
2014/4/13 1

Computer Architecture
----A Quantitative Approach

 Chapter 1

College of Compute of Zhejiang University
CHEN WEN ZHI

 chenwz@zju.edu.cn
 Room 511, CaoGuangBiao BLD

2014/4/13 2

Topics in Chapter
1.1 Why take this course ?
1.2 Classes of computers in current computer

market
1.3 Defining computer architecture and What’s

the task of computer design?
1.4 Trends in Technology
1.5 Trends in power in Integrated circuits
1.6 Trends in Cost
1.7 Dependability
1.8 Measuring, Reporting and summerizing Perf.
1.9 Quantitative Principles of computer Design
1.10 Putting it altogether

2014/4/13 3

Major Theme: Lower Cost

Cost Trend
Understanding cost trends of component is

important for designers, since we design for
tomorrow !

The impact factors for cost:
Time----Component prices drop over time

without major improvements in manufacturing
technology

Volume ----Volume decreases cost due to
increases in manufacturing efficiency.

Commodification----The competition among the
suppliers of the components will decrease
overall product cost.

2014/4/13 4

Understanding Cost Trend by
Learning Curve

芯片成本趋势

$0

$10

$20

$30

$40

$50

$60

$70

$80

1
9
7
8

1
9
7
9

1
9
8
0

1
9
8
1

1
9
8
2

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

16Kb 64Kb 256Kb 1Mb 4Mb 16Mb

2014/4/13 5

Rules of Thumb

Time: learning curve ----yield
Twice the yield will have half the cost.

Volume:
Cost decrease about 10% for each doubling of

volume.

Commodities:
Vendor competition

Supplier competition

Volume increase, however limited profits.

2014/4/13 6

Microelectronics Process

Slicer
20 to 30

processing steps

Dicer
Die

tester
Bond die

to package

Part

tester
Ship to

customers

Packaged dies Tested packaged dies

Patterned wafers

Individual dies

(one wafer)
Tested dies

Silicon Ingot Blank wafers

2014/4/13 7

Cost of an Integrated Circuit

2014/4/13 8

Distribution of Cost in a System

2014/4/13 9

Cost vs. Price

 Component costs
 Raw material cost.

 Direct cost:
 Costs incurred to make a single item. Adds 20% to 40%

to component cost.

 Gross margin (Indirect cost):
 Overhead not associated with a single item, i.e. R&D,

marketing, manufacturing equipment, taxes, etc.
 Only 4%-12% of income are spent on R&D

 Average Selling Price (ASP):
 Component cost + direct cost + indirect cost.

 List price :
 Not ASP. Stores add to the ASP to get their cut. Want

50% to 75% of list price.

2014/4/13 10

The components of price for a $1000 PC

2014/4/13 11

Cost vs. Price

This gives you insight on how a design
decision will affect selling price,
 i.e. changing cost by $1,000 increases selling price

by $3,000 to $4,000.

Also, consider volume and price relationship:
In general, the fewer computers that are sold,

the higher the price.

Also, a decrease in volume causes cost to
increase, further increasing price.

Therefore, small changes in cost can have an
unexpected large increase in price.

2014/4/13 12

Topics in Chapter
1.1 Why take this course ?
1.2 Classes of computers in current computer

market
1.3 Defining computer architecture and What’s

the task of computer design?
1.4 Trends in Technology
1.5 Trends in power in Integrated circuits
1.6 Trends in Cost
1.7 Dependability
1.8 Measuring, Reporting and summerizing Perf.
1.9 Quantitative Principles of computer Design
1.10 Putting it altogether

2014/4/13 13

Dependability

Dependability is a deliberately broad term to
encompass many facets including reliability,
security and availability.

2014/4/13 14

Dependability vs. Reliability
Dependability. A measure of the degree to

which an item is operable and capable of
performing its required function at any
(random) time during a specified mission
profile, given item availability at the start of
the mission.

its use is restricted to general descriptions in
non-quantitative terms.

Dependability is related to reliability; the
intention was that dependability would be a
more general concept then reliability.

2014/4/13 15

 Measurements of Dependability
Module reliability: continuous service

accomplishment
MTTF: Mean Time To Failure

MTTR: Mean Time To Repair

FIT : Failure In Time = 1/MTTF

MTBF: Mean Time Between Failure =
MTTF+MTTR

Module availability
 MTTF = MTTF

 MTTF + MTTR MTBF

2014/4/13 16

Resolution to dependability

Redundancy:

Time redundancy: repeat the operation
again to see if it is still in erroneous.

Resource redundancy: have other
components to take over from the one that
failed.

2014/4/13 17

Topics in Chapter
1.1 Why take this course ?
1.2 Classes of computers in current computer

market
1.3 Defining computer architecture and What’s

the task of computer design?
1.4 Trends in Technology
1.5 Trends in power in Integrated circuits
1.6 Trends in Cost
1.7 Dependability
1.8 Measuring, Reporting and summerizing Perf.
1.9 Quantitative Principles of computer Design
1.10 Putting it altogether

2014/4/13 18

performance

2014/4/13 19

Measuring and Reporting Performance

Comparing Machines
Execution time (latency)
Throughput
MIPS - millions of instructions per second

Comparing Machines Using Sets of
Programs
Choosing which program to evaluate

performance
Benchmark Suites

Different Means: Arithmetic, Harmonic, and
Geometric Means

2014/4/13 20

Defining performance
 Performance means different things to

different people, therefore its assessment
is subtle

 Criteria of performance evaluation
differs among users and designers

Just a piece of
cake ! Even for

50 guys

Faint ! When will
they bring me the meal?

Sorry, Lady is first !

2014/4/13 21

Perf. Metrics --response time
Wall-clock time
Start the program and watch the clock -
when the program ends, that’s the total wall-

clock time
Also called response time or elapsed time or
Measures user perception of the system

speed

Problems with wall-clock time
What if more than one program is running on
 the same machine ?
What if the program asks for user input ?

2014/4/13 22

Performance Metrics --CPU time

Measures the time the CPU is computing, (not
waiting for I/O)
Measures designer perception of the CPU speed

CPU time is further divided into:
User CPU time - time spent in user mode
System CPU time - time spent in the operating system

(OS)

Unix time command reports CPU time as:
 90.7u 12.9s 2:39 65%
 90.7 user CPU seconds (in the user’s program)
 12.9 system CPU seconds (in the system calls e.g. printf)
 2 minutes, 39 seconds wall-clock time
 65% of the wall clock time was spent running on the CPU

2014/4/13 23

Performance Metrics ----throughput

 Amount of work done in a given time
Measure administrator perception of the system perf.

 We often use throughput to measure
 Number of lines of code per day
 Number bits per second transmitted over a wire
 Number of web pages served

 In contrast to latency
 amount of time to produce 1 line of code
 amount of time to send 1 bit over a wire
 Amount of time spent waiting to receive web page

 Often, processor performance is only quoted in terms
of relative latency
 Program A ran 10 times faster than program B

 But, for many apps, throughput much more important
than latency
 Financial markets, government statistics (census)

2014/4/13 24

Response time vs. Throughput

If you improve response time, you usually
improve throughput
Replacing the processor of a computer with a

faster version

you can also improve throughput without
improving response time
Adding additional processors to a system that

uses multiple processors
 for separate tasks (e.g. handling of airline

reservations system)

2014/4/13 25

Another industry Metric: MIPS

MIPS - Millions of Instructions per Second

When comparing two machines (A, B) with
the same instruction set, MIPS is a fair
comparison(sometimes…)

But, MIPS can be a “meaningless indicator
of performance…”

2014/4/13 26

Example: MIPS might be meaningless

Machine A has a special instruction for
performing square root calculations. It takes
100 cycles to execute.

Machine B doesn’t have the special instruction -
- must perform square root calculations in
software using simple instructions (.e.g, Add,
Mult, Shift) that each take 1 cycle to execute

Machine A: 1/100 MIPS = 0.01 MIPS

Machine B: 1 MIPS

2014/4/13 27

Another view:
Power consumption and Efficiency

Critical factors for embedded systems:
cost
physical size
memory
power consumption

Fig. 1.27 (old versioin)
AMD ElanSC520
AMD K6-2E
IBM PowerPC 750CX
NEC VR 5432
NEC VR 4122

The NEC VR 4122 is the big
winner for its best
performance/watt,
though it is the second lowest
performing processor.

2014/4/13 28

Summary of performance metrics

Response (Execution) time
user perception
system performance
 the only unimpeachable measure of

performance

CPU time
designer perception
CPU performance

Throughput
administrator perception

MIPS
merchant perception

2014/4/13 29

Choose Programs to Evaluate
Performance

 Ideal performance evaluation:
A random sample of users running their programs and

OS commands.

Many different types of benchmarks
 Real applications--- Scientific and engineering
 Modified (or scripted) applications--- focus on specific

features
 Kernels --- critical program fragments
 Toy --- small programs, often measure very little
 Synthetic -- created to represent some aspects of a

program (e.g., mix of instruction types)
 Database -- a world unto itself
 What really matters is how YOUR application performs

2014/4/13 30

Something about Synthetic
Synthetic benchmarks :
Programs that try to "exercise" the system in the same

way to match the average frequency of operations and
operands of a large set of programs.

Whetstone and Dhrystone.
Similar to kernels but are NOT real programs !
Compiler and hardware optimizations can artificially

inflate performance of these benchmarks but not of
real programs.

These benchmarks don’t reward optimizations!

SQRT(EXP(x))= e x = e x/2 = EXP(X/2)

2014/4/13 31

Notes on performance benchmark

 Benchmarks can focus on specific aspects of a system
 floating point & integer ALU, memory system, I/O, OS

 Universal benchmarks can be misleading since hardware
and compiler vendors might optimize their design for
ONLY these programs

 The best types of benchmarks are real applications since
they reflect the end-user interest

 Architectures might perform well for some applications
and poorly for others

 Compilation can boost performance by taking advantage
of architecture-specific features. Application-specific
compiler optimization are becoming more popular.

2014/4/13 32

SPEC

SPEC - The System Performance Evaluation
Cooperative
 founded in 1988 by a small number of workstation vendors who

realized that the marketplace was in desperate need of realistic,
standardize performance tests.

 Grown to become successful performance standardization bodies
with more than 40 member companies.

 http://www.spec.org

SPEC's Philosophy
 The goal of SPEC is to ensure that the marketplace has a fair and

useful set of metrics to differentiate candidate systems.
 The basic SPEC methodology is to provide the benchmarker with a

standardized suite of source code based upon existing applications

2014/4/13 33

SPEC benchmarks
Desktop Benchmarks

CPU-intensive benchmarks
SPEC89
SPEC92
SPEC95
SPEC2000
SPEC CPU2006 (12 CINT2006, 17 CFP2006)

graphics-intensive benchmarks
SPEC2000
SPECviewperf

 is used for benchmarking systems supporting the OpenGL
graphics library

SPECapc
 consists of applications that make extensive use of

graphics.

2014/4/13 34

SPEC INT 95 Benchmark descriptions

2014/4/13 35

SPEC FP 95 Benchmark Descriptions

2014/4/13 36

New SPEC Int 2000 Benchmarks

2014/4/13 37

New SPEC FP 2000 Benchmarks

2014/4/13 38

SPEC benchmarks
Server Benchmarks

SPECrate--processing rate of a multiprocessor
SPEC CPU2000—throughput-oriented benchmark

SPECrate—processing rate of a multiprocessor

SPECSFS--file server benchmark

SPECWeb--Web server benchmark

Transaction-processing (TP) benchmarks

TPC benchmark—Transaction Processing Council
TPC-A, 1985

TPC-C, 1992,

TPC-H TPC-RTPC-W

2014/4/13 39

SPEC benchmarks
Embedded Benchmarks

EDN Embedded Microprocessor Benchmark
Consortium (or EEMBC, pronounced
“embassy”).

2014/4/13 40

Running Benchmarks

Key factor: Reproducibility by other
experimenters.

Details, details, and more details !!! List
all assumptions and conditions of your
experiments.
i.e. program input, version of the program,

version of the compiler, optimization level,
OS version, main memory size, disk types,
etc.

A system’s software configuration can
significantly affect the performance
results for a benchmark.

2014/4/13 41

Comparing Two Machines

 Machine CPI Clock Period Avg Instruction Time (secs)

 Machine A 1.2 2 ns

 Machine B 2.5 1 ns

 CPU Time = # of instructions executed * avg instruction time

 Assume 1,000,000, 000 instructions

 Machine A: 1,000,000,000 * 2.4ns = 2.4 seconds

 Machine B: 1,000,000,000 * 2.5ns = 2.5 seconds

 Which machine is faster? Machine A

 How much faster? 2.5 / 2.4 = 1.04 times faster

2014/4/13 42

Comparing Performance

• Often, we want to compare the performance of different
machines or different programs. Why?

•To help engineers understand which is “better”
•To give marketing a “silver bullet” for the press release
•To help customers understand why they should buy <my machine>

•
• Performance and Execution time are reciprocals
 Maximizing performance means minimizing response
(execution) time

2014/4/13 43

Common used phrases

 “Performance of P1 is better than P2 ” is, for a
given work load L, P1 takes less time to
execute L than P2 does

 performance(P1) > Performance(P2)

  Execution Time(P1, L) < Execution
Time(P1, L)

 “Processor X is n times fast than Y” is

2014/4/13 44

Comparing Performance Across
Multiple Programs

 A is 10 times faster than B for program 1

 B is 10 times faster than A for program 2

 A is 20 times faster than C for program 1

 C is 50 times faster than A for program 2

 B is 2 times faster than C for program 1

 C is 5 times faster than B for program 2

Each statement above is correct…,
…but we want to know which machine is the best?

2014/4/13 45

Let’s Try a Simpler Example
Two machines timed on two benchmarks
How much faster is Machine A than Machine B?

Attempt 1: ratio of run times, normalized to
Machine A times
program1: 4/2 program2 : 8/12

Machine A ran 2 times faster on program 1,
2/3 times faster on program 2

On average, Machine A is (2 + 2/3) /2 = 4/3
times faster than Machine B

It turns this “averaging” stuff can
fool us

2014/4/13 46

Example: Second answer
Two machines timed on two benchmarks
How much faster is Machine A than Machine B?

Attempt 2: ratio of run times, normalized to
Machine B times
program 1: 2/4 program 2 : 12/8
Machine A ran program 1 in 1/2 the time and program

2 in 3/2 the time
On average, (1/2 + 3/2) / 2 = 1
Put another way, Machine A is 1.0 times faster than

Machine B

2014/4/13 47

Example: Third answer

Two machines timed on two benchmarks
How much faster is Machine A than Machine B?

Attempt 3: ratio of run times, aggregate (total
sum) times,
Machine A took 14 seconds for both programs
Machine B took 12 seconds for both programs
Therefore, Machine A takes 14/12 of the time of

Machine B
Put another way, Machine A is 6/7 faster than

Machine B

2014/4/13 48

Which is Right?

Question:
How can we get three different answers?

Solution
Because, while they are all reasonable

calculations…
…each answers a different question

We need to be more precise in
understanding and posing these
performance & metric questions

2014/4/13 49

Arithmetic and Harmonic Mean

Total Execution Time: A Consistent
Summary Measure
Arithmetic mean is the average of the

execution time that tracks total execution time.

If performance is expressed as a rate, then

the average that tracks total execution time is
the harmonic mean

2014/4/13 50

Problems with Arithmetic Mean
 Applications do not have the same probability of being run

 Longer programs weigh more heavily in the average

 For example, two machines timed on two benchmarks

 Machine A Machine B

 Program 1 2 seconds (20%) 4 seconds (20%)

 Program 2 12 seconds (80%) 8 seconds (80%)

 If we do arithmetic mean, Program 2 “counts more” than
Program 1
 an improvement in Program 2 changes the average more than a

proportional improvement in Program 1

 But perhaps Program 2 is 4 times more likely to run than
Program 1

2014/4/13 51

Weighted Execution Time

Often, one runs some programs more
often than others. Therefore, we should
weight the more frequently used
programs’ execution time

Weighted Harmonic Mean

2014/4/13 52

Using a Weighted Sum
(or weighted average)

Allows us to determine relative
performance 10/7.2 = 1.38

--> Machine B is 1.38 times faster than
Machine A

2014/4/13 53

Another Solution
Normalize run time of each program to a

reference

So when we normalize A to B, and average, it

looks like A & B are the same.
But when we normalize B to A, it looks like B is

33% better!

2014/4/13 54

Example on P37(old version)

33744 1
W(B)1=  = 0.909
 10×(1/10＋1/100)

 1
W(B)2=  = 0.091
 100×(1/10＋1/100)

2014/4/13 55

Geometric Mean

Used for relative rate or
performance numbers

Geometric mean

2014/4/13 56

Using Geometric Mean

Drawback:
Geometric mean does NOT predict run time

because it automatically
normalizes.
Each application now counts equally.
Irrelevance of the reference computer in

relative performance

2014/4/13 57

Summary of comparing performance

 Total execution time or arithmetic mean
 consistent result

 programs in the workload are NOT always run an equal number of
times

 Weighted arithmetic mean
 take into account the frequency of use in the workload

 solution depends on which machine is the reference.

 Normalized Geometric Mean
 consistent result, no matter which machine is the reference.

 Geometric mean does NOT predict run time

 Ideal solution : Measure a real workload and weight the
programs according to their frequency of execution.

 What really matters is how YOUR application performs

2014/4/13 58

New SPEC Performance Numbers

Geometric Mean of 12 (SpecInt) and 14
(SpecFP) Benchmarks
Performance measured against SPARC 10/40

2000 Performance Numbers
(Microprocessor Report, Dec. 2000)

2014/4/13 59

New SPEC Performance Numbers

Geometric Mean of 12 (SpecInt) and 14
(SpecFP) Benchmarks
Performance measured against SPARC 10/40

2001 Performance Numbers
(Microprocessor Report, Aug. 2001)

2014/4/13 60

Topics in Chapter
1.1 Why take this course ?
1.2 Classes of computers in current computer

market
1.3 Defining computer architecture and What’s

the task of computer design?
1.4 Trends in Technology
1.5 Trends in power in Integrated circuits
1.6 Trends in Cost
1.7 Dependability
1.8 Measuring, Reporting and summerizing Perf.
1.9 Quantitative Principles of computer Design
1.10 Putting it altogether

2014/4/13 61

1.9 Quantitative Principles

Take advantage of parallelism

Principle of Locality

Focus on the common case

Amdahl's Law

CPU Performance Equation

2014/4/13 62

Take advantage of parallelism

Most important methods of improving
performance

Parallelism levels
System level: use multiple processors

Instruction level:
Pipelining

Operation level:
set-associate cache

Pipelined function unit

Any other examples ?

2014/4/13 63

Principle of Locality
Program Property: Programs tend to

reuse data and instructions they have
used recently.

Rule of thumb:
a program spends 90% of its execution time

in only 10% of the code.
Temporal locality
Recently accessed items are likely to be

accessed in the near future.
Spatial locality
Items whose addresses are near one

another tend to be referenced close
together in time.

Any example ?

2014/4/13 64

Focus on the common case

The most important and pervasive
principle of computer design.
Power, resource allocation, performance,

dependability.
Rule of thumb: simple is fast.
Frequent case is often simpler and can be

done faster.

A fundamental law, called Amdahl’s Law,
can be used to quantify this principle.

2014/4/13 65

Amdahl’s Law

The performance improvement to be
gained from using some faster mode of
execution is limited by the fraction of
the time the faster mode can be used.

Example

2014/4/13 66

Amdahl’s law

• Increasing the clock rate would not affect

memory access time

• Using a floating point processing unit does

not speed integer ALU operations

unaffected time Execution

timprovemen of Amount

timprovemen theby affected time Execution

 timrpovemen after time Execution





2014/4/13 67

Amdahl’s law

Amdahl's law defines the speedup

 If we know two factors:
Fraction enhanced : Fraction of computation

time in original machine that can be
converted to take advantage of the

enhancement.
 Speedup enhanced in enhanced mode : Improvement

gained by enhanced execution mode:

2014/4/13 68

Speedup Equation

 Example:
A server system with an enhanced CPU(10 times faster

than the original one) used for Web serving. Assuming
the original CPU is busy with computation 40% of the
time and is waiting for I/O 60% of the time.

 Answer:

Fractionenhanced = 0.4, Speedupenhanced =10
Speedup = 1 = 1 = 1.56
 0.6 + 0.4 0.64
 10

2014/4/13 69

Another Example
 Implementations of floating-point (FP) square

root vary significantly in performance
Two enhancement proposal
One proposal is to enhance the FPSQR hardware and

speed up this operation by a factor of 10.
The alternative is just to try to make all FP

instructions in the graphics processor run faster by a
factor of 1.6;

Assuming
FP square root (FPSQR) is responsible for 20% of the

execution time of a critical graphics benchmark.
FP instructions are responsible for a total of 50% of

the execution time for the application.
The design team believes that they do both

enhancement with the same effort.
 Compare these two design alternatives.

2014/4/13 70

Solution of the example

2014/4/13 71

example

Assume:
An enhancement to a computer that improves

some mode of execution by a factor of 10.

Enhanced mode is used 50% of the
time,measured as a percentage of the execution
time when the enhancec mode is in use.

Question:
What is the speedup we have obtained from fast

mode ?

What percentage of the original execution time
has been converted of fast mode ?

Important Notes !

F is the fraction in original machine !

2014/4/13 72

What the Amdahl’s Law imply ?
 If an enhancement is only usable for a fraction

of task, then the total speedup will be no more
than 1/ (1-F).

Serve the guide
 to how much an enhancement will improve

performance
 to how to distribute resource to improve cost-

performance
Useful for comparing
 the overall system performance of two

alternatives,
 two CPU design alternatives

We can improve the performance by
 increasing the Fractionenhanced

or, increasing the Speedupenhanced

2014/4/13 73

The CPU Performance Equation

The “Iron Law” of processor
performance:
Often it is difficult to measure the

improvement in time using a new
enhancement directly.

CPU Performance Equation

2014/4/13 74

Calculation of CPU Time

 CPU time = Instruction count  CPI  Clock cycle time

Or
rate Clock

CPIcount nInstructio
time CPU




cycleClock

Seconds

nInstructio

 cyclesClock

Program

nsInstructio
 timeCPU 

Component of performance Units of measure

CPU execution time for a program Seconds for the program

Instruction count Instructions executed for the program

Clock cycles per instructions (CPI) Average number of clock cycles/instruction

Clock cycle time Seconds per clock cycle

 Architecture --> Implementation --> Realization
 Compiler Designer Processor Designer Chip Designer

2014/4/13 75

Related technologies
 CPU performance is dependent upon 3 characteristics:

 clock cycle (or rate) (CCT)

 clock cycles per instruction (CPI)

 instruction count. (IC)

 One difficulty: It is difficult to change one in isolation of

the others.

 Inst Count CPI Clock Rate

Program X
Compiler X (X)
Inst. Set. X X
Organization X X
Technology X

2014/4/13 76

Other format of
CPU Performance Equation

2014/4/13 77

Example of CPUtime calculation

 Suppose we have made the following measurements:

 Frequency of FP operations (other than FPSQR) = 25%

 Average CPI of FP operations = 4.0

 Average CPI of other instructions = 1.33

 Frequency of FPSQR = 2%

 CPI of FPSQR = 20

 Two design alternatives

 decrease the CPI of FPSQR to 2

 decrease the average CPI of all FP operations to 2.5.

 Compare these two design alternatives using the CPU

performance equation.

2014/4/13 78

Answer to the question

Since the CPI of the overall FP enhancement is
slightly lower, its performance will be
marginally better.

2014/4/13 79

Compare the result with that
from Amdahl’s law

This is the same speedup we
obtained using Amdahl’s Law:

2014/4/13 80

Performance & price-performance

Performance & price-performance for
desktop systems Fig1.18

Factors that responsible for the wide
variation in price
Different levels of expandability

Use of cheaper disks and cheaper memory

Cost of CPU varies

Software differences

Lower-end system use PC commodity parts in
fans, power supply, support chip sets

Commoditization effect

2014/4/13 81

Five desktop and rack-
mountable systems

Expandability: Sun Java worktation < Dell ….< HP BL25p

Cost of processor: die size and L2 cache , processor

Softerware difference

2014/4/13 82

Price-performance

2014/4/13 83

Messurements-1

For Servers Fig 1.17, 1.18

TPC-C : standard industry benchmark for
OLTP

Reasonable approximation

Measure total system performance

Rules of measurement are very complete

Vendors devote significant effort

Report both performance & price-performance

2014/4/13 84

Price-performance

2014/4/13 85

Fallacies & pitfalls

Pitfall:

Falling prey to Amdahl’s Law.

A single point of failure

Fault detection can lower availability

2014/4/13 86

Fallacy

The cost of the processor
dominates the cost of the system.

2014/4/13 87

Fallacy

Benchmarks remain valid indefinitely

The rated mean time to failure of the disks
is 1200000hours or almost 140 years, so
disks practically never fail.

Peak performance tracks observed
performance.

2014/4/13 88

Homework for Chapter 1

Read the section of 1.0

Question:
You can select any 4 questions from textbook.

Due time: Before the lecture begin

write your answer in English.
submit it to website, NOT via email.

2014/4/13 89

