
A Lightweight Virtualization Solution
for Android Devices

Wenzhi Chen,Member, IEEE, Lei Xu, Student Member, IEEE,

Guoxi Li, Student Member, IEEE, and Yang Xiang, Senior Member, IEEE

Abstract—Mobile virtualization has emerged fairly recently and is considered a valuable way to mitigate security risks on Android

devices. However, major challenges in mobile virtualization include runtime, hardware, resource overhead, and compatibility. In this

paper, we propose a lightweight Android virtualization solution named Condroid, which is based on container technology. Condroid

utilizes resource isolation based on namespaces feature and resource control based on cgroups feature. By leveraging them, Condroid

can host multiple independent Android virtual machines on a single kernel to support mutilple Android containers. Furthermore, our

implementation presents both a system service sharing mechanism to reduce memory utilization and a filesystem sharing mechanism

to reduce storage usage. The evaluation results on Google Nexus 5 demonstrate that Condroid is feasible in terms of runtime,

hardware resource overhead, and compatibility. Therefore, we find that Condroid has a higher performance than other virtualization

solutions.

Index Terms—Container, virtualization, android, security

Ç

1 INTRODUCTION

1.1 Motivation

SMART mobile devices have already been an omnipresent
part of our daily lives. By the end of 2013, Android

claimed 61.9 percent market share of all smart devices and
nearly 79 percent market share of smartphones [1]. In
the second quarter of 2014 Android continued to dominate
the global smartphone market with nearly 85 percent of the
market share [2].

As smart devices become increasingly common, they
have also become an active area of research. In recent years,
the interest of the research community has focused on two
topics regarding smart mobile devices: 1) Security threats,
and 2) bring your own device (BYOD).

1.1.1 Security Threats

While Android has become popular, it has also become an
attractive target for malware because of its openness. The
report of F-Secure states the number of malicious software
on the Android platform accounts for 97 percent of the over-
all number of mobile malware. In 2013, the malicious
deduction virus ranks in first place with 23 percent, while
fraud and process control takes second and third place
respectively with 21 and 16 percent [3].

Viruses, Trojan horses and malware from all kinds of
external attackers have attracted attention. However,

deploying a security environment (such as encryption, digi-
tal signature, safety audit, access control, and digital certifi-
cation) on a mobile device is very complicated for everyday
users. People need an innovative solution that can offer a
secure and credible execution environment when using
some critical applications (mobile payment, mobile bank-
ing), or when accessing sensitive data (SMS, contacts) [4].

Virtualization [5], [6] can offer a secure zone to store sen-
sitive Apps, data and private information, and prevents
malware from infiltrating the secure zone from other inse-
cure environments [7], [8], [9], [10].

Moreover, virtualization can create an isolated environ-
ment [11], [12], [13], [14], [15] that can be used in a safe way
to run programs that may ruin the host OS, other app or
users’ data or private information. If the environment does
crash or become compromised, the rest of the host OS is not
affected because the isolated environment created by virtual
technology cannot directly access the host resources.

1.1.2 BYOD

The concept of BYOD [16] refers to the policy of permit-
ting employees to bring personally owned mobile devices
to their workplace, and access privileged company
information and applications with these devices. BYOD
increases employee morale and convenience by allowing
employees to use their own devices and it also makes the
company look a flexible and attractive employer [17],
[18], [19], [20], [21]. It seems the answer to BYOD is
mobile virtualization [19]. Mobile virtualization enables a
single device to offer two or more personas with different
system settings and user profiles and totally different
operating environments [22].

Some other scenarios may include: (1) a company
needs to monitor and remotely manage the devices of
employees but employees do not want to be monitored or
controlled when they use their devices for personal use
(telephony, gaming, web browsing); (2) a company needs

� W. Chen, L. Xu, and G. Li are with the School of Computer Science and
Technology, Zhejiang University, Hangzhou 310027, P.R. China.
E-mail: {chenwz, leixu, guoxili}@zju.edu.cn.

� Y. Xiang is with the School of Information Technology, Deakin University,
Burwood, Vic. 3125, Australia. E-mail: yang@deakin.edu.au.

Manuscript received 4 Nov. 2014; revised 29 Dec. 2014; accepted 1 Jan. 2015.
Date of publication 8 Jan. 2015; date of current version 10 Sept. 2015.
Recommended for acceptance by Y. Pan.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2015.2389791

IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 10, OCTOBER 2015 2741

0018-9340� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

to backup the workspaces of employees, destroy them
after work and then restore them on the next workday.
Mobile virtualization can make all these possible and
easy to achieve.

However, the concept of mobile virtualization is not sim-
ply applying the current virtualization technology to the
current mobile devices. When mobile devices meet virtuali-
zation, some new challenges do emerge [23], [24], [25], [26],
[27], [28], [29], [30], [31]:

Challenge 1: Keeping the device’s native performance.
Nobody wants to try new technology yet sacrifice perfor-
mance. If so, they would rather buy another phone than run
two phones on the one physical phone.

Challenge 2: Keeping the native user-experience. The phone
should maintain the same look and feel. Users should not
be aware of virtualization when it comes to notifications,
smart switching, links or sharing.

Challenge 3: Supporting more than two personas. This is the
most complex challenge. The person who owns the phone is
not limited to two personas. He may have different per-
sonas for his children, parents, or colleagues etc.

1.2 Our Contributions

This paper aims to develop mobile virtualization architec-
ture for Android, called Condroid. Condroidwill enable a sin-
gle device to run several virtual Android phones in a
simultaneous, independent, isolated and secure manner.
Our architecture can also meet the recent security and
BYOD requirements and challenges mentioned above (our
project is also open source on Github at http://condroid.
github.io).

Considering the power and performance limits of com-
mon mobile devices, our architecture has to run in a stable
and endurable manner. The weight of virtualization is
mainly responsible for power and performance. This
explains why we need to employ some kind of lightweight
virtualization solution for our architecture.

Our contributions are summarized as follows:

� Porting Linux container (LXC) [32] to Android—We
port the Linux Container tools to Android while fix-
ing problems with compatibility. This equips
Android OS with its own lightweight virtualization
capacity.

� Full-featured container virtualization architecture—We
design efficient container virtualization architecture
with several device virtualization models, such as
Binder, Display and Input. This allows a single set of
device resources to be shared among multiple
Android environments.

� Efficient service sharing mechanism—We present a ser-
vice sharing and filesystem sharing mechanism to
reduce memory and storage utilization. This signifi-
cantly improves system performance.

The rest of this paper is organized as follows. Section 2
describes related work. In Section 3, we describe the
architecture of Condroid, and Section 4 details the imple-
mentation of each subsystem. Finally, in Section 5, we use
a series of benchmarks to evaluate the performance of
Condroid. A summary and plan of our future work are
given in Section 6.

2 RELATED WORK

Isolation mechanisms that enhance security for Android can
be classified into three types: ARM-based system virtualiza-
tion, user-level isolation and OS-level isolation.

2.1 ARM-Based System Virtualization

The first approach to isolate runtime environments is sys-
tem virtualization. This technology was originally devel-
oped for servers and desktops. We discovered some
research transplanted typical x86 system virtualization plat-
forms to an ARM platform:

KVM/ARM [33] is the first full system ARM virtualiza-
tion solution that can run unmodified guest operating sys-
tems on ARM multicore hardware. KVM/ARM leverages
existing Linux hardware support and functionality to sim-
plify hypervisor development and maintainability while
utilizing recent ARM hardware virtualization extensions to
run virtual machines. However, KVM was not originally
designed for ARM architecture, and this solution is neither
mature nor stable. There is a lengthy process to modify
KVM to be adaptable to ARM hardware. EmbeddedXEN
[34] is a para-virtualization hypervisor specifically for ARM
embedded systems. In particular, EmbeddedXEN supports
heterogeneous ARM cores and keeps execution overhead as
low as possible. However, solutions based on para-virtuali-
zation are not fit for mobile devices. It has a complex config-
uration that is not easy for common users and the guest OS
code needs to be modified, which means it can’t support the
latest OS nor the commercially closed-source operating sys-
tems. The OKL4 microvisor [35] is designed to serve as a
hypervisor as well as a replacement for the microkernel.
OKL4 is a third generation microkernel of L4 heritage for
the large-scale commercial deployment of mobile virtualiza-
tion platforms. However, the microvisor has to work with
device support and emulation, which is an onerous require-
ment for mobile devices that contain increasingly diverse
hardware devices.

2.2 User-Level Isolation

Isolation based on user-level, known as sandbox, is a tradi-
tional way to confine malware. This solution uses different
user identifiers per application group to implement sandbox-
ing. The communication between applications and core
Android components is restricted and based on permissions
requested during the installation of applications. Drawbridge
[36] is such a system designed for Windows. There is no such
a library for Android currently and there are several signifi-
cant challenges due to the vast architectural differences
between Windows and Android. These differences include:
(1) Remote Desktop Protocol (RDP) does not support virtual-
ized applications to render graphics in Android; (2) It does
not support a shared state between applications in different
sandboxes; (3) It also doesn’t support multiple processes
bound to a singleOS library.

2.3 OS-Level Isolation

Isolation based on OS-level virtualization [9], [37], as used
in our solution, is a common concept for containers today.
Cells introduced in [38] is also an Android container solu-
tion. Cells is virtualization architecture that enables multiple

2742 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 10, OCTOBER 2015

virtual smartphones to run simultaneously on the same
physical cellphone in an isolated, secure manner. Cells intro-
duces a usage model of one foreground virtual phone and
multiple background virtual phones. In contrast to Cells,
our approach expends effort to virtualize the Binder subsys-
tem in Android to gain a higher performance, which is a pri-
mary Android-specific IPC framework used ubiquitously
by all Android processes. In addition, Cells makes the most
of modifications in the Linux kernel layer, and these are
unlikely to merge into the mainline because this feature is
not the emphasis of a standard kernel, and therefore may
not capture the attention of the kernel. Most of our modifi-
cations are in the Android framework layer, and these are
likely to be collected in the Android Open Source Project
(AOSP) if Google wishes Android to support virtualization.

3 SYSTEM ARCHITECTURE

The main approach adapted for Condroid is the Linux kernel
technology of Containers. Containers are illusions of con-
trolling system resources so lightweight virtualization can
isolate processes and resources without the complexities of
full virtualization.

As mentioned above, several related technologies have
been developed which range from sandbox, to hypervisor
and container based separation. After analyzing the spe-
cialty of mobile devices and evaluating the performance of
these solutions in our previous work [4], we designed con-
tainer-based architecture.

Condroid uses a single OS kernel across all containers that
virtualizes identifiers and hardware resources. This means
Condroid does not require running multiple complete
Android instances, rather it provides virtual environments
in which multiple containers can run on a single Linux
kernel. Condroid ensures the containers are individual,
completely independent, and secure from one another in
order to prevent bugs or malicious applications running in
one container and adversely impacting the operation of
other containers. This is done by leveraging namespaces
[39] and cgroups [40].

The purpose of each namespace (currently a Linux kernel
implements six different types of namespaces: Mount, UTS,
IPC, PID, Network, and User) is to wrap a particular global
system resource in an abstraction that makes it appear to
the processes within the namespace that they have their
own isolated instance of the global resource. We use the
cgroups (control groups) feature to limit, account and iso-
late the resource usage of process groups. Cgroups provides
a mechanism to partition sets of tasks and all future children
into hierarchical groups with specialized behavior. We also
transplant the LXC toolkit to the Android platform. To do
this, we made several modifications: replace several func-
tions the Bionic library does not support, replace some sys-
calls because of the difference in yaffs2, cross-compile
the Android NDK toolchain, and recompile kernels to
enable cgroups and namespaces to support kernel configu-
rations. However, basic OS virtualization is insufficient to
run a complete Android user space environment. Virtuali-
zation mechanisms have primarily been used in headless
server environments with relatively few devices, such as
networking and storage, which can already be virtualized

in commodity OS platforms such as Linux. Android appli-
cations, however, are expected to interact with a variety of
hardware devices, many of which were not originally
designed to be multiplexed. Therefore, mobile virtualization
is not existent. In Android, certain devices must be fully
supported, including both hardware devices and pseudo
devices unique to the Android environment.

Condroid is a solution adapted for Android devices. It
does so by integrating both the kernel-level and user-level
device virtualization methods to present a complete virtual
Android OS environment. Fig. 1 shows the relationship
between the host and containers. The host is a control center
and never installs downloaded apps despite being a com-
plete Android OS. This design can ensure the safety of the
host the most when all apps run in containers. A container
may be associated with one or more apps, downloaded
apps or pre-installed apps. We assume a container is secure
when the container only includes pre-installed apps and
trustful apps. Condroid can efficiently offer several secure
and insecure containers.

Condroid’s design provides two novel mechanisms to
improve performance and user experience: (1) a system ser-
vice sharing mechanism is used to reduce memory utiliza-
tion. Acquiescently, multiple Android systems run multiple
system services. However, some of these system services
are duplicated. We offer a user-configurable way to deter-
mine which services can be shared among all the Android
instances through an interface in a /proc filesystem; (2) a
read-only filesystem sharing mechanism is proposed to
reduce storage usage. Normally, people are concerned
about storage usage while multiple whole Android instan-
ces exist on a single device. This mechanism means the
/system partition of an Android system is shared among
all containers.

3.1 General Description

Fig. 1 shows the basic Condroid architecture. The design of
our prototype system is inspired by the common Linux
Container architecture.The modifications we make are
shown as grey in the figure. This design can offer a better
user experience because it can enable a user to create, start,

Fig. 1. Overview of Condroid architecture.

CHEN ET AL.: A LIGHTWEIGHT VIRTUALIZATION SOLUTION FOR ANDROID DEVICES 2743

shutdown, and manage all the containers in the device and
enable them to switch containers more conveniently. Most
modifications are located in the Android framework layer
and all of these will be packaged as ROM firmware.

Firstly, we think it is necessary to briefly describe the
purpose of each component in Fig. 1:

� Host android—Our implementation needs a complete
Android system as the host platform to initialize and
handle Condroid. We treat it as a virtual machine
monitor with no untrusted application ever executed
in this domain. Each complete Android OS consists
of a Linux kernel and Android framework.

� Linux kernel—Our solution needs only a single Linux
kernel even though we have to run multiple Android
containers. We reconfigure this kernel to enable the
cgroups and namespaces feature, and we also need
to make some other modifications in the kernel, such
as creating some virtual devices, and writing several
virtual device drivers, etc.

� Android framework—This is one maintained by Google
that consists of system services, libraries, Dalvik run-
time and some other application frameworks. We have
to make some modifications in the host’s Android
framework to cooperate with the containers and also
make a few modifications in the container’s Android
framework.

� LXC tools—LXC is a userspace interface for the Linux
kernel containment features. Through a powerful
API and some simple tools, it allows Linux users to
easily create and manage containers. However, LXC
was originally designed for Linux and what we have
to do is transplant LXC to an Android runtime
environment.

� Container—This is a virtual machine or a virtual
phone that runs an isolated Android system. The
Android version in different containers can be differ-
ent and the communication between different
containers is handled by the kernel. Each container
includes several pre-installed APPs developed by
Google and it can also run the downloaded APPs.

In Fig. 1, we can see the LXC toolkit is the console of
Condroid which is a user interface to manage containers.
LXC combines cgroups and namespaces support to pro-
vide an isolated environment for applications. To make it
possible to use LXC in an Android system, we have to
make a number of modifications. These modifications
include: (1) replacing several functions that Bionic library
doesn’t support (such as setenv(), tmpfile(), etc.);
(2) replacing some syscalls because of the difference in
Android (such as pivot_root, umount_oldrootfs,
etc.); (3) cross compiling using the Android NDK tool-
chain; (4) re-configuring the Linux kernel with cgroups
and the namespaces feature so it is enabled.

In Fig. 1, we can also see there are other modifications in
both the user and kernel space (shown in grey). We
designed a virtual Binder IPC mechanism, which is the
main communication channel between apps, even across
container boundaries. We designed a service sharing mech-
anism by making use of the Linux proc filesystem interface.
We also designed a device virtualization mechanism by

creating several virtual device drivers and modifying the
Hardware Abstract Layer (HAL).

4 IMPLEMENTATION DETAILS

In this section, we concentrate on the details of Condroid.
Because there are too many modifications, optimizations
and adaptations in this system, we are unable to cover all of
them in this paper. We will describe the implementation of
the main components in Condroid. These include the Binder
System, Display System, Input System, Service Sharing and
Filesystem Sharing.

4.1 Binder System Virtualization

Binder is a system for Inter-Process Communication (IPC)
used in the Android operating system. Binder is a primary
subsystem used ubiquitously by all Android processes,
which is why we should virtualize Binder first of all.

In order to provide a fundamental and convenient mech-
anism for the other subsystems, we need to find a way to
share the single Binder framework (a single Linux kernel
can only support one Binder framework) between the host
and all containers. In Android, the Binder driver is a bridge
among the ServiceManager, Service and Apps. They trans-
fer requests and responses by using syscalls on /dev/

binder, such as open, ioctl and mmap. Binder system
virtualization means the host provides the main IPC compo-
nents (Binder driver, ServiceManager), and that containers
don’t need to have these. Apps in containers communicate
with the host’s Binder through a virtual Binder device.

As shown in Fig. 2, we add a virtual Binder driver in the
Linux kernel. The functions of this virtual driver include:
(1) forwarding the operation that Apps make the on virtual
binder device to the real Binder driver; (2) if the operation is
ioctl and the target is ServiceManager (e.g. registering
service or requesting service), the virtual driver will modify
the name of a service using a hash function. Function (1)
mentioned above makes it possible for the virtual binder to
respond to all requests Apps send. Function (2) solves name
conflict problems by modifying the name of the services
registered in the ServiceManager. This ensures the same
services running in different containers can be labelled with
different names. In turn, this means the virtual driver can
deliver the requests from Apps in each container to the serv-
ices in the corresponding container.

Fig. 2. Binder virtualization architecture.

2744 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 10, OCTOBER 2015

After creating the virtual driver, we use this to register a
set of virtual Binder devices in the kernel initialization
process. The kernel will then automatically create a set
of corresponding device files (/dev/vbinder1,/dev/
vbinder2. . .). As shown in Fig. 2, we bind the Binder
device file (/dev/binder) in a container to one of the vir-
tual device files in the host before launching the containers.
This means accessing the /dev/binder in its own root fil-
esystem means to access the virtual binder device equiva-
lently. All operations will then be redirected to the real
binder driver. The real binder driver will think all opera-
tions are from the common processes running in the host
without feeling the existence of the containers.

In Fig. 3, we described the workflow of Condroid. We
assume the host and container have the same service foo.
Firstly, the service foo needs to be registered in the Service-
Manager which only runs in Android as a host. While the
service foo in the container registers, the virtual Binder
driver intercepts the registering operation and modifies
the name of foo using a hash function. The registering opera-
tion from the host will not be intercepted. Then, while an
app in the container requests service foo, the virtual driver
will also modify the name of foo using the hash function
and search for it in the ServiceManager. The ServiceMan-
ager then returns an object reference of foo_mod. As
described above, we can see this mechanism solve the name
conflict problem through the Binder subsystem in the
Android virtualization environment.

4.2 Display System Virtualization

In order to share the unique screen among all containers,
we should find a way to virtualize the display system.
Unlike Cells, we make these modifications in the Android
framework rather than virtualizing the framebuffer
device in the Linux kernel. It can greatly reduce memory
usage without maintaining the virtual hardware state and
renders any output to a virtual screen memory buffer in
RAM. It is also very hard to debug when you make modi-
fications in the kernel. Importantly, our solution has more
flexibility and portability than Cells as our solution does
not need to create any new virtual devices (Cells need to
create a mux_fb device).

All modifications we made are in the WindowManager,
which is Android’s system service that controls window
lifecycles, input events, screen orientation, position, z-order,
and many other aspects of a window. The WindowManager
sends all window metadata to the SurfaceFlinger, which is
Android’s system service that composites the visible surface
onto the display. Fig. 4 shows the architecture of display
system virtualization.

In Android, the WindowManager maintains a window
stack which is very important for SurfaceFlinger to decide
which windows to be drawn on the screen. Each item in the
window stack is a WindowState object, and WindowMan-
ager calculates a Z-index for each item through a mapping
function. SurfaceFlinger chooses the max Z-index value of
the WindowState to draw on the screen. Here, we should
modify the mapping function of theWindowManger in each
container. The Z-index value of the Nth container should
add (N-1)�10,000 to avoid repetition of the Z-index value as
shown in Fig. 5a. Therefore, the container which starts last

Fig. 3. The workflow of Condroid with binder virtualization.

Fig. 4. The architecture of display system virtualization.

Fig. 5. The mapping function of the modified WindowManager in Condroid.

CHEN ET AL.: A LIGHTWEIGHT VIRTUALIZATION SOLUTION FOR ANDROID DEVICES 2745

has the max Z-index value and SurfaceFlinger would draw
its windows on the screen. This container is now in the fore-
ground and the others are in the background.

4.2.1 Container Switch

In order to switch between containers, we add a kernel vir-
tual device and a framework system service. The flow chart
of the container switch is shown in Fig. 6.

� The virtual device /dev/container—We implement a
new virtual device in the Linux kernel, /dev/

container, which provides the services of con-
tainer register, container switch and some get-and-
set utilities. The virtual device can also be manipu-
lated through the system call ioctl. It maintains a vec-
tor that stores all containers currently running and
the positon of the vector represents the order of con-
tainers booting up. We name the container in one
end of the vector the front container, which is on top
of the window stack, and the applications belonging
to it can be seen through the screen. Input events
from users can also be received.

� The framework system service ContainerManagerSer-
vice—In the application framework of the Android
OS, we add another system service, ContainerMana-
gerService. This service maintains the adjustment
value of the Z-index of the current Container it
belongs to. Its client, the ContainerManager in the
original system service WindowManagerService,
communicates with it for managing the containers.

However, while we may want to switch container 2 to the
foreground, we need to put all of its windows to the top of
the window stack. This has been done by swapping the
Z-index value of WindowStates of container 2 with the one
which is now the foreground container. For example, swap
container 2 with container 3 as in Fig. 5b.

For the user of the Android OS, one can complete the
container switch through an authenticated application as
shown in Fig. 6. The application sends a Switch Request
to the ContainerManagerService and changes the front

container to another container through the virtual device in
the Linux kernel. This makes the two containers’ Window-
ManagerService change the Z-order index of the Window-
States. Eventually, SurfaceFlinger, the shared system service,
renders the new surface to the frame buffer and the container
switch is completed.

Because of one shared SurfaceFlinger (details in Section 4.4)
which maintains Z-index value of windows from all Contain-
ers, the extra communication of new Z values among Surfa-
ceFlingers fromdifferent Container is eliminated.

4.3 Input System Virtualization

In Android, input events are all handled by the InputMan-
ager, which is shown in Fig. 7. The input system virtualiza-
tion is done by modifying the InputManager to let the
current foreground container respond to input events, which
background containers will ignore. Originally, there are two
member variables in the InputManager: mInputDispatcher
and mInputReader. These point to an InputDispatcher object

Fig. 6. The Container Switch in the Condroid.

Fig. 7. The input subsystem virtualization in Condroid.

2746 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 10, OCTOBER 2015

and an InputReader object respectively. The InputDispatcher
object is responsible for dispatching input events to the cur-
rent activated windows and the InputReader object is in
charge of monitoring input events. They run in separate
threads. Acquiescently, the InputDispatcher thread will con-
tinually call its member function dispatchOnce to check
whether the InputReader dispatches input events. If not, the
InputDispatcher thread will go to sleep until roused by the
InputReader. The InputReader thread will continually call
its member function loopOnce to check whether a user issues
an input order.

Under implementation, the loopOnce function invokes
getEvent, the EvenHub’s method whose responsibility is to
read input events from the kernel by opening the evdev
driver associated with each input device.

If the InputReader receives input events, it will call the
function notifyKey of the InputDispatcher to wake up the
InputDispatcher. The InputDispatcher has a member vari-
able mFocusedWindow which can retrieve an InputChannel
associated with the current focused window so it can dis-
patch the input events to the activated windows.

In Condroid, we modified the InputReader of the Input-
Manager. We maintained a variable num_Foreground-Con-
tainer standing for the number of current foreground
containers. This means each container can know whether it
is the foreground one. If not, the modified InputReader will
stop calling the loopOnce function to monitor whether there
are any input orders. It means the InputReader in back-
ground containers will shield all input events and only the
foreground container will respond to input orders.

4.4 Service Sharing Mechanism

It is important this mechanism is created because it can
reduce the memory footprint. As we know, each container is
a stock Android system that contains many system services.
In view of the containers, these services are duplicated. How-
ever, it is not necessary to run every service in every con-
tainer, such as LightsService, BatteryService, WifiService, or
SurfaceFlinger, etc. A service sharing mechanism allows a
device to run a single service that can be shared among all
containers instead of this service being run in every container.

In stock Android, each service should register itself in the
ServiceManager after it begins so the ServiceManager can
maintain a global service list. In Condroid, we implement an
interface to allow users to custom share services through
the /proc filesystem because containers can receive the ref-
erence object of shared services in a host’s /proc temporary
filesystem. As shown in Fig. 8, users can share some unse-
cure services among hosts and containers. Our virtual
binder driver will direct access requests from the client

process in containers to the corresponding shared service in
the host’s /proc filesystem.

4.5 Filesystem Sharing Mechanism

This mechanism allows hosts to share directories of the file-
system with containers which can significantly reduce the
storage usage. In Android, the filesystem can be grouped
into two categories: temporary filesystem (tmpfs) and non-
volatile filesystem (nonvolatilefs). The tmpfs is a kind of
memory filesystem that is dynamically created when a sys-
tem is booting. However, the nonvolatilefs contain some
read-only directories that can be shared among containers.

In Condroid, the nonvolatilefs contains two subdirecto-
ries: /data and /system. In particular, /system has
many read-only subdirectories, such as: /app, /fonts,
/framework, and /lib, etc. We offer a method where all
read-only subdirectories in containers are linked to the host.
This reduces storage usage and will not introduce any secu-
rity issues. The size of these subdirectories is relatively large
and because of this we believe the filesystem sharing mech-
anism is necessary when a user needs to run many contain-
ers in a single device.

5 EVALUTAION

We have implemented a prototype of Android virtualiza-
tion named Condroid using container technology, and trans-
planted it to the latest Google devices, the Nexus 5
smartphone. In order to evaluate the usability, scalability,
robustness, efficiency and stability of our prototype, we
carried out experiments in regards to performance impact,
power consumption, booting up time, memory utilization
and so on.

5.1 Methodology

We chose Cells as a comparison, which is the most famous
solution based on container virtualization technology
presented by Columbia University at SOSP’11. However,
there are many differences between Condroid and Cells, and
also many improvements especially in the implementation
concepts of many subsystems, such as IPC, Display, and
Input, etc.

It has been proven that Condroid works successfully with
many versions of Android, however in this paper all of our
experimental results presented have been collected from
Nexus 5 running with Android 4.4.2 and the Linux kernel
3.4.0. To date, Cells can only support Nexus S with Android
4.1.2. For fair comparison, all results have been normalized
to the result of the manufacturer’s unmodified Android OS.

5.2 Evaluation Results

5.2.1 Booting Up Time

Booting up time is usually an important factor of the user
experience. We measure the time one container spends
from receiving the start command until it is ready to receive
user inputs.

Fig. 9a shows the result with one container, two contain-
ers, three containers, and four containers running in the
background versus that of Cells in the same configuration
respectively.

Fig. 8. The service sharing mechanism in Condroid.

CHEN ET AL.: A LIGHTWEIGHT VIRTUALIZATION SOLUTION FOR ANDROID DEVICES 2747

In Fig. 9a, the x-axis of N container(s) represents the Nth
container booting up while N–1 containers run in the back-
ground. The unmodified has no containers, which makes it
the mean of the device booting up.

As Condroid and Cells are running on different devices, it
is pointless to directly compare the booting up time directly.
Therefore, all the results are normalized to the result of the
manufacturer’s unmodified Android OS whose value is 1.
Because Condroids and Cells both compare to their own man-
ufacturer’s unmodified Android OS, the comparison makes
sense.

The observations of Fig. 9a are:

1. We measure from the time the init process starts
to the time the Android framework application
Launcher2 starts. In this way, the unmodified
Android OS takes about 15.31 seconds.

2. With an increasing number of containers booting up,
time becomes larger. However, our prototype incurs
no more than 11 percent overhead in all cases while
Cells incurs an overhead of 30 percent at most.

5.2.2 Memory Usage

In Condroid, some system services are shared among contain-
ers in order to reduce the memory usage. This experiment
measures the memory utilization of Condroid and Cellswhen
one container, two containers, three containers and four
containers run respectively. In our tests, the unmodified
Android OS occupies about 297MBmemory on average.

As Condroid and Cells use different versions of the
Android OS, it is pointless to directly compare memory
usage. Therefore, all results are normalized to the result of
the manufacturer’s unmodified Android OS whose value

is 1. This is something we also did in the booting up time
experiment.

The observations of Fig. 9b are: our prototype incurred no
more than a 35 percent overhead in all cases, whileCellsmem-
ory utilization doubled in the worst case scenario. Condroid
does not virtualize a framebuffer by a multiplexing frame-
buffer device driver which is needed to render any output to
a virtual screen memory buffer in a system’s RAM. In
addition,Cells does not solve the services sharing problem.

5.2.3 Storage Usage

In our prototype many containers share several read-only
directories that significantly reduce the usage of storage.
The unmodified Android occupies about 619 MB storage on
average.

In Fig. 9c, the y-axis scale is with the normalized unit
length according to the manufacturer’s unmodified
Android OS as 1 unit. We also make that normalization in
the experiment of booting up and memory usage.

The observations of Fig. 9c are that our prototype incurs
no more than 38 percent overhead while Cells almost dou-
bled in the worst case scenario. This may be because Cells
also offers a kind of filesystem sharing mechanism and
because it shares less files with each other. Cells may only
share some configured files and some apk files.

5.2.4 Container Switch Overhead

As is already known, containers will be switched frequently
in daily use which makes switching time a critical part of
runtime overhead. Switching time is also an important fac-
tor of the user experience and can determine whether users
are willing to use the product.

Fig. 9. Results of booting up, storage usage, memory usage and container switch.

2748 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 10, OCTOBER 2015

In addition, we implement our own container switch
mechanism in Condroid, whose message goes deep into the
kernel and back to the framework layer of the Android OS.
With such a long message path, we intend to measure
whether its overhead is heavy.

In order to achieve container switch overhead, we mea-
sure the time elapsed during one container in foreground
switching compared to the background which results in
another container returning to the foreground.

In Fig. 9d, the y-axis scale is one unit length represent-
ing 1 ms. Although we can achieve precision of ms,
according to the results, the precision of ms is enough to
tell the difference.

Fig. 9d shows the switching time of one container from
the foreground to the background. From the figure, we can
see our prototype incurs no more than 140 ms extra over-
head. The result also shows that our prototype is better than
Cells by an average of 20 ms in all cases.

5.2.5 Power Measurements

There are two frequently used usage scenarios to measure
power consumption in mobile device benchmarks:

1) The device runs continuously in the idle state with-
out communication over Wi-Fi or cellular and with
the display backlight turned off.

2) A music player runs in the foreground with the
display turned off.

Fig. 10a shows power consumption in the first scenario,
which lets the phone sit idle in a low power state. While
Fig. 10b shows music playing with the standard Android
music playing continuously. We measure when the battery
dies in these two usage scenarios.

In both figures, the y-axis scale is one unit length repre-
sents 1 minute. The results of experiments are rounded to a
unit of minutes without losing the comparability of different
configurations of devices.

Observations from Fig. 10 include: even though run-
ning more containers increased, the endurance time
became smaller. Another observation was that our proto-
type incurred no more than 26 percent loss in endurance
time. This is better than Cells with the same configuration
respectively.

In addition, our new container switch mechanism proved
good enough on performance.

5.2.6 Micro Benchmarks

Weused the benchmark programs, which are basically equiv-
alent to the forkþ exec, forkþ exit, pipe and syscall programs
included in the LMbench [41] benchmark suite. We show the
results of comparing the execution speed in Table 1.

To see the impact of virtualization on common opera-
tions in mobile phones, we compared UI loading time,
codec performance and image file saving time. For the UI
loading test, we used Qtopia [42] installed at the NOR flash
memory. We prepared 100 files whose size was distributed
from 10 KB to 5 MB to test the image file saving and we
measured the time taken to save all image files from a NFS
server to NAND flash memory. For codec tests, the WMV
stream encoder/decoder was used.

Table 1 shows the performance of executing a simple sys-
call is the one most severely impacted because its execution
path is very simple. The other benchmark programs involve
fair amounts of work executed in the guest operating sys-
tems, thus the performance degradation is a little severe.

5.2.7 Macro Benchmarks

To measure performance in a macro way, we selected five
benchmarks designed for measuring different aspects of an
Android OS: AnTuTu v4.5.2 [43]; Quadrant Standard Edi-
tion v2.1.1 [44]; SunSpider v0.9.1 JavaScript benchmark
[45]; Passmark PerformanceTest Mobile v1.0.4000 [46] and
Vellamo v2.0.3 [47]. These benchmarks are designed to test
2D and 3D graphics performance, Disk I/O, Memory I/O
and CPU (Framework layer, Native layer) performance.
The scores they give are very powerful in explaining how
well a device runs.

Fig. 10. The results of power consumption.

TABLE 1
Results of Micro Benchmarks

Condroid Cells

1 VM 2 VMs 1 VM 2 VMs

fork þ exit (ms) 4,012.38 4,328.53 5,117.75 5,332.65
fork þ exec (ms) 5,984.14 6,211.51 7,463.90 8,577.90
pipe (ms) 201.64 273.30 1,190.35 2,254.30
syscall (ms) 13.74 17.21 19.93 21.22
UI loading (s) 12.32 13.45 10.17 14.32
Image saving (s) 45.17 54.23 40.32 50.30
Encoding rate (fps) 5.67 5.76 7.21 7.43
Decoding rate (fps) 20.41 23.14 24.13 26.55

CHEN ET AL.: A LIGHTWEIGHT VIRTUALIZATION SOLUTION FOR ANDROID DEVICES 2749

Fig. 11 shows the scores given by the five macro bench-
marks with Condroid when one container, two containers,
three containers, and four containers are already running.

As different benchmarks give scores according to differ-
ent standards, the scores range from thousands of points to
tens of thousands of points. Therefore, all the results are
normalized to the result of the manufacturer’s unmodified
Android OS whose score of five benchmarks is 1. This
makes the results easy to read and comparable with other
configurations of Android OS.

From Fig. 11 we observe that when the number of Con-
tainers increase, worse scores are achieved, however our
prototype incurs no more than a 46 percent difference in
scores between the unmodified Android OS.

6 CONCLUSION AND FUTURE WORK

In this paper, we present Condroid, a lightweight solution
based on container virtualization technology. Unlike Cells,
we make the most of modifications at the Android frame-
work layer in order to achieve good portability. Our solu-
tion supports all mobile devices on the market that can run
the AOSP Android system. The main contributions of this
paper include: (1) we verify the feasibility of using cgroups
and namespaces through LXC in an Android environment;
(2) we design an efficient container virtualization prototype
with several device virtualization models, such as Binder,
Display and Input; (3) we present a service sharing mecha-
nism and filesystem sharing mechanism to reduce the
amount of memory and storage used. A series of experi-
ments on the latest Nexus 5 running with Condroid and
Nexus S running with Cells tells us that Condroid incurs
near zero performance overhead, and in most experiments
Condroid achieves better performance than Cells.

Future work includes supporting telephony virtualiza-
tion that can provide containers with independent phone
numbers. In addition, various sensors virtualization (Blue-
tooth, GPS, NFC, etc.) will be explored in the future.

ACKNOWLEDGMENTS

Xiaoqian Fan and Pengfei Jiang helped with running bench-
marks to obtain many of the measurements in this paper.
Qian Chen helped to promote this project on source on
Github (http://condroid.github.io/). The authors wish to
thank the reviewers for their comments about improving
the presentation and structure of this paper. This work was
funded by the National Science and Technology Major

Project of the Ministry of Science and Technology of China
under Grant NO. 2013ZX03003010-002 and supported
partly by the key Science and Technology Innovation Team
Fund of Zhejiang under Grant NO. 2010R50041. ARC
Projects DP150103732, DP140103649, and LP140100816.
Yang Xiang is the corresponding author.

REFERENCES

[1] N. Swanner. (2014). Android tablet market share jumps to nearly
62% [Online]. Available: http://androidcommunity.com/android-
tablet-market-share-jumps-to-nearly-62–20140303/

[2] International Data Corporation (IDC). (2014). Smartphone OS
market share, Q2 [Online]. Available: http://www.idc.com/
prodserv/smartphone-os-market-share.jsp

[3] F-Secure. (2013) [Online]. Available: http://www.f-secure.com/
en/web/labs_global/white-papers/reports

[4] L. Xu, W. Z. Chen, and Z. H. Wang, “Research about virtualiza-
tion of ARM-basedmobile smart devices,” in Proc. Int. Conf. Multi-
media Ubiquitous Eng., 2014, pp. 259–266.

[5] R. Robert, “Survey of system virtualization techniques,” Oregon
State Univ. Technical Report, 2004.

[6] T. King, Samuel, G. W. Dunlap, and P. M. Chen, “Operating sys-
tem support for virtual machines,” in Proc. USENIX Ann. Tech.
Conf., 2003, pp. 71–84.

[7] S. Crosby and D. Brown, “The virtualization reality,” IEEE Trans.
Queue, vol. 4, no. 10, pp. 34–41, Dec./Jan. 2006.

[8] S. J. Vaughan-Nichols, “Virtualization sparks security concerns,”
Computer, vol. 41, no. 8, pp. 13–15, Aug. 2008.

[9] O.. Laadan and J. Nieh, “Operating system virtualization: Practice
and experience,” in Proc. ACM 3rd Annu. Haifa Exp. Syst. Conf.,
2010, p. 17.

[10] G. Heiser, “The role of virtualization in embedded systems,”
in Proc ACM 1st Workshop Isolation Integr. Embedded Syst., 2008,
pp. 11–16.

[11] K. L. Kroeker, “The evolution of virtualization,” Commun. ACM,
vol. 52, no. 3, pp. 18–20, 2009.

[12] M. Rosenblum Mendel and T. Garfinkel, “Virtual machine moni-
tors: Current technology and future trends,” IEEE Trans. Comput.,
vol. 38, no. 5, pp. 39–47, May 2005.

[13] P. M. Chen and B. D. Noble, “When virtual is better than real
[operating system relocation to virtual machines],” Proc. IEEE 8th
Workshop Hot Topics Operating Syst., 2001, pp. 133–138.

[14] J. Sahoo, S. Mohapatra, and R. Lath, “Virtualization: A survey on
concepts, taxonomy and associated security issues,” in Proc. IEEE
2nd Int. Conf. Comput. Netw. Technol., 2010, pp. 222–226.

[15] M. Carpenter, T. Liston, and E. Skoudis, “Hiding virtualization
from attackers and malware,” IEEE Security Privacy, vol. 5, no. 3,
pp. 62–65, May/Jun. 2007.

[16] R. Ballagas, M. Rohs, J. G. Sheridan, and J. Borchers, “Byod: Bring
your own device,” in Proc. Workshop Ubiquitous Display Environ.,
2004, vol. 2004, pp. 1–8.

[17] J. P. Shim and D. Mittleman, “Bring your own device (BYOD):
Current status, issues, and future directions,” in Proc. 19th Am.
Conf. Inf. Syst., 2013, pp. 595–596.

[18] K. W. Miller, J. Voas, and G. F. Hurlburt, “BYOD: Security and pri-
vacy considerations,” IT Prof., vol. 14, no. 5, pp. 53–55, Sep./Oct.
2012.

Fig. 11. The scores of five acknowledged benchmarks.

2750 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 10, OCTOBER 2015

[19] S. Antonio, “New security perspectives around BYOD,” in Proc.
IEEE Comput. Soc. 7th Int. Conf. Broadband, Wireless Comput., Com-
mun. Appl., 2012, pp. 446–451.

[20] M. Bill, “BYOD security challenges: Control and protect your most
sensitive data,”Netw. Security, vol. 2012, no. 12, pp. 5–8, 2012.

[21] N. Singh, “BYOD genie is out of the bottle—‘devil or angel’,”
J. Bus. Manag. Soc. Sci. Res., vol. 1, no. 3, pp. 1–12, 2012.

[22] D. Jaramillo, B. Furht, and A. Agarwal, “Mobile virtualization
technologies,” in Virtualization Techniques for Mobile Systems. New
York, NY, USA: Springer, 2014, pp. 5–20.

[23] X. Y. Chen, “Smartphone virtualization: Status and Challenges,” in
Proc. IEEE Int. Conf. Electron., Commun. Control, 2011, pp. 2834–2839.

[24] S. Soltesz, H. P€otzl, M. E. Fiuczynski, A. Bavier, and L. Peterson,
“Container-based operating system virtualization: A scalable,
high-performance alternative to hypervisors,” ACM SIGOPS
Operating Syst. Rev., vol. 41, no. 3, pp. 275–287, 2007.

[25] O. Eiferman. (2014). The real challenges of mobile virtualization
[Online]. Available: http://www.cellrox.com/blog/the-real-
challenges-of-mobile-virtualization/

[26] A. Aguiar and F. Hessel, “Embedded systems’ virtualization: The
next challenge?” in Proc. 21st IEEE Int. Symp.Rapid Syst. Prototyp-
ing, 2010, pp. 1–7.

[27] K. Barr, P. Bungale, S. Deasy, V. Gyuris, P. Hung, C. Newell,
H. Tuch, and B. Zoppis, “The VMware mobile virtualization plat-
form: Is that a hypervisor in your pocket?” ACM SIGOPS Operat-
ing Syst. Rev., vol. 44, no. 4, pp. 124–135, 2010.

[28] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” ACM SIGOPS Operating Syst. Rev., vol. 37, no. 5,
pp. 164–177, 2003.

[29] J. Brakensiek, A. Dr€oge, M. Botteck, H. H€artig, and A. Lackorzynski,
“Virtualization as an enabler for security in mobile devices,” in Proc.
1stWorkshop Isolation Integr. Embedded Syst., 2008, pp. 17–22.

[30] W. Enck, “Defending users against smartphone apps: Techniques
and future directions,” in Proc. 7th Conf. Int. Inf. Syst. Security,
2011, pp. 49–70.

[31] S. Wessel, F. Stumpf, I. Herdt, and C. Eckert, “Improving mobile
device security with operating system-level virtualization,”
in Proc. Security Privacy Protection Inf. Process. Syst., 2013,
pp. 148–161.

[32] LXC-Linux Containers. (2014) [Online]. Available: https://
linuxcontainers.org/

[33] C. Dall and J. Nieh, “KVM/ARM: The design and implementation
of the linux ARM hypervisor,” in Proc. ACM 19th Int. Conf. Archi-
tectural Support Programm. Languages Operating Syst., 2014,
pp. 333–348.

[34] D. Rossier, “EmbeddedXEN: A revisited architecture of the XEN
hypervisor to support ARM-based embedded virtualization,”
White Paper, Switzerland, 2012.

[35] G. Heiser and B. Leslie, “The OKL4 microvisor: Convergence
point of microkernels and hypervisors,” in Proc. 1st ACM Asia-
Pacific Workshop Syst., 2010, pp. 19–24.

[36] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C.
Hunt, “Rethinking the library OS from the top down,” ACM
SIGPLAN Notices, vol. 46, no. 3, pp. 291–304, 2011.

[37] S. L. Scott, G. Vall�ee, T. Naughton, A. Tikotekar, C. Engelmann,
and H. Ong, “System-level virtualization research at oak ridge
national laboratory,” Future Gen. Comput. Syst., vol. 26, no. 3,
pp. 304–307, 2010.

[38] J. Andrus, C. Dall, A. Van, T. Hof, O. Laadan, and J. Nieh, “Cells:
A virtual mobile smartphone architecture,” in Proc. ACM 23rd
ACM Symp. Operating Syst. Principles, 2011, pp. 173–187.

[39] M. Kerrisk. (2013) Namepaces overview [Online]. Available:
http://lwn.net/Articles/531114/

[40] P. Menage. (2014). Cgroups [Online]. Available: https://www.
kernel.org/doc/Documen-tation/cgroups/cgroups.txt

[41] LMBench. (2014). [Online]. Available: http://lmbench.sourceforge.
net/

[42] Qtopia. (2014) [Online]. Available: http://qpe.sourceforge.net/
[43] Antutu Benchmark for Android. (2014) [Online] Available: http://

play.google.com/store/apps/details?id¼com.antutu.ABenchMark
[44] Quandrant Standrad Edition for Android. (2014) [Online]. Avail-

able: http://play.google.com/store/apps/details?id¼com.
aurorasoftworks.quadrant.ui.standard

[45] Sunspider for Android. (2014) [Online]. Available: http://www.
webkit.org/perf/sunspider/sunspider.html

[46] PassMark Benchmark for Android. (2014) [Online]. Available:
http://play.google.com/store/apps/details?id¼com.passmark.
pt mobile

[47] Vellamo Mobile Benchmark for Android. (2014) [Online].
Available: http://play.google.com/store/apps/details?id¼com.
quicinc.vellamo

Wenzhi Chen received the BS, MS, and PhD
degrees in computer science and technology
from Zhejiang University, Hangzhou, China. He
is currently a professor at the School of Computer
Science and Technology at Zhejiang University.
His areas of research include computer architec-
ture, system software, embedded system, and
network security. He is a member of the IEEE
and the ACM.

Lei Xu received the bachelor’s degree in com-
puter science and technology from the North
West Agriculture and Forestry University, Xi’an,
China. He is currently working toward the PhD
degree at the School of Computer Science and
Technology, Zhejiang University. His current
research interests include operating systems, vir-
tualization, distributed systems, and cloud infra-
structure. He is a student member of the IEEE
and the ACM.

Guoxi Li received the bachelor’s degree in
computer science from Zhejiang University. He is
currently working toward the PhD degree at Zhe-
jiang University. His research interests include
operating system architecture, OS kernel analy-
sis and system virtualization, especially mobile
system virtualization. He is a student member of
the IEEE and the ACM.

Yang Xiang received the PhD degree in com-
puter science from Deakin University, Australia.
He is currently a full professor at School of Infor-
mation Technology, Deakin University. He is the
director of the Network Security and Computing
Lab (NSCLab). His research interests include net-
work and system security, distributed systems,
and networking. In particular, he is currently lead-
ing his team developing active defense systems
against large-scale distributed network attacks.
He is the chief investigator of several projects in

network and system security, funded by the Australian Research Council
(ARC). He has published more than 170 research papers in many inter-
national journals and conferences, such as IEEE Transactions on Com-
puters, IEEE Transactions on Parallel and Distributed Systems, IEEE
Transactions on Information Security and Forensics, and IEEE Journal
on Selected Areas in Communications. He has served as the program/
general chair for many international conferences such as ICA3PP 12/11,
IEEE/IFIP EUC 11, IEEE TrustCom 13/11, IEEE HPCC 10/09, IEEE
ICPADS 08, NSS 11/10/09/08/07. He has been the PC member for more
than 60 international conferences in distributed systems, networking,
and security. He serves as the associate editor of the IEEE Transactions
on Computers, IEEE Transactions on Parallel and Distributed Systems,
Security and Communication Networks (Wiley), and the editor of Journal
of Network and Computer Applications. He is the coordinator, Asia for
IEEE Computer Society Technical Committee on Distributed Processing
(TCDP). He is a senior member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CHEN ET AL.: A LIGHTWEIGHT VIRTUALIZATION SOLUTION FOR ANDROID DEVICES 2751

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

