Chapter 6 Multiprocessors and Thread-Level Parallelism

chenwz@zju.edu.cn

2014年4月13日

6.1 Introduction

- advances in uniprocessor architecture were nearing an end
- processor performance growth was at its highest rate
- parallel processors will definitely have a bigger role in the future

Which is right?

6.2 A Taxonomy of Parallel Architectures

- Single instruction stream, single data stream (SISD) —This category is the uniprocessor.
- Single instruction stream, multiple data streams (SIMD) —Vector architectures are the largest class of processors of this type.

- Multiple instruction streams, single data stream (MISD) —No commercial multiprocessor of this type has been built to date, but may be in the future.
- Multiple instruction streams, multiple data streams (MIMD) —Each processor fetches its own instructions and operates on its own data. The processors are often off-the-shelf microprocessors.

6.3 Two classes of MIMD

Depend On:

- the number of processors
- memory organization
- Interconnect strategy

6.3.1 centralized shared-memory architecture

- With small processor counts
- With large caches
- Called symmetric (shared-memory) multiprocessors (SMPs)
- Called UMA for uniform memory access

6.3.2 distributed-memory architecture

- With large processor counts
- the need for a high bandwidth interconnect
- Advantage:
 - cost-effective way to scale the memory bandwidth, if most of accesses are to local memory in the node.
 - -It reduces the latency for access to the local memory.

6.4 Models for Communication and Memory Architecture

6.4.1 Models for memory Architecture

- Distributed shared memory (DSM or scalable shared memory)
 - logical uniform address space but physical distributed memory, so any one of the processors can access any one of the memories.
 - Shared memory means sharing the address space, which is different from centralized shared memory.
 - UMA(uniform memory access) ---- centralized share memory.
 - NUMA(non-uniform memory access) ---- distributed shared memory.

multiple computers

- Address space consists of multiple private address spaces cannot be addressed by a remote processor.
- -Each processor-memory module is essentially a separate computer (multicomputers).

6.4.2 Models for Communication

shared memory

- message passing
 - -Synchronous message passing (RPC)
 - -Asynchronous message passing(MPI)

For Shared memory

- compatibility with mechanism used in centralized multiprocessors
- -easy programming, simplify compiler design
- -lower overhead for communication and better use of bandwidth, due to implicit nature of communication and implement memory protection in hardware instead of in OS.
- The ability to use hardware-controlled caching to reduce the frequency of remote communication by supporting automatic caching of both shared and private data.

For Message passing

- The hardware can be simpler
- communication is explicit, simpler to understand
- -forcing programmers and compilers to pay attention to communication.

-...

6.5 What Is Multiprocessor Cache Coherence?

Problems with Parallel I/O

Suppose CPU-1 updates A to 200.

write-back: memory and cache-2 have stale values write-through: cache-2 has a stale value

Example1: read

Time	Event	Cache	Cache	Memory
		contents for	contents for	contents for
		CPU A	CPU A	Location X
0				1
1	CPU A reads X	1		1
2	CPU B reads X	1	1	1
3	CPU A stores 0 into X	0	1	0

Example2: write

Write-back Caches & SC

prog T1

ST X, 1

ST Y,11

- T1 is executed
- cache-1 writes back Y
- T2 executed
- cache-1 writes back X
- cache-2 writes back X' & Y'

- cache-1
 - X=1Y=11

X=1

Y=11

X=1

Y=11

X=1

Y=11

X=1

Y=11

memory

Y = 10

X'=

3

prog T2

ST X',R2

Write-through Caches & SC

prog T1 ST X, 1 ST Y,11

T1 executed

T2 executed

6.6 Snooping

6.6.1 Write invalidate protocol

Processor Activity	Bus activity	Contents of CPU A's cache	Contents of CPU B's cache	Contents of Memory Location X
				0
CPU A Reads X	Cache miss for X	0		0
CPU B Reads X	Cache miss for X	0	0	0
CPU A writes A 1 to X	Invalidation for X	1		0
CPU B Reads X	Cache miss for X	1	1	1

6.6.2Write update or write broadcast protocol

Processor Activity	Bus activity	Contents of CPU A's cache	Contents of CPU B's cache	Contents of Memory Location X
				0
CPU A Reads X	Cache miss for X	0		0
CPU B Reads X	Cache miss for X	0	0	0
CPU A writes A 1 to X	Write broadcast Of X	1	1	(1)
CPU B Reads X		1	1	にひ

6.7 Directory protocol

