CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. (2015)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.3530

SPECIAL ISSUE PAPER

AMC: an adaptive multi-level cache algorithm in
hybrid storage systems

Yuxia Chengl’*’T, Wenzhi Chen!, Zonghui Wangl, Xinjie Yu! and Yang Xiang2

L College of Computer Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
2School of Information Technology, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia

SUMMARY

Hybrid storage systems that consist of flash-based solid state drives (SSDs) and traditional disks are now
widely used. In hybrid storage systems, there exists a two-level cache hierarchy that regard dynamic random
access memory (DRAM) as the first level cache and SSD as the second level cache for disk storage. How-
ever, this two-level cache hierarchy typically uses independent cache replacement policies for each level,
which makes cache resource management inefficient and reduces system performance. In this paper, we pro-
pose a novel adaptive multi-level cache (AMC) replacement algorithm in hybrid storage systems. The AMC
algorithm adaptively adjusts cache blocks between DRAM and SSD cache levels using an integrated solu-
tion. AMC uses combined selective promote and demote operations to dynamically determine the level in
which the blocks are to be cached. In this manner, the AMC algorithm achieves multi-level cache exclusive-
ness and makes cache resource management more efficient. By using real-life storage traces, our evaluation
shows the proposed algorithm improves hybrid multi-level cache performance and also increases the SSD
lifetime compared with traditional multi-level cache replacement algorithms. Copyright © 2015 John Wiley
& Sons, Ltd.

Received 3 March 2015; Accepted 15 March 2015

KEY WORDS: hybrid storage; solid state drive; multi-level cache; adaptive algorithm

1. INTRODUCTION

Storage systems have been changing rapidly over the past few years. Storage system architectures
are evolving quickly with several fundamental shifts occurring. First, flash-based solid state drives
(SSDs) have been widely used not only in the enterprise-class storage systems but also in personal
computer systems. Second, disk-based network storage arrays are embracing hybrid, multi-level,
and caching-based models. Third, storage systems directly attached to local computing nodes are
back in vogue. There are also some two-level hybrid-caching systems [1-4] that exist today and
locally attached to computing nodes with dynamic random access memory (DRAM) as the first level
cache and SSD as the second level cache for the slower disk hard disk drive (HDD) storage.

The hybrid storage systems (DRAM-SSD-HDD) take advantage of the SSD features such as low
cost/gigabyte and non-volatility compared to DRAM and low access latency compared to HDD.
The design of such a two-level-caching model is beneficial to the overall performance of the hybrid
storage system. Typically, the DRAM and SSD cache levels are managed independently with each
level using traditional single level cache management algorithms such as the least recently used
(LRU) algorithm.

*Correspondence to: Yuxia Cheng, College of Computer Science and Technology, Zhejiang University, 866 Yuhangtang
Road, Hangzhou, 310058, China.

TE-mail: rainytech@zju.edu.cn

Copyright © 2015 John Wiley & Sons, Ltd.

Y. CHENG ET AL.

However, previous studies [5—7] have shown that the level-independent cache management in
multi-level cache systems faces two major drawbacks: (1) Weakened locality in the second level
cache. Application access requests, as seen by the second level cache, are filtered by the first level
cache. (2) Data redundancy. Because caches are independently managed, data blocks that are cached
in the first level have a high probability of being cached in the second level as well. Therefore,
data blocks cached redundantly in both levels cause a waste of cache space. This also reduces the
total hit ratio.

To address these problems, researchers [5, 8] have proposed multi-level exclusive caching poli-
cies. In multi-level exclusive caching systems, data blocks are exclusively cached in one of the cache
levels, and caches are managed uniformly or cooperatively as opposed to independently. Recent
research [7] has demonstrated that multi-level exclusive caching shows better performance than
independent cache management in hybrid storage systems.

Multi-level exclusive caching techniques are commonly used in distributed caching systems
[9, 10], where all cache levels use DRAM as caches and are connected by a network. The multi-
level exclusive caching policies, when used in the locally attached hybrid caching systems, should
consider some specific problems.

(1) Hybrid caches should take care of SSD lifetime where previous distributed caching systems
have not taken it into consideration.

(2) Hybrid caches should also consider both read/write operations where most previous
researches of distributed multi-level cache ignore caching dirty blocks.

(3) Hybrid caches should be managed in a more integrated way than distributed cache sys-
tems. Distributed cache systems (caches are loosely connected via networks) have network
bandwidth bottleneck [11]. Locally attached hybrid caches eliminate the network bandwidth
bottleneck and provide opportunities for closer collaboration among different cache levels.

In this paper, we propose a novel adaptive multi-level cache (AMC) replacement algorithm in the
locally attached hybrid cache systems. The contributions are as follows:

(1) The AMC algorithm introduces combined selective promote and demote operations to
dynamically determine the level in which the blocks are to be cached. AMC achieves cache
exclusivity using promote and demote operations. By adding the ’selective’ property into the
promote operation, AMC accumulates more cache hits in DRAM. By adding the ’selective’
property into the demote operation, AMC evicts less useful blocks to increase SSD lifetime.

(2) We design an online adaptation method using probabilistic promote and demote values. The
probabilistic values control the selective rate of determining the level in which the blocks
are to be cached. These values are adjusted according to the usage of blocks already cached
in both levels.

(3) We both consider read and write operations in the AMC algorithm. AMC is designed as
a unified read—write multi-level cache algorithm to more effectively explore data locality
information.

By using real-life storage traces, our evaluation shows the proposed AMC algorithm reduces
average response time by up to 25% and increases SSD lifetime by up to 4.12 times compared with
traditional multi-level cache replacement algorithms.

The rest of this paper is organized as follows. In Section 2, we describe related work about multi-
level caches in hybrid storage systems. Section 3 presents a detailed description of our proposed
AMC replacement algorithm. Section 4 reports the experimental results for performance evaluation.
Finally, we conclude this paper in Section 5.

2. RELATED WORK

Hybrid storage systems are more commonly used as flash-based SSD technology matures.
Researchers [12, 13] have shown great interest in improving the performance and lifetime of SSD,
and much research has focused on the optimization problem of using SSD as the disk cache.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

AN ADAPTIVE MULTI-LEVEL CACHE ALGORITHM

Kgil et al. [14] proposed to improve performance and reliability of flash-based disk caches and also
to reduce the power consumption. Pritchett et al. [15] proposed an ensemble-level disk cache for
cost-performance and introduced a sieving mechanism to reduce SSD allocation writes. Yongseok
Oh et al. [16] proposed a dynamic garbage collection scheme to improve performance of hybrid
storage systems. [4] and [17] proposed novel block management policies to improve performance
of a flash-based disk cache. These proposals mainly focus on the single level flash-based disk cache.

There are many other solutions that optimize the flash-based SSD hybrid storage systems. Except
for using SSD as disk caches, dynamic storage tiering (DST) technologies [18-21] have been pro-
posed to meet the growing demand for high performance, large capacity, and low cost storage
systems. The DST technologies intelligently select frequently accessed data sets and move them
into the faster SSD, while the less frequently accessed data sets remain stored in HDD. Other novel
techniques [22, 23] have been proposed to make the SSD part of the memory in order to improve
performance and reduce cost per gigabyte of memory. [3] and [24] also uses the flash-based SSD as
an extended buffer pool for database systems.

In this paper, we focus on the multi-level cache replacement algorithms in the hybrid stor-
age system. Single-level cache replacement algorithms have been extensively studied for decades.
Many cache replacement algorithms such as 2Q [25], least recently/frequently used [26], low inter-
reference recency set [27], adaptive replacement cache (ARC) [28], and so on were proposed to
achieve a better hit ratio than the traditional LRU replacement algorithm. These algorithms were
designed and used in the single level cache scenario but did not take multi-level cache hierarchies
into account.

Previous researchers [5, 8—11] have studied the multi-level cache management techniques in the
context of distributed multi-tier storage systems, where the first level cache typically resides in the
front end application servers and the second level cache resides in the networked storage servers.
Wong et al. [5] proposed a method to eliminate data redundancy by applying a unified LRU scheme
to achieve exclusive caching. They introduced a demote operation to transfer data ejected from the
client cache to the storage cache. However, the demote operation incurs high network traffic and
system overhead to prepare, send, and receive demoted blocks. Eviction-based cache placement
[11] policy was then proposed to decrease network bandwidth usage. This policy uses a client con-
tent tracking table to estimate a client’s block eviction information, and this information is then
sent to the storage cache, where the storage cache then reloads the evicted blocks from disks into
its cache. This eviction-based policy incurs extra I/Os on disks and increases the average miss
penalty. In distributed storage systems, the network bandwidth problem is a major performance
bottleneck. Chen et al. [6] systematically studied a large design space of distributed multi-level
cache management.

However, the design of the hybrid multi-level cache algorithm has to consider some specific
aspects that are different from the distributed multi-level cache algorithms we described in Section 1.
Recent studies have tried to introduce the multi-level exclusive cache into hybrid storage systems.
Raja et al. [7] have investigated the design tradeoffs involved in building exclusive, direct-attached,
multi-level storage caches. They demonstrated the potential performance benefits of maintaining
multi-level cache exclusivity in the multi-level hybrid cache system. In this paper, we further pro-
posed a novel AMC algorithm that uses combined selective promote and demote operations to
dynamically determine the level in which the blocks are to be cached. The algorithm considers both
multi-level cache exclusivity and SSD lifetime.

3. ADAPTIVE MULTI-LEVEL HYBRID CACHING

In this section, we will describe the design of our adaptive multi-level hybrid cache algorithm and
explain how the algorithm achieves cache exclusiveness using the selective promote and demote
operations. Then, we describe how the algorithm adapts itself according to its online cache status.
We also describe how the algorithm handles dirty blocks.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

Y. CHENG ET AL.

3.1. Overview

The key idea of AMC is to determine the appropriate level in which new blocks will be cached and
the level from which old blocks will be evicted. To achieve this, AMC uses selective promote and
demote operations. The promote and demote operations are used in multi-level cache scenarios to
collaboratively maintain data exclusivity among different cache levels. Using a selective promote
operation, AMC can choose to put new blocks whether in either DRAM or SSD caches. Using a
selective demote operation, AMC can choose to evict old blocks from either the DRAM or SSD
caches. These selective operations depend on the current status of two caches. AMC uses the average
lifetime of blocks in the LRU end of a cache to represent the current status of the cache (named
marginal life utility). AMC further uses probabilistic values to reflect the difference of marginal life
utility values between caches, and these values are adjusted online according to cache status. The
probabilistic values indicate the tendency of the selective operations-caching blocks in which level.
The selective promote and demote operations are based on the probabilistic values. For example,
if the marginal life utility of a SSD cache becomes larger than that of a DRAM cache, more new
blocks will tend to be put into the SSD cache to evict old blocks in the same level. If the marginal
life utility of the DRAM cache becomes larger, more new blocks will tend to be put into the DRAM
cache, and the old blocks in DRAM will be evicted from the cache. In this way, new blocks are
cached into appropriate levels, and old blocks are evicted from the corresponding caches.

3.2. Achieving exclusivity

Figure 1 shows a two-level DRAM-SSD hybrid cache hierarchy. The first level cache is DRAM
level 1 cache (L1 cache); the second level cache is SSD level 2 cache (L2 cache). The L1 list and
L2 list in the figure maintains the metadata of blocks (metadata contains a block’s identifier and
other attributes) cached in the L1 and L2 caches, respectively. L1y, list and L2, list maintain
the metadata of some accessed blocks used for the adaptive algorithm, which will be described in

- 6 ~
KMRU 2 MRU MRU
F; l L1 emp list
ERAIN; LRU
e i [Lafisd
(L1 Cache) i
2 it |wRu| g
: r\‘ Selective T
1 1 *3 ‘\‘ Demote p
Sal MRU | % MRU
elective v S :
Promote:_ -' '.. l L2 list
SSD HELY : LRU
Level 2 H | \ H
Cache H L2|list] H
(L2 Cache) i Is I
il i
".‘\ LRU | §
\ T |
‘
mop|
(a) Exclusive Cache Data Flow (b) Selective Cache Data Flow

Figure 1. The two-level hybrid cache hierarchy. (a) Traditional two-level exclusive cache. Arrow lines show

block data flows. Lines 1 and 2 represent block promote operations; lines 3 and 4 represent block demote

operations. (b) Selective promote/demote-based two-level cache structure. Lines 1, 2, 5, and 6 represent the

selective promote operations. Lines 3, 4, 7, and 8 represent the selective demote operations. DRAM, dynamic

random access memory; MRU, most recently used; SSD, solid state drive; LRU, least recently used; HDD,
hard disk drive.

Concurrency Computat.: Pract. Exper. (2015)

Copyright © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/cpe

AN ADAPTIVE MULTI-LEVEL CACHE ALGORITHM

a later subsection. We first introduce two operations (demote and promote operations as shown in
Figure 1(a)) used in multi-level cache hierarchies to achieve exclusivity.

The demote operation is used when the L1 cache is full and needs to replace the LRU block in
the L1 list for the new most recently used (MRU) block. The LRU block in the L1 list denotes
the block’s metadata is in the LRU position in the L1 list, and the block’s data are cached in the
L1 cache. In the demote operation, the LRU block in the L1 list is evicted from the L1 cache and
inserted the block’s metadata into the MRU position in the L2 list and also allocated a free cache
space for the block. If the L2 cache is full, the LRU block in the L2 list must be evicted to make
room for the demoted block. We call the blocks evicted from the L1 cache and demoted into the L2
cache the demoted blocks.

The promote operation is used when a block miss occurs in the L1 cache. The missed block may
be cached in the L2 cache or may reside in the HDD. In the promote operation, the missed block
is fetched from the L2 cache (also invalidate the block in L2 cache and delete the block’s metadata
from L2 list) or the HDD and inserted into the MRU position in the L1 list and also allocated a free
cache space in the L1 cache. If the L1 cache is full, a demote operation is needed to make room for
the missed block. We call blocks promoted into the L1 cache the promoted blocks.

In order to achieve exclusivity in multi-level caches, one traditional exclusive cache algorithm
is as follows. Every time a new block request arrives, we make sure the block is only allocated in
the L1 cache until the L1 cache is full (promote operation). Allocation in the second level cache
only occurs during eviction from the first level (demote operation). In addition, any first level cache
misses that find the data cached in the second level result in the data being deleted from the second
level and allocated in the first level (promote operation). This is a straight forward method to achieve
cache exclusivity.

However, we find two major problems in the traditional exclusive caching algorithm that motivate
the design of selective promote and demote operations. First, if each new block miss in the L1 cache
results in cache allocation in the L1 cache, this means all block misses incur promote operations,
which may cause some older but "hot’ blocks cached in L1 to be evicted (promote operations need
subsequent demote operations when the L1 cache is full). Second, if each block evicted from the
L1 cache is demoted into the L2 cache, this will cause a large number of write allocations in the
SSD cache and may also evict "hot’ blocks originally cached in L.2. To address these problems, we
introduce the selective promote and demote operations to more effectively keep "hot’ blocks in both
the DRAM and SSD caches while still achieving cache exclusivity.

3.3. Selective promote/demote

Figure 1(b) shows the selective cache data flow. In general, the selective promote operation controls
the rate of new blocks coming into DRAM and SSD caches to prevent hot blocks being evicted.
The selective demote operation determines from which level the cold blocks should be evicted. The
detailed selective promote and demote operations are described as follows.

When a new block request arrives, the algorithm determines which level the blocks should be
cached and replaces the less useful block in the multi-level cache hierarchy. The main algorithm is
shown in Figure 2. If a block hit occurs in the L1 cache, then the LRU replacement algorithm is
used as normal (case 1, lines 1-2). If case 1 does not occur (cases 2—5), then before allocating a
new free space for the missed block in the L1 cache, the algorithm first checks the current DRAM
and SSD cache status based on their marginal life utility represented by the probabilistic value
(selective_promote(X), lines 5,7,10, and 12), which determines the level the new block should be
placed into. As Figure 3 shows, if the block passes the check, the algorithm allocates the block in
the L1 cache (lines 14—15). Otherwise, the algorithm puts the block in the L2 cache (line 18, the
function of line 17 will be described in Section 3.5).

Similarly, before allocating a new free space in the L2 cache to make room for the block evicted
from the L1 cache (the demote operation), the algorithm first checks whether this block is suitable to
be cached in L2 (selective_demote(), line 22). If the block passes the check, the algorithm then puts
the block in the L2 cache (lines 26-27). Otherwise, the block is just deleted from the L1 cache and
never cached in L2 (lines 28-29, L2, is a ghost cache described in Section 3.5. We first focus on

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

Y. CHENG ET AL.

/* Upon a reference to the block X, */
/* Only one of the following five cases must occur */
Case1: X isin L1 /lcache hit in DRAM
do_LRU(L1, X);
Case 2: X is in Llemp /lcache hit in DRAM
update_probability();

selective_promote(X);
Case 3: X is notin DRAM butin L2 //cache hit in SSD
selective_promote(X);

Case 4: X is in L2gpost /lcache miss

E A U A

update_probability();

—
<

selective_promote(X);

-
=y

Case 5: X is not in the above 4 cases //cache miss

.
»

selective_promote(X);

Figure 2. Adaptive multi-level hybrid cache management algorithm. DRAM, dynamic random access
memory; SSD, solid state drive; LRU, least recently used; L1, first level; L2, second level.

/* Subroutines, selective Promote & Demote operations */

13: selective_promote(X)

14: if(promote_check())

15: promote_adjust(X);

16: else

17: do_LRU(L1tcmp, X);

18: do_LRU(L2, X);

19: promote_adjust(X)

20: Delete X in L2 or Llemp or L2gnos(if exist)
21: if(L1 is full)

22: selective_demote();

23: do_LRU(L1, X);

24: selective_demote()

25: Delete LRU block X’ in L1 list
26: if(demote_check())

27: do_LRU(L2, X’);

28: else

29: do_LRU(L2gnests X”);

Figure 3. Subroutines of the selective promote and demote operations. LRU, least recently used; L1, first
level; L2, second level.

clean blocks to ease the algorithm description, and the dirty block’s management will be described
in Section 3.6). The rationale behind this is that blocks evicted from the L1 cache are not always
more useful than blocks already cached in the L2 cache [8, 15]. Thus, simply deleting these blocks
will reduce the number of SSD allocations and will prevent replacing out blocks cached in L2.

3.4. Adaptive probability

In this section, we describe an online adaptive method of tracking the status of caches using
dynamically adjusted probabilistic values, which help the selective promote and demote operations
determine the cache data flow.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

AN ADAPTIVE MULTI-LEVEL CACHE ALGORITHM

/* Subroutines, Adaptive Probabilities*/

30: promote_check()

31: return rand() <Ppromete ? True : False;
32: demote_check()
33: return rand() < Pgemore ? True : False;

34: update_probability()
35: MU, = update_life_utility(L.1);

36: MU, = update_life_utility(L2);
MU, 1

37: P promote T= a-p promme) *P promole* (W -2)3

, , MU 1
38: P gemote += (1' P demote) * P gemote™ (W;UZ - E) H
39: update_life_ utility(L)

Yiq lifetime;

40: return /lcalculate utility on the last n

41: //blocks in the LRU ends of L list

Figure 4. Subroutines of the adaptive probabilities adjustment. LRU, least recently used.

We use the average lifetime of blocks in the LRU end of a cache to represent the current status
of the cache (named marginal life utility). A block’s lifetime is the current time minus the time the
block last accessed. Thus, the marginal life utility is calculated by averaging the lifetime of the last
n blocks in the LRU end of the cache list (Figure 4, lines 40—41); n is a configurable parameter
that is usually set to a small fixed number [29] (we set n = 10; any other small values would work
as well). The larger marginal life utility value of a cache, the less useful blocks reside in the LRU
end of the cache. To reflect the difference of marginal life utility between caches, we introduce two
probabilistic values Py omore a0d Poemore (0 < Ppromotes Pdemore < 1).

The values of Ppomore and Pgemore indicate the relative degree of the old blocks’ usefulness
between two cache levels and help determine new blocks should be cached in which level (lines
30-33). As Figure 4 shows, the algorithm compares marginal life utilities between two cache levels
and periodically adjusts the Py omore and Pgemore Values (lines 35-38) online. If the marginal life util-
ity of the L1 cache (M Uy) is larger than the marginal life utility of the L2 cache (M Us), that is
(% - %) > 0or (% — %) < 0, then we increase the Ppomore Value and decrease the
Piemote value (lines 37-38). Similarly, if M U, is smaller than M U,, then we decrease the Ppomore
value and increase the P, value. The goal of selective operations is to equalize the marginal life
utility of two caches. If the values of P,,pmore and Pgemore approach %, the marginal life utility of two
caches is roughly the same.

Upon referencing a new block, the probability of the block being promoted into the L1 cache
depends on the Py om0 value (line 30-31, the rand() function returns a random decimal number
between 0 and 1). We can see the smaller P,ymore value, the lower the rate at which new blocks
will pass the promote check (when promote_check() returns true) and enter the L1 cache. The same
is true for the Pg.uoe Value. The smaller the Py o Value, the lower the rate at which the evicted
blocks from L1 will enter the L2 cache. For example, if P, om0 approximates 1, then almost all
new blocks will be promoted into the L1 cache. If Pp,p0, approximates 0, then few blocks will be
promoted and thus be placed into the L2 cache. Therefore, we can conveniently adjust Pp,p0r and
P jemore Values to control the rate of new blocks coming into the L1 and L2 caches, respectively.

The rationale behind this is that when M U; is smaller than M U,, it means the L1 cache has more
useful blocks in the LRU end of the L1 list than the L2 cache. Therefore, decreasing the Ppomore
value will decrease the probability of new blocks flushing into the L1 cache and will increase the
probability of new blocks flushing into the L2 cache, thus preventing more useful blocks in the LRU
end of the L1 list being replaced by new blocks. At the same time, the Py, value is increased in

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

Y. CHENG ET AL.

case more useful blocks in L1 are evicted (relative to the LRU blocks in the end of L2 list), the larger
the probability they will be demoted into the L2 cache and vice versa. This means the algorithm
keeps more useful blocks in the caches and evicts less useful blocks. On each block replacement,
the algorithm tries to evict the LRU block in the cache that has larger marginal life utility.

The Ppromore and Pyemore values are adjusted proportionally to the difference between M U; and
M U,, and the adaptation becomes slower when the P,omore and Pgepore Values are close to extreme
values of 0 and 1 (the product factor form of (1-P)*P). The P,omore Vvalue is initialized to the ratio
of the L1 cache size divided by the aggregate cache size (L1 cache size plus L2 cache size), and
the Pgenore value is initialized to the ratio of the L2 cache size divided by the aggregate cache
size. The algorithm updates the Ppomore and Pyemore Values periodically to let the selective promote
and demote operations take effect. For example, every 100 block accesses the algorithm invokes
update_probability(). The algorithm also updates the two values when a block reference hits L1,
and L2g,,, which will be described in the following section.

3.5. Temp cache and ghost cache

The MRU block may not be cached in L1 because of the block failing the check (lines 16—18) in the
selective promote operation. In case the block is re-accessed in the near future, we introduce a small
temporary cache (L1, named temp cache) to temporarily keep those un-promoted blocks in the
L1 cache (line 17). If these blocks in L1, are referenced again in the near future, they will have
a larger probability of passing the promote check (lines 3, 5, and 14). The principle of the check
operation is based on the probabilistic comparison. The more hits incurred by a block, the more
it can pass the promote check and finally be cached in the L1 cache. When blocks in L1,,,, are
accessed, the algorithm will adaptively increase the possibility of letting new blocks be promoted
into the L1 cache (lines 3—4). The temp cache is used for reducing the cost when the selective
promote operation does not promote the block into the L1 cache, which will be quickly re-accessed
again. If the un-promoted block in L1, is not accessed for a period of time, it will be quickly
evicted from L1, and deleted from the cache. We set the size of L1, relatively small (0.1% of
the L1 cache size). The experimental results show the overall cache performance is insensitive to
the small size of L1,.,.

In the selective demote operations, the blocks may simply be deleted from the L1 cache and may
fail the check to be demoted into the L2 cache (lines 25-29). If the subsequent I/O requests go
to those un-demoted blocks, both L1 and L2 will have cache misses. In order to more accurately
determine which blocks should be demoted into the L2 cache, we introduce a ghost cache to keep
un-demoted blocks in the L2, list (line 29). The ghost cache only maintains blocks’ metadata,
and many other cache algorithms [25, 27, 28] use the ghost cache to capture additional data access
patterns. We set the size of the L2, relatively small (0.1% of the L2 cache size, as similar to the
size of Lly,). If blocks in the L2, are frequently accessed in a certain period (lines 8-9), the
algorithm will adaptively increase the possibility of letting the LRU block in L1 list pass the demote
check to insert the block into the L2 cache, thus increasing the cache hits of demoted blocks in SSD
cache. The adaptive adjustment process is described in the previous section.

3.6. Handling writes

In this section, we discuss how to handle dirty blocks and integrate them into the proposed multi-
level hybrid cache algorithm. To manage dirty blocks and block write operations in multi-level
cache hierarchies, we have to address two major issues. One is data consistency, and the other is
performance overhead.

In order to achieve data consistency among multi-level cache hierarchies, we make sure every
dirty block is only cached in one level. The proposed AMC algorithm achieves exclusivity between
two cache levels except for a small temporary cache (L1.,,) in DRAM (non-strict exclusivity for
clean blocks). When handling dirty blocks, the algorithm maintains strict exclusivity using write
allocation and fetch-on-write policies. When writing a new block, the algorithm directly allocates

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

AN ADAPTIVE MULTI-LEVEL CACHE ALGORITHM

Block Re-write Dirty Block
Miss in DRAM Evicted From L1

\ 4 \ 4
Fetch the Fetch the Demote
block from block from the block
SSD HDD into L2
| |
* \ 4
Directly Promote Write back
the block into the block
DRAM cache into HDD
(a) Promote Operation (b) Demote Operation
on Block Re-write Miss on Modified Blocks

Figure 5. Handling writes under the selective promote—demote operations. DRAM, dynamic random access
memory; SSD, solid state drive; HDD, hard disk drive; L1, first level; L2, second level.

the block in the DRAM cache. Figure 5(a) shows how to handle a block re-write (write request
on an existing block) miss under the selective promote operation. If a block re-write misses in the
L1 cache (cases 2, 3, 4, and 5 in the previous section), we skip the promote_check() operation and
directly promote the block (which could be in the SSD cache or HDD) into the L1 list to make
sure the written block is only cached in one level. In the selective demote operation, as Figure 5(b)
shows, if the block evicted from the L1 cache has been modified but failed the demote_check()
operation, we write back the modified block into the HDD directly. Otherwise, the block is demoted
into the L2 cache. Dirty blocks in both DRAM and SSD caches should be flushed back into the HDD
periodically. Through maintaining exclusivity of dirty blocks among cache hierarchies, we achieve
data consistency by design.

The algorithm is designed as a unified read—write multi-level cache, with the data locality infor-
mation more effectively maintained than the separate read and write cache regions. When handling
dirty blocks, we take advantage of the selective operations. In the selective promote operation, we
promote all written blocks into the L1 cache because written blocks usually exhibit higher locality
[17]. In the selective demote operation, the modified blocks evicted from L1 are intelligently filtered
by their marginal life utility. The more useful blocks are demoted into the SSD cache, while the less
useful blocks are written back into the HDD directly. In a write dominant scenario, the selective
promote operation is seldom triggered. However, the selective demote operation can still bring the
benefit of reducing the number of SSD writes.

4. PERFORMANCE EVALUATION

In this section, we use the trace-driven simulation method to evaluate the proposed adaptive multi-
level hybrid cache algorithm. We implement multi-level hybrid cache hierarchies in a simulator
originated from [30]. We use the simulator to benchmark cache algorithms using a wide variety of
real-life enterprise storage traces [31].

In order to analyze multi-level hybrid cache management algorithms, we implemented a trace-
driven simulator that consists of the first level DRAM cache, the second level SSD cache, and the
disk. The simulator has three major parts: the parser, the hash manager, and the cache algorithm
module. The parser is used to convert traces of a different format into the simulator’s customized

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

Y. CHENG ET AL.

Table I. Different types of storage traces.

Trace Blocks Requests Read Write
Name (x10%) (x10%) (%) (%)

WebSearchl 2147 3996 99.99 0.01
WebSearch2 3767 17,255 99.99 0.01
WebSearch3 3680 32,832 99.95 0.05

Financiall 818 6968 19.23 80.77
Financial2 471 4480 79.52 2048
Zipf 1000 6000 80.00 20.00

format and simulating I/O requests based on the input trace file. The hash manager is a set of
common routines used by different cache algorithms to maintain cached blocks’ information for
quick search, insert, and delete. The cache algorithm module implements various multi-level cache
algorithms. The simulator is initialized using cache sizes, trace format, and algorithm type as input.

The simulator passes each I/O request (generated by the parser) into the cache algorithm module
and records various statistics during the simulation for algorithm analysis. In our trace-driven simu-
lation environment, we simulate realistic response time for multi-level hybrid cache hierarchies. We
calculate the average response time (avg_time) in the multi-level hybrid cache simulation using the
following equations:

virtual_time = SSD oqq5 * tsspr + SSDyyrites * tsspw

(1
+ HDDreads * tgyppr + HDDwrites * IHDDw

. virtual_time)
ave_sime = |1/ O requests|)

We first calculate the total virtual execution time (virfual_time) as equation (1) demonstrates then
use the virtual_time to calculate the avg_time as equation (2) shows. SSD,.q45 (SSD,rires) means the
total number of reads (writes) in the SSD cache, and fssp, (#ssp,y) is the average read (write) latency
of SSD. Similarly, HDD,.,qs (HDD,,;;.s) means the total number of reads (writes) in the HDD, and
tuppr (tuppw) 1s the average read (write) latency of HDD. The average response time of each I/O
requests in a certain trace is then calculated using virtual_time divided by the total number of I/O
requests. Because the total time taken by DRAM hits is negligible compared with the relative large
latency of SSD and HDD, we do not calculate it in our response time model. We set tgsp, = 25us,
tsspw = 200us, and typp, = typpy = 5ms. These settings model the behavior of traditional HDD
and SSD, which are identical to those used in prior research [7, 16].

We use real-life enterprise storage traces that have been widely used for evaluating caching algo-
rithms as shown in Table I. The WebSearch1, WebSearch2, and WebSearch3 are traces collected by
monitoring I/O requests of search engine applications. All of the aforementioned three traces are
read dominant traces. The Financiall and Financial2 are traces collected by monitoring I/O requests
of online transaction processing applications running at two large financial institutions. Both the
two traces are read—write traces, and the Financiall is the write dominant trace. Zipf is a synthetic
trace (20% writes) that follows Zipf-like distribution where the probability of the i*# block being
accessed is proportional to 1/i* (« = 0.75). This approximates some applications where a few
blocks are frequently accessed while others are accessed much less frequently.

4.1. Average response time

To demonstrate the performance of the proposed AMC algorithm, we use the average response time
(avg_time) described in the previous section as a comprehensive evaluation metric. The avg_time
includes not only the time taken by cache hits and misses but also includes the time taken by writing
the demoted blocks into the SSD cache (included in SSD,,i.s). In the experiment, we set the same
size for DRAM and SSD caches. We will analyze the impact of varying the DRAM-SSD size ratio
in Section 4.4.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

AN ADAPTIVE MULTI-LEVEL CACHE ALGORITHM

There are four comparative multi-level cache algorithms in the figure. One is the AMC-LRU
algorithm that we have proposed in this paper. We call it AMC-LRU because the algorithm is based
on the LRU algorithm. The rest of three algorithms are described as follows:

(1) ind-LRU is a two-level independent LRU algorithm. The ind-LRU deploys LRU algorithms
independently between the DRAM and SSD caches. Both levels cache blocks on each block
miss. When a block request to a DRAM cache results in a miss, the request is passed to the
SSD cache. If the block request hits in the SSD, this block is then inserted into the DRAM
cache (SSD also maintains the same block), and the LRU block is replaced when the DRAM
cache is full. If the requested block is not found in the SSD cache, the block is allocated in
both caches.

(2) exc-LRU is a two-level exclusive LRU algorithm. When a new block request arrives, the exc-
LRU algorithm makes sure the block is only allocated in the DRAM cache until the cache is
full. Allocation in the SSD cache only happens during eviction from the DRAM. In addition,
any DRAM misses that find the block in the SSD result in the block being deleted from the
SSD and allocated in the DRAM.

(3) 2C-LRU is a one-level LRU algorithm whose cache size equals the aggregate size of two
level caches. 2C-LRU only uses the DRAM cache.

Figure 6 shows the average response time (avg_time) of four comparative multi-level cache algo-
rithms under six different traces (three read-dominant traces and three read—write traces). We chose
the cache size for each trace according to their relative working set size (as shown in Table I). A
too large or too small cache sizes will diminish the effect of different cache replacement algorithms.
The results shown here are the average results of three runs; the experimental results are stable, and
the variation among separate runs is within 0.5%, even for the adaptive AMC algorithm. From the
experimental results shown in Figure 6, we can make the following observations.

First, under all six traces, the ind-LRU algorithm has a much larger avg_time than the other
three algorithms. This is because the ind-LRU manages cache blocks independently that results in
a data redundancy problem between two cache levels. Therefore, the total effective cache space

WebSearch1 WebSearch2 WebSearch3

—+—ind-LRU
—A— exc-LRU

—6— AMC-LRU
—k—2C-LRU

—s—ind-LRU
—A—exc-LRU
—6— AMC-LRU
—#—2C-LRU

—s—ind-LRU
—A—exc-LRU
—6—AMC-LRU
—#—2C-LRU

Average Response Time (ms)
w

Average Response Time (ms)
w

Average Response Time (ms)

2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12
Cache Size (# of blocks) x 10° Cache Size (# of blocks) x 10° Cache Size (# of blocks) x 10°

Financiall Financial2 Zipf
25 5
—#—ind-LRU
—A— exc-LRU
—e— AMC-LRU
2 —k—2C-LRU

—+—ind-LRU
—A— exc-LRU
—6— AMC-LRU
—k—2C-LRU

—a—ind-LRU
—A— exc-LRU
45 —6— AMC-LRU
—k—2C-LRU

Average Response Time (ms)
w ;
[4,]
Average Response Time (ms)
Average Response Time (ms)

0.5 25
2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12

Cache Size (# of blocks) x 10* Cache Size (# of blocks) x 10* Cache Size (# of blocks) x 10*

Figure 6. The average response time of four comparative multi-level cache algorithms under three read-
dominant traces and three read—write traces. LRU, least recently used; AMC, adaptive multi-level cache.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

Y. CHENG ET AL.

is significantly reduced compared to the exclusive multi-level cache algorithms. For example, the
avg_time of ind-LRU is 19% higher than exc-LRU and 25% higher than AMC-LRU and 2C-LRU
in the WebSearchl trace.

Second, our proposed AMC-LRU algorithm outperforms ind-LRU and exc-LRU. The AMC-LRU
achieves exclusivity between cache levels so it has a larger effective cache space than ind-LRU.
Therefore, AMC-LRU has better performance than ind-LRU. The exc-LRU also archives exclusiv-
ity, but the AMC-LRU still outperforms exc-LRU. This is because exc-LRU needs a larger number
of demote operations than AMC-LRU, which leads to a higher latency of SSD allocations. Increas-
ing the number of SSD allocations also reduces SSD lifetime, and we will present a comparison
of SSD allocations in the next section. What is more, the AMC-LRU keeps more useful blocks in
both caches than exc-LRU thus has a higher hit ratio than exc-LRU. For example, the avg_time of
AMC-LRU is 12% shorter than exc-LRU in the WebSearch?2 trace.

Third, the performance of the AMC-LRU algorithm approaches the 2C-LRU algorithm. This
further demonstrates that AMC-LRU can effectively utilize two-level cache spaces. In the Web-
Search?2 trace, the AMC-LRU even outperforms 2C-LRU because the total hit ratio of AMC-LRU
is higher than 2C-LRU, and the AMC-LRU accumulates large portions of hits in the DRAM cache
(Section 4.3). The AMC-LRU algorithm has very few demote operations overhead, which con-
tributes to the performance as good as 2C-LRU. We will evaluate the multi-level hybrid cache
algorithms in detail to show the effectiveness of the AMC-LRU algorithm in the following sections.

4.2. Solid state drive lifetime

One important design consideration of hybrid cache system is the limited SSD lifetime. The SSD has
endurance problems caused by limited erasure counts. Therefore, by reducing the number of SSD
allocation times, the lifetime of SSD can be increased. Figure 7 shows the total number of SSD allo-
cations using different multi-level hybrid cache algorithms under six I/O traces. The experimental
settings are the same as the previous section. We compare the total number of SSD allocations (SSD
writes) of three algorithms: AMC-LRU, exc-LRU, and ind-LRU. In AMC-LRU, the total number of
SSD allocations includes the number of demoted blocks into SSD and the number of missed blocks

WebSearch1 WebSearch2 WebSearch3
x 10’ x 107

e

[ind-LRU
[exc-LRU
[1AmMC-LRY

P

[ind-LRU
[Hexc-LRU
[JAMC-LR

B ind-LRU
3.5 [Hexc-LRU
[_Jamc-LRY

Total Number of SSD Allocations
Total Number of SSD Allocations

0 ,

2 4 6 8 10 12 2 4 6 8 10 12

Cache Size (*10° blocks) Cache Size (*10° blocks) Cache Size (*10° blocks)

2 4 6 8 10 12

Total Number of SSD Allocations

Financial1 Financial2 Zipf

x 10° x10° x 10°

25 -
Eind-LRU
[exc-LRU
[1AmC-LRY

T
[lind-LRU
12 [Hexc-LRU
C_Jamc-LRY

——

[l ind-LRU

3 [exc-LRU
[JAMC-LR

N

25

1.5

0.5
0.5

o

2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12
Cache Size (*10* blocks) Cache Size (*10* blocks) Cache Size (*10* blocks)

Total Number of SSD Allocations
nN

Total Number of SSD Allocations

Total Number of SSD Allocations

Figure 7. The number of solid state drive (SSD) allocations of four comparative multi-level cache algorithms
under three read-dominant traces and three read—write traces. LRU, least recently used; AMC, adaptive
multi-level cache.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

AN ADAPTIVE MULTI-LEVEL CACHE ALGORITHM

that has not been promoted into DRAM (the un-promoted blocks). In exc-LRU, the total number of
SSD allocations is just the number of demoted blocks into the SSD. In ind-LRU, the total number
of SSD allocations equals the number of missed blocks in SSD. We do not show 2C-LRU because
2C-LRU has no SSD allocations.

From Figure 7, we find the AMC-LRU algorithm reduces the total number of SSD allocations
compared with exc-LRU and ind-LRU. In the read-dominant traces, the number of SSD allocations
of ind-LRU and exc-LRU are 1.63 to 4.12 times larger than AMC-LRU. Because AMC-LRU uses
the selective demote operation, a large number of blocks evicted from the L1 cache are filtered out
by the selective operations and are no longer cached into the SSD. On the other hand, exc-LRU
demotes all blocks evicted from the L1 cache into the SSD.

In the read—write traces, the number of SSD allocations of ind-LRU and exc-LRU are 1.17 to 1.77
times larger than AMC-LRU. Due to dirty blocks evicted from the L1 cache could not be simply
deleted, the opportunity to reduce the number of SSD allocations becomes smaller in AMC-LRU.
Therefore, in read—write traces, the number of SSD allocations reduced by AMC-LRU (compared
with ind-LRU and exc-LRU) is smaller than those cases in read-dominant traces. Reducing the total
number of SSD allocations can also reduce I/O bandwidth contention and reduce the probability
of triggering a garbage collection process inside SSD [16], both of which are critical performance
impact factors. Therefore, reducing the number of SSD allocations not only improves SSD lifetime
but also contributes to overall improvement in cache performance.

4.3. Hit ratio

In this section, we will analyze the experimental results of different hit ratios among four compara-
tive algorithms. Figure 8(a) shows the total hit ratio curve under the WebSearch?2 trace. The total hit
ratio is the total hit counts of both the DRAM and SSD caches divided by the number of total block
requests. The ind-LRU algorithm has the lowest total hit ratio. The total hit ratios of the other three
algorithms, exc-LRU, AMC-LRU, and 2C-LRU, are very close. There is a similar trend in other
application traces, however, due to the limited space, we did not show their hit ratio curves. In the
WebSearch?2 trace, the AMC-LRU has a higher total hit ratio than 2C-LRU. This is the main rea-
son the avg_time of AMC-LRU is shorter than 2C-LRU under WebSearch2. A higher total hit ratio
results in less DRAM and SSD cache misses, and the cache miss will cause significant latency of a
HDD read (5 ms vs. 25 us).

Figure 8(b) shows the DRAM cache hit ratio curve. We observe the AMC-LRU has a much higher
DRAM hit ratio than exc-LRU. This is due to AMC-LRU taking advantage of the selective promote
operation and accumulating more useful blocks in the DRAM cache; thus, AMC-LRU achieves a
higher DRAM hit ratio than exc-LRU. The ind-LRU and exc-LRU achieve almost the same DRAM

WebSearch2 WebSearch2 WebSearch2
80 80 50
—e—ind-LRU —4+—ind-LRU —e—ind-LRU
. L O Iy 701 | -a—exe-Lru ——exc-LRU
*¥ 60| [—Avc-trY —~ @0 | [AMC-LRY — 40 [——avc-Lay
~ —4—2C-LRU 2 —+—2C-LRU S —#—2C-LRU
2 50 S 50 Y
[
= 40 g 40 3
% 30 = 30 = 2
ol - ~
(o]
e 20 I 20 B
10 10 /
0 0 0 " " "
2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12
. x 10° . x 10° . x 10°
Cache Size (# of blocks) Cache Size (# of blocks) Cache Size (# of blocks)
(a) Total Hit Ratio Curve (b) DRAM Cache Hit Ratio Curve (c) SSD Cache Hit Ratio Curve

Figure 8. Comparisons of the total hit ratio, dynamic random access memory (DRAM) cache hit ratio, and

solid state drive (SSD) cache hit ratio under the Websearch? trace: (a) total hit ratio curve, (b) DRAM cache

hit ratio curve, and SSD cache hit ratio curve. LRU, least recently used; AMC, adaptive multi-level cache;
L1, first level; L2, second level.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

Y. CHENG ET AL.

“é 1.6 - .
[I >C-LRU
Q 14l [AMC-LRU
c [Jexc-LRU _
S [_Jind-LRU M
o 121 M
2 -
(0]
g 1
2
< 0.8
el
N
= 0.6
£
o
0.4
z 1:9 5:5

2:8 37 4:6
DRAM-SSD Size Ratio

Figure 9. Comparison of average response time with different dynamic random access memory—solid state
drive (DRAM-SSD) cache size ratio configurations under the Websearchl trace. LRU, least recently used;
AMC, adaptive multi-level cache.

hit ratio because they both use the same LRU replacement logic in the DRAM cache. The 2C-
LRU has the highest DRAM hit ratio because its DRAM cache size is twice as large as the other
three algorithms.

Figure 8(c) shows the SSD cache hit ratio curve. We observe the SSD hit ratios of exc-LRU and
AMC-LRU are much higher than ind-LRU, which demonstrates the benefit of achieving exclusivity
in the hybrid cache scenario. However, the SSD hit ratio of AMC-LRU is lower than exc-LRU. The
reason behind this is the selective promote operation of AMC-LRU accumulates more useful blocks
in the DRAM cache and lets the un-promoted blocks be cached in SSD. This may cause some one-
time accessed blocks to be cached in SSD, which lowers the hit ratio of the SSD cache. This is a
major drawback of the LRU algorithm. The SSD hit ratio of 2C-LRU is zero because 2C-LRU only
uses the DRAM cache and does not use the SSD cache.

4.4. Dynamic random access memory—solid state drive size ratio

Figure 9 shows the normalized average response time of different DRAM-SSD cache size ratios
under the WebSearchl trace. In order to compare the impact of different DRAM-SSD size ratios on
cache performance, we set the aggregate cache size of DRAM and SSD to 20% of the working set
size (total number of unique blocks accessed across the entire trace as shown in Table I) and vary the
DRAM-SSD cache size ratio from 1:9 to 5:5. The average response time of different algorithms are
normalized to the avg_time under the 2C-LRU algorithm. The 2C-LRU only uses the DRAM cache,
and its cache size is fixed so the avg_time of 2C-LRU is the same under different size ratios. The
experimental results show the AMC-LRU and exc-LRU algorithms have relatively stable avg_time
with different DRAM-SSD size ratios. This is because both AMC-LRU and exc-LRU achieve cache
exclusivity, and their total hit ratios remain stable as the aggregate cache size is fixed (the avg_time
is mainly determined by cache misses that incur high latency of HDD reads and the number of
demoted blocks that incurs SSD writes). The avg_time of AMC-LRU is close to 2C-LRU and is
lower than exc-LRU, which is the same as Section 4.1 shows. However, the avg_time of ind-LRU
increases as the DRAM-SSD size ratio increases from 1:9 to 5:5. In the ind-LRU algorithm, the
total effective cache size decreases as the DRAM-SSD size ratio increases up to 5:5. The ind-LRU
has a data redundancy problem, as the effective cache size is determined by the larger cache.

4.5. Selective promote/demote

From the DRAM cache hit ratio curve (Figure 8(b)), we have seen the selective promote operation
of AMC-LRU effectively accumulates more hits in the DRAM cache than exc-LRU does. We now
analyze how the selective demote operation helps improve the overall cache performance in the
hybrid cache system.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

AN ADAPTIVE MULTI-LEVEL CACHE ALGORITHM

, WebSearch2 5 Financial2

[exc-LRU [exc-LRU
_JAMC-LRU 12 _JAMC-LRU

x 10

0.5

Blocks Demoted into SSD
Blocks Demoted into SSD

2 4 6 8 10 12 . 2 4 6 8 10 12 .
Cache Size (# of blocks) x10 Cache Size (# of blocks) x10

(a) Number of Blocks Demoted into SSD cache

WebSearch2 Financial2

50 : , .
I exc-LRU
[_JAMC-LRU

120 T T
I exc-LRU
100 [_JAMC-LRU

80

40

30
60

20
40

20

Hit Ratio of Demoted Blocks (%)
Hit Ratio of Demoted Blocks (%)

2 4 6 8 10 12 . 2 4 6 8 10 12
Cache Size (# of blocks) x10 Cache Size (# of blocks) x10

(b) Hit Ratio of Demoted Blocks

Figure 10. Analysis of the selective demote operation under the WebSearch?2 and Financial2 traces: (a)
number of blocks demoted into solid state drive (SSD) cache and (b) hit ratio of demoted blocks. AMC,
adaptive multi-level cache; LRU, least recently used.

Figure 10(a) compares the number of blocks demoted into the SSD cache between exc-LRU
and AMC-LRU under the WebSearch2 and Financial2 traces. The exc-LRU algorithm demotes
every block evicted from the DRAM cache into the SSD cache. While the AMC-LRU algorithm
takes advantage of the selective demote operation, it only demotes blocks into the SSD cache
when the algorithm considers those blocks are worthwhile to keep in the cache. Therefore, as
Figure 10(a) shows, the number of blocks demoted into the SSD cache in the AMC-LRU algorithm
is significantly smaller than exc-LRU.

In order to analyze the effect of the selective demote operation, we tag the blocks demoted into
the SSD cache and count the number of hits on these blocks. The hit ratio of demoted blocks is
calculated using the number of hits on demoted blocks divided by the total number of demoted
blocks. We observe the hit ratio of demoted blocks in AMC-LRU is much higher than exc-LRU, as
shown in Figure 10(b). This demonstrates the selective demote operation can effectively filter out
less useful blocks (relative to the blocks that reside in the LRU end of SSD cache) and demote more
useful blocks into the SSD cache. The hit ratio of demoted blocks in AMC-LRU is even higher than
100% under a cache size of 10 and 12 (x10° blocks). This is because a demoted block may have
more than one hit in the SSD cache.

4.6. Scalability

The proposed selective promote and demote operations and the adaptive probability adjustment
policy used in the AMC-LRU algorithm are also suitable for other cache replacement algorithms,
not just for the LRU algorithm, such as the ARC [28] algorithm. We implemented ind-ARC, exc-
ARC, and AMC—-ARC in the simulator. We initiated two independent ARC algorithms, L1 (DRAM

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

Y. CHENG ET AL.

WebSearch1 Financial1

——ind-LRU
—A— exc-LRU

——ind-LRU

Average Response Time (ms)
Average Response Time (ms)

T2 4 6 8 10 12 2 4 6 8 10 12
Cache Size (# of blocks) x 10° Cache Size (# of blocks) x 10*

Figure 11. The average response time of six different algorithms. The adaptive multi-level cache (AMC)
policy can be applied to both least recently used (LRU) and adaptive replacement cache (ARC) algorithms.

cache) ARC and L2 (SSD cache) ARC. The ind-ARC deploys the two independent ARC algorithms
in DRAM and SSD caches, respectively. The exc-ARC implementation is similar to the exc-LRU
algorithm, where new blocks are cached in DRAM using L1 ARC, blocks evicted from DRAM are
cached in SSD using L2 ARC, and blocks hit in SSD are deleted from SSD and cached in DRAM
using L1 ARC. The AMC-ARC is implemented by replacing the functions of do_LRU(L1,X) and
do_LRU(L2,X) described in Section 3 with do_ARC(L1,X) and do_ARC(L2,X) (here, do_ARC()
means the independent ARC algorithm). We do not alter the internal ARC algorithm.

Figure 11 presents the avg_time of different multi-level cache algorithms under the WebSearchl
and Financiall trace. We find the performance improvement of AMC—ARC compared with ind-
ARC and exc-ARC is similar to the performance improvement of AMC-LRU compared to ind-LRU
and exc-LRU. This demonstrates our proposed AMC management policy is orthogonal to the design
of single level cache replacement algorithms.

5. CONCLUSION

As SSD technology matures, more and more storage systems adopt hybrid cache hierarchies
(DRAM-SSD-HDD). Effective management of multi-level hybrid cache systems becomes an
important method to improve system performance. In this paper, we have discussed the design alter-
natives of multi-level, locally attached, hybrid cache management algorithms, and we have presented
a novel multi-level hybrid cache algorithm that can adaptively keep "hot’ data blocks in DRAM
and SSD caches. The proposed selective promote and demote operations effectively achieve cache
exclusivity and also present better performance than the traditional multi-level cache algorithms.
Our experimental results show that the AMC algorithm improves overall cache performance com-
pared with ind-LRU and exc-LRU. The algorithm also extends SSD lifetime by reducing the total
number of SSD write allocations.

ACKNOWLEDGEMENT

This work is supported by the National Science and Technology Major Project of the Ministry of
Science and Technology of China under grant 2013ZX03003010-002.

REFERENCES

1. Flashcache. (Available from: https://github.com/facebook/flashcache) [accessed on 1 December 2014].

2. beache. (Available from: https://http://bcache.evilpiepirate.org/) [accessed on 15 October 2014].

3. Canim M, Mihaila G, Bhattacharjee B, Ross K, Lang C. SSD bufferpool extensions for database systems,.
Proceedings of the 36th VLDB Conference, Singapore, 2010; 1435-1446.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

https://github.com/facebook/flashcache
https://http://bcache.evilpiepirate.org/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

AN ADAPTIVE MULTI-LEVEL CACHE ALGORITHM

. Klonatos Y, Makatos T, Marazakis M, Flouris MD, Bilas A. Azor: using two-level block selection to improve SSD-

based I/0 caches. Proceedings of the 6th Internatioanl Conference on Networking, Architecture, and Storage, Dalian,
Liaoning, China, 2011; 309-318.

. Wong TM, Wilkes J. My cache or yours? Making storage more exclusive. Proceedings of the General Track of the

Annual Conference on USENIX Annual Technical Conference, Monterey, CA, USA, 2002; 161-175.

. Chen Z, Zhang Y, Zhou Y, Scott H, Schiefer B. Empirical evaluation of multi-level buffer cache collaboration for

storage systems. SIGMETRICS Performance Evaluation Review 2005; 33(1):145-156.

. Appuswamy R, Moolenbroek DC, Tanenbaum AS. Cache, cache everywhere, flushing all hits down the sink: on

exclusivity in multilevel, hybrid caches. Proceedings of the 29th International Conference on Mass Storage Systems
and Technologies, Long Beach, CA, USA, 2013; 1-14.

. Gill B. On multi-level exclusive caching: offline optimality and why promotions are better than demotions.

Proceedings of the 6th USENIX Conference on File and Storage Technologies, San Jose, CA, USA, 2008; 4—4.

. Jiang S, Zhang X. ULC: a file block placement and replacement protocol to effectively exploit hierarchical locality

in multi-level buffer caches. Proceedings of the 24th International Conference on Distributed Computing Systems,
Hachioji, Tokyo, Japan, 2004; 168—177.

Yadgar G, Factor M, Li K, Schuster A. Management of multilevel, multiclient cache hierarchies with application
hints. ACM Transactions on Computer Systems 2011; 29(2):1-51.

Chen Z, Zhou Y, Li K. Eviction-based cache placement for storage caches. Proceedings of the USENIX Annual
Technical Conference, San Antonio, TX, USA, 2003; 268-282.

Grupp LM, Caulfield AM, Coburn J, Swanson S, Yaakobi E, Siegel PH, Wolf JK. Characterizing flash memory:
anomalies, observations and applications. Proceedings of the 42nd Annual IEEE/ACM International Symposium on
Microarchitecture, New York, NY, USA, 2009; 24-33.

Wei Q, Zeng L, Chen J, Chen C. A popularity-aware buffer management to improve buffer hit ratio and write
sequentiality for solid-state drive. IEEE Transactions on Magnetics 2013; 49(6):2786-2793.

Kgil T, Roberts D, Mudge T. Improving NAND flash based disk caches. Proceedings of the 35th Annual International
Symposium on Computer Architecture, Beijing, China, 2008; 327-338.

Pritchett T, Thottethodi M. Sievestore: a highly-selective, ensemble-level disk cache for cost-performance. Pro-
ceedings of the 37th Annual International Symposium on Computer Architecture, Saint-Malo, France, 2010;
163-174.

Oh Y, Choi J, Lee D, Noh SH. Caching less for better performance: balancing cache size and update cost of
flash memory cache in hybrid storage systems. Proceedings of the 10th USENIX Conference on File and Storage
Technologies, Berkeley, CA, USA, 2012; 25-39.

Huang S, Wei Q, Chen J, Chen C, Feng D. Improving flash-based disk cache with lazy adaptive replacement. Pro-
ceedings of the 29th International Conference on Mass Storage Systems and Technologies, Long Beach, CA, USA,
2013; 1-10.

GuerraJ, Pucha H, Glider J, Belluomini W, Rangaswami R. Cost effective storage using extent based dynamic tiering.
Proceedings of the 9th USENIX conference on File And Stroage Technologies, San Jose, CA, USA, 2011; 273-286.
Chen F, Koufaty DA, Zhang X. Hystor: making the best use of solid state drives in high performance storage systems.
Proceedings of the International Conference on Supercomputing, Tuscon, Arizona, USA, 2011; 22-32.
Appuswamy R, van Moolenbroek D, Tanenbaum A. Integrating flash-based SSDs into the storage stack. Proceedings
of the 28th International Conference on Mass Storage Systems and Technologies, San Diego, CA, USA, 2012; 1-12.
Yang Q, Ren J. I-CASH: intelligently coupled array of SSD and HDD. Proceedings of the 17th International
Symposium on High Performance Computer Architecture, San Antonio, TX, USA, 2011; 278-289.

Badam A, Pai V. SSDAlloc: hybrid SSD/RAM memory management made easy. Proceedings of the 8th USENIX
Conference on Networked Systems Design and Implementation, Berkeley, CA, USA, 2011; 211-224.

Wang C, Vazhkudai SS, Ma X, Meng F, Kim Y, Engelmann C. NVMalloc: exposing an aggregate SSD store
as a memory partition in extreme-scale machines. Proceedings of the 26th International Parallel & Distributed
Processing Symposium, Shanghai, China, 2012; 957-968.

Kaiser J, Margaglia F, Brinkmann A. Extending SSD lifetime in database applications with page overwrites.
Proceedings of the 6th International Systems and Storage Conference, Haifa, Israel, 2013; 11-11.

Johnson T, Jorge B. 2Q: a low overhead high performance buffer management replacement algorithm. Proceedings
of the 20th VLDB Conference, Santiago, Chile, 1994; 439—450.

Lee D, Choi J, Kim J, Noh SH, Min SL, Cho Y, Kim CS. On the existence of a spectrum of policies that subsumes the
least recently used (LRU) and least frequently used (LFU) policies. SIGMETRICS Performance Evaluation Review
1999; 27(1):134-143.

Jiang S, Zhang X. LIRS: an efficient low inter-reference recency set replacement policy to improve buffer cache
performance. SIGMETRICS Performance Evaluation Review 2002; 30(1):31-42.

Megiddo N, Modha DS. ARC: a self-tuning, low overhead replacement cache. Proceedings of the 2nd USENIX
Conference on File and Storage Technologies, Berkeley, CA, 2003; 9-26.

Gill B, Modha D. SARC: sequential prefetching in adaptive replacement cache. Proceedings of the USENIX Annual
Technical Conference, Anaheim, CA, USA, 2005; 293-308.

Gniady C, Butt A, Hu Y. Program counter based pattern classification in buffer caching. Proceedings of the 6th
Symposium on Operating Systems Design and Implementation, San Francisco, CA, USA, 2004; 1-27.

U. T. Repository. (Available from: http://traces.cs.umass.edu/index.php/storage/storage) [accessed on 1 October
2014].

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)

DOI: 10.1002/cpe

http://traces.cs.umass.edu/index.php/storage /storage

	AMC: an adaptive multi-level cache algorithm inhybrid storage systems
	SUMMARY
	INTRODUCTION
	RELATED WORK
	ADAPTIVE MULTI-LEVEL HYBRID CACHING
	Overview
	Achieving exclusivity
	Selective promote/demote
	Adaptive probability
	Temp cache and ghost cache
	Handling writes

	PERFORMANCE EVALUATION
	Average response time
	Solid state drive lifetime
	Hit ratio
	Dynamic random access memory–solid state drive size ratio
	Selective promote/demote
	Scalability

	CONCLUSION
	REFERENCES

