figure (blue), where

trusted components execute in TEE. All components out-
side the trusted area form the untrusted area called NW,
where OS and applications execute in REE. The untrusted
area is represented on the left side of the figure (yel-
low). Peripherals connected to the system bus belong to
either of the two areas, or both of them. TrustZone relies
on the so-called NS bit, an extension of the AMBA3
AXI system bus to separate the execution between SW
and NW. A secure monitor mode and the trusted enclave
domain in address space of OS kernel, which ensure the
secure memory that cannot be tampered by the untrusted
OS kernel, control the switch and migration between the
two worlds. The role of the monitor mode software in a
design is to provide a robust gatekeeper which manages
the switches between the Secure and Non-secure processor
states.

5.1 Context switching

TrustZone-basedmemoryprotectionmechanismensures that
state of the world that the processor is leaving is safely saved,
and the state of the world the processor is switching to is cor-
rectly restored.Normalworld entry tomonitormode is tightly
controlled. It is only possible via the following exceptions:
an interrupt, an external abort, or an explicit call via an SMC
instruction. The Secure world entry to the monitor mode is a
little more flexible, and can be achieved by directly writing
to CPSR, in addition to the exception mechanisms available
to the Normal world.

The primary role of the monitor is to context switch
resources that are needed in both worlds. Any secure state
saved by the monitor should be saved into a region of Secure
memory, so that the Normal world cannot tamper with it.
Exactly what needs to be saved and restored for each switch
depends on the memory management mechanism, and the
software model used for inter-world communications. Fig-
ure 6 shows an example of switching signals by TrustZone
protection controller (TZPC). The TZPC is configured as
always Secure, the Timers and Real-Time Clock (RTC) as
always Non-secure, and the Keyboard and Mouse Interface
(KMI) has a programmable security state under software
control. The TrustZone Memory Adapter (TZMA) enables
a design to secure a region within an on-SoC static mem-
ory such as a ROM or a SRAM. Secure world software can
program the TZPC at run-time to change the signal input to
the AXI-to-APB bridge to switch the KMI from Secure to
Non-secure or visa versa. As this figure also shows that the
addition of the TZPC allows other signals on the SoC to be
controlled dynamically.

An SMC function identifier once issued must never be re-
used. Additional SMC calls must take a new unused SMC
identifier. Calls to removed SMC identifiers must return the
UnknownSMCFunction Identifier value. Incompatible argu-
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MACHINE
Secure Memory(Smem)

CONSTRAINTS
Smem <:NAT

SETS
Smid
STATE{SW,NW,Monitor}

VARIABLES
S used, S allocated, S addr,
S size, S blocks, S free, state

INVARIANT
state = SW,Monitor ∧
S used ∈ Smem ∧
S allocated ∈ Smem ∧
S used ∈ S allocated ∧
S free <= S blocks

OPERATIONS
MemPut(id, addr1, addr2)
MemGet(id, addr1, addr2)
MemCreate(id, addr1, addr2)
MemQuery(id, addr1, addr2)
MemDelete(id, addr1, addr2)
......
END

END

(a) Secure memory

MACHINE
Normal Memory(Nmem)

CONSTRAINTS
Nmem <:NAT

SETS
Nmid
STATE{SW,NW,Monitor}

VARIABLES
N used, N allocated, N addr,
N size, N blocks, N free, state

INVARIANT
state = NW ∧
N used ∈ Nmem ∧
N allocated ∈ Nmem ∧
N used ∈ N allocated ∧
N free <= N blocks

OPERATIONS
MemPut(id, addr1, addr2)
MemGet(id, addr1, addr2)
MemCreate(id, addr1, addr2)
MemQuery(id, addr1, addr2)
MemDelete(id, addr1, addr2)
......
END

END

(b) Normal memory

MACHINE
SY STEM

CONSTRAINTS
mem <:NAT

SETS
STATE{SW,NW,Monitor}

VARIABLES
state, access, mem, mem used,
mem allocated, mem addr, mem size,
mem blocks, mem free

INVARIANT
state ∈ STATE ∧
access ∈ BOOL ∧
mem used ∈ mem ∧
mem allocated ∈ mem ∧
mem used ∈ mem allocated
mem free <= mem blocks

OPERATIONS
......
END

END

(c) System memory

MACHINE
S data

SETS
STATE1{SW,NW,Monitor}
STATE2{SW,NW}

VARIABLES
autho, state, attri, origi

INVARIANT
autho ∈ BOOL ∧
state ∈ STATE1 ∧
attri ∈ STATE2 ∧
origi ∈ STATE2 ∧
(attri = NW ∧ state = NW ) ⇒ autho = true
(attri = SW ∧ state = NW ) ⇒ autho = false
(attri = SW ∧ state = {SW,Monitor}) → autho =

true
OPERATIONS

......
END

END

(d) Secure data

Fig. 2 Initial specifications

ment changes cannot be made to an existing SMC call, a new
call is required. Table 3 shows the recommended allocation
of SMC identifier value ranges for different entities and pur-
poses. The owner of a range is the entity who is responsible
for that function in a specific SoC.

5.2 Virtual memory divide and exception handling

In general, the statuses of memory protection mechanism are
initialization, allocation, checking, exception handling, and
release. These statuses are described in Fig. 7.
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Table 2 Variables and descriptions

Variables Descriptions Variables Descriptions

S_used Used memory blocks in SW N_used Used memory blocks in NW

S_allocated Allocated memory blocks in SW N_allocated Allocated memory blocks in NW

S_addr Starting address of memory partition in SW N_addr Starting address of memory partition in NW

S_size The size of memory blocks in SW N_size The size of memory blocks in NW

S_blocks The number of memory blocks in SW N_blocks The number of memory blocks in NW

S_free Free memory blocks in SW N_free Free memory blocks in NW

State The state of system Autho Access authority

Attri The secure attribute of data Origi The initial state of data

OPERATIONS
MemGet(id, addr1, addr2) =

PRE
id : mid ∧ addr1 <addr2 ∧
S free(id) <S blocks(id) ∧
addr1...addr2 <:S used ∧
addr2 − addr1 + 1 = S blocks(id)

IF
(attri = NW ∧ state = NW ) ∨
(attri = SW ∧ state = {SW,Monitor})

THEN
mem free(id):=mem free(id) − 1
mem used :=mem used + (addr1...addr2)
......

END
END

Fig. 3 The operations of MemGet

Only user mode is non-privileged mode for application
process running, while other privileged modes are used to
handle external interrupts, system calls and CPU exceptions,
respectively. The entry instruction of the privileged mode is
located at the system exception vector table, whose address
is determined by the V bit of system control register and
vector base address register. With TrustZone supporting, the
two worlds have different page table base registers and vec-
tor vase registers. This brings independent virtual memory
mapping and exception handling, and adds a new CPU priv-
ileged mode as well. Monitor mode is in charge of switching
one world to the other. Owing to independent exception vec-
tor table, monitor mode uses the address space mapping of
secureworld, which is designated byMVBAR (MonitorVec-
tor Base Address Register Specify). The dividing of the two
worlds is showed in Fig. 8.

5.3 Integrity protection strategies

The TrustZone-enabled isolation protection mechanism is
applied to protect memory mappings. In the case of an unre-
liable operating system kernel, the codes cannot be executed

IMPLEMENTATION
Secure Memory(Smem)

REFINES
Secure Memory

VALUES
S used, S allocated, S addr,
S size, S blocks, S free, state

INVARIANT
state = NW ∧
N used ∈ Nmem ∧
N allocated ∈ Nmem ∧
N used ∈ N allocated ∧
N free <= N blocks

OPERATIONS
MemGet(id, addr1, addr2) =

IF
attri = SW ∧
state = {SW,Monitor}) ∧
autho = true

THEN
S free(id):=S free(id) − 1
S used :=S used + (addr1...addr2)
......

END
END

Fig. 4 The refinement of Secure_Memory(Smem)

Fig. 5 The architecture of TrustZone-enabled device
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Fig. 6 An example of switching signals by TrustZone protection con-
troller

in the target device, unless they are authorized by the integrity
verification program. According to different types of attacks,
we construct multilevel protection strategies.

First, based on integrity protection strategy of executable
files and link library files, malicious processes are prevented
from running. Monitor points are set up at the entry and
return of system calls (e.g., exception handler). Creating pro-
cess, loading executable files, and reading shared libraries are
intercepted. Such a way could lead to that the initial status
of the created process would be integrity.

Table 3 SMC identifier ranges

SMC function identifier Reserved use and
sub-range owner-
ship

0x00000000-0x0100FFFF Reserved for existing APIs

0x02000000-0x1FFFFFFF General trusted OS

0x20000000-0x7FFFFFFF Reserved

0x8000000-0x8000FEFF ARM service calls

0x81000000-0x8100FEFF CPU service calls

0x82000000-0x8200FEFF SiP service calls

0x83000000-0x8300FEFF OEM service calls

0x84000000-0x8400001F PSCI SMC32 bit calls

0x84000020-0x8400FEFF Standard service calls

0x8400FF00 Standard service call count

0x8400FF01 Standard service call UID

0x8400FF02 Reserved

0x8400FF03 Revision details

0x8400FF04-0x8400FFFF Reserved

0xB0000000-0xB100FFFF Trusted application calls

0xB2000000-0xBF00FEFF Trusted OS calls

0xBF00FF00 Trusted OS calls count

0xBF00FF01 Trusted OS calls UID

0xBF00FF02 Reserved

0xBF00FF03 Revision details

0xBF00FF04-0xFF00FFFF Reserved

Fig. 7 The status of memory protection extraction

Fig. 8 Dividing of virtual memory and exception handler

Second, based on integrity protection strategy of run-
time codes in memory, injection attacks for run-time codes
are prevented. With WXN (Write eXecute Never) protec-
tion mechanism, the writable and executable permissions
are mutually exclusive, so it’s feasible to distinguish the
executable codes from stack data in memory. Such a way
could prevent above-mentioned injection attacks with hard-
ware support. In other words, SW just keeps WXN-enabled
mechanism in the security strategy. Additionally, the peri-
odical measurement on the process code segments could
enhance the strategy as well.

Third, based on control flow integrity protection strategy,
control flow hijack attacks (e.g., code reuse) are prevented.
We explore TrustZone-based isolation technology to protect
run-time flow integrity, which is on the basis of the shadow
stack method. The following security strategies are basic
requirements. Each function call mustmatch a return, and the
destination address of function call must be included in the
white list. Furthermore, the destination address of returned
instruction must be consistent with return address of shadow
stack. For the executable files, whose load base addresses
are fixed, the white list of function’s jump addresses can
be accessed from the central control server directly. For the
relocatable dynamic link library files, the actual addresses
is got by adding the loading base addresses and the relative
addresses of white list.

5.4 Integrity verification method

Goals of the integrity verification are monitoring sensitive
instructions and protecting memory. The former is to ensure
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the integrity of system when its status is changed. The latter
is to guarantee that the integrity verification is always under
control of corresponding program.When a page fault occurs,
NW creates a mapping between virtual address and physical
address, and sends SMC instruction to trap into SW. SW
checks previous status of physical page to judge whether the
address is mapped to the virtual address. Such a way would
prevent some special attacks, e.g., Man-in-the-Middle.

To prevent the attacks from kernel, the integrity verifi-
cation program can be built in the monitor, and it should
implement the real-time intervention of system calls. The
intervened instructions include system call, hardware inter-
rupt (INT 0x10), and SMC instruction, which is used to
switch status of system between NW and SW.

The following procedures should be implemented. The
return address of system call is replaced by the monitor mod-
ule, and an illegal address is created by the system call to
protect interruption. Then, instructions trapped into monitor
module are executed. The monitor module checks codes and
returns the address of quondam system call after integrity is
ensured. All registers’ status (including CR3 page table reg-
ister, IP, SP, etc.), the stack status of kernel in clients, and the
system call number in EAX, need to be checked.

Meanwhile, in order to ensure the integrity of executable
files, the following two situationsmust be assured. The one is
that the system executes with integrity and none of user pro-
cesses is modified. The other is that any modification of the
user processes is first perceived by the integrity verification
program.

NX (Non-execute) bit of page is enabled by the integrity
verification program, viz. it sends signals to OS whether the
instructions of the page can be executed. Once executable
codes in user-code pages are protected byNX, it will trap into
the monitor module immediately. If a malicious OSmodifies
the initial address of user segment when the user page table
changes, it must trap into the monitor module as well. The
reason is that the system call is triggered in such a process.
By comparing the addresses of user segment, the integrity
is verified successfully. After checking the integrity of user
process, the full page is set as readable and executable by
integrity verification program. If there is an attack attempting
to modify this page, it will still trap into the monitor module
to verify the integrity. Such verification cycles ensure the
integrity.

6 Security analysis

Throughout Sect. 5, we discussed the security guarantee pro-
vided by Enclave and Monitor in SW. In this section, we
summarize these guarantees by discussing how they defeat
security threats. We categorize security threats by the attack
surface they target.

6.1 Kernel attack surface

The first threat to the kernel is to run a modified binary
during system load-time.Asmentioned inSect. 3, TrustZone-
enabled devices assumes the presence of trusted boot to
defeat that threat. It is the only guarantee that the loaded
kernel binary is instrumented to remove control instructions.
Once that binary is loaded, the memory protection will guar-
antee that it cannot be modified. The security guarantees
provided by both control instruction emulation and memory
protection are non-bypassable because there is nowhere in the
normal world that can execute the emulated instructions or
modify the translation tables.Modern kernels usually support
extending their code using loadable modules. These modules
are not verified by trusted boot because they are loaded after
the system starts. Our scheme supports these kernel code
extensions as long as they are known to the system and they
are subject to instrumentation to remove control instructions
from their binaries. We rely on an orthogonal system to ver-
ify the binaries of loadable kernel modules before they are
loaded into memory. This system restricts the modules to be
loaded a predefined set of modules.

6.2 Kernel data attacks

As mentioned in Sect. 5.3, TrustZone prevents direct access
of kernel data from user space. User space will have the PXN
access restriction so it can not escalate its privilege to access
the privileged kernel data.Moreover, our schemewill prevent
kernel data from being double mapped to user space. For this
particular security guarantee, our scheme uses the kernel to
get information about the memory layout. This is acceptable
because this type of attacks can only originate from the user
space. The philosophy behind using TrustZone to provide
this protection is to avoid vulnerabilities that usually exist
in the huge kernel code base. Such vulnerabilities have been
previously exploited to give unauthorized access to kernel
data [21].

6.3 Direct memory access attacks

Hardware peripherals are sometimes allowed to bypass the
MMU and do a Direct Memory Access (DMA) to the physi-
cal memory. Attackers may use an exploit to trick the kernel
into allowing these devices to directly access its memory.
DMAattacks are not a threat to our scheme. The secureworld
is inherently secure against DMA using the TrustZone pro-
tection mechanism. DMA attacks that aim at modifying the
kernel binary or the translation tables can be stopped using
instruction emulation. Our scheme needs to further instru-
ment the kernel so that the kernel cannot manage the DMA
controller. The exact implementation will differ according to
the used hardware platform.
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Table 4 Automatic proof rate of machines

Component Proof obligations Proved automatically Proved interactively or manually Automatic proof rate (%)

AddressData 4 4 0 100

Task 62 58 4 93.55

S_Memory 42 36 6 85.71

Object 8 8 0 100

N_Memory 36 31 5 86.11

SYSTEM 72 46 26 63.89

S_data 57 40 17 70.18

Monitor 18 9 9 50

Event_Control 10 10 0 100

Total 309 242 67 78.32

7 Experimental evaluation

7.1 Evaluation of the automatic proof

We implement above scheme by Atelier B 4.2.1 [22]. Atelier
B is a consolidated tool that is used in many projects both in
the academia and in the industry. TheAtelier B has numerous
tools such as a powerful editor with the ability to warn the
user in the case of mistyping or even potential typing errors,
automatic proof obligation generator, automatic prover, and
an interactive prover. The automatic prover of the Atelier B
is very effective. As shown in Table 4, the automatic proof
rate of proof obligations is about 78.32% (242 out of 309).

One of the advantages of the proposed hardware-assisted
architecture is verified and demonstrated through the design
and development of the memory management system in a
trusted execution environment. There is much more to come.

– Thememorymanagement system can be kept small,min-
imizing the critical program.

– A small kernel makes it easy for the correctness of its
design to be formally verified.

– The hardware-assisted architecture provides an isolated
environment for multiple components of an embedded
system.

7.2 Evaluation of secure world

We rely on Xilinx Zynq ZC702 evaluation board which is
one of the few platforms fully supporting TrustZone. In this
experiment,we observe the difference in performancewhen a
workload is executed in secure and kernel space respectively.
This is specially relevant for the pervasive OS support oper-
ations (e.g., memory operations). The TrustZone operating
system is Sierraware’s GPL version of Open Virtualization.
We use Linux Kernel (version 4.0.1) as the operating system

Table 5 The output of microbenchmarks

Syscall SW (s) µs/c NW (s) µs/c Number of calls

Read 2.6366 32 2.5512 30 87,969

Write 1.5806 16 1.2898 14 96,008

Close 0.4128 10 0.2264 4 45,137

Wait4 0.0131 13,100 0.0209 20,900 1

Open 0 0 0.0001 2 44

running in the NW, together with a light command-based
version of Ubuntu.

As shown in Table 5, the output of program is the result
when syscall mediation through the secure area enabled or
not with 10,000 executed instructions per system call. Col-
umn outputs are syscall name, seconds, microseconds per
call, and number of calls, respectively.

Themetricwe use is the overhead introduced by the secure
space, defined as:

Overhead = Tsecure − Tkernel

Tkernel
(1)

Figure 9 shows the overhead of executing memory oper-
ations in secure space. It presents the overhead of allocating
memory in secure space (compared to kernel space) using
kmalloc and vmalloc, the overhead of copying memory with
memcpy, and the overhead of executing a call to secure space.

In Open Virtualization, when the secure area initializes
at boot time, a memory pool is created using a technique
similar to the buddy system. Since the secure area has a lim-
ited amount of memory, it is relatively cheap to pre-allocate
and manage this pool. As a result, secure tasks can obtain
dynamic memory at constant cost. The design principle fol-
lowed inOpenVirtualization is that secure taskswill not need
to allocate big amounts of memory, and allocations will not
occur as often as in a general purpose OS. In kernel space
however, Linux uses slab allocation, which is designed to
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Fig. 9 Overhead of executing memory operations in secure space

allocate large amounts of memory while minimizing exter-
nal fragmentation. This explains that secure area is faster at
allocating memory as the requested size increases.

When using vmalloc, the kernel allocates virtually con-
tiguous memory that may or may not be physically contigu-
ous; with kmalloc, the kernel allocates a region of physically
contiguous (also virtually contiguous) memory and returns
the pointer to the allocated memory. While kmalloc is nor-
mally faster that vmalloc it depends very much on the
requested allocation size and how fragmented the memory
is. In our tests kmalloc clearly deteriorates faster than vmal-
loc; we execute each memory operation a million times in
order to avoid misleading results due to scheduling, locking,
etc. When looking at individual allocations, kmalloc does
perform better for small allocation sizes.

8 Related work and future work

8.1 Threat model

McDermott proposed attack modeling by Petri net, which
described the status of the systemand security-related entities
by places of Petri net [23]. Dalton et al. proposed an attack
modeling method by generalized stochastic Petri net [24].
Xu et al. proposed an aspect-oriented Petri nets, which was
a strict formalization method for threat-driven modeling and
verification of security software [25]. Phillips et al. analyzed
vulnerabilities in computer network by attack diagrams.
Sheyne et al. explored a model checking tool for generat-
ing and analyzing attack graphs [26]. Wang et al. proposed a
threat representationmethod byUMLsequence diagram, and
utilized the model-driven security testing method to discover
run-time threats [27].

8.2 SGX-based

Professor Ahmad-Reza Sadeghi from Technische Univer-
sit Darmstadt (CASED) of Germany pursued his studies on
Trusted Execution Environments of embedded system secu-
rity. They gave the theoretical analysis for embedded system
security with Intel SGX support [28]. Georgia Institute of
Technology achieved a project openSGX simulating SGX
by QEMU [29], which is the first attempt to use SGX in
embedded field.

8.3 TrustZone-based

TrustZone-based technologies applied to mobile terminals,
such as Apple SecureEnclave, Samsung KNOX and so
forth [30]. Professor Azab and Professor Ning Peng from
North Carolina State University developed applications for
KNOX and explored their new technologies [31]. Ge X and
VijayakumarH et al. proposed a protection scheme for kernel
integrity on mobile embedded devices based on TrustZone
without implementation [32]. On .Net platform, a security
scheme based on TrustZone TEE was jointly developed by
Microsoft Research and Lisbon University [33]. Researchers
from CASED proposed a new code provisioning paradigm,
which ran on secure hardwares with an isolated execution
environment [34].

8.4 Future work

As demonstrated in the previous works, our MIPE is an
effective solution to provide the integrity protection of execu-
tion files, run-time codes, and control flows with affordable
performance overhead. Based on our initial hypothesis, the
future work will include the following three parts. Firstly,
we would like to improve the current algorithms supporting
increasing nodes of a threat tree. Secondly, it would be inter-
esting to make improvements upon the verified process and
implementations using B method. Finally, we are going to
provide the memory integrity verification by formalization
in the future.

9 Conclusion

In this paper, We try out a novel practical memory pro-
tection method for the security of embedded devices. We
propose and implement a practical memory integrity protec-
tion method on an ARM-based platform, called MIPE, to
defend against security threats including kernel data attacks
and direct memory access attacks. To present the integrity
protection strategies, we provide the design of MIPE using
Bmethod, which is a practical formal method. With growing
multifarious threats in embedded devices, this work provides
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effective integrity protection for execution files, run-time
codes, and control flows. We present the security analysis
and show through evaluation that the proposed scheme is
effective and feasible in terms of both load time and over-
head. The evaluation results also show that the automatic
proof rate of machines using B method is about 78.32%. It
is expected that our scheme would support potential applica-
tions on TrustZone-enabled devices in the future.
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