
2014/4/13 1

Computer Architecture
----A Quantitative Approach

 Chapter 1

College of Compute of Zhejiang University
CHEN WEN ZHI

 chenwz@zju.edu.cn
 Room 511, CaoGuangBiao BLD

2014/4/13 2

Topics in Chapter
1.1 Why take this course ?
1.2 Classes of computers in current computer

market
1.3 Defining computer architecture and What’s

the task of computer design?
1.4 Trends in Technology
1.5 Trends in power in Integrated circuits
1.6 Trends in Cost
1.7 Dependability
1.8 Measuring, Reporting and summerizing Perf.
1.9 Quantitative Principles of computer Design
1.10 Putting it altogether

2014/4/13 3

Major Theme: Lower Cost

Cost Trend
Understanding cost trends of component is

important for designers, since we design for
tomorrow !

The impact factors for cost:
Time----Component prices drop over time

without major improvements in manufacturing
technology

Volume ----Volume decreases cost due to
increases in manufacturing efficiency.

Commodification----The competition among the
suppliers of the components will decrease
overall product cost.

2014/4/13 4

Understanding Cost Trend by
Learning Curve

芯片成本趋势

$0

$10

$20

$30

$40

$50

$60

$70

$80

1
9
7
8

1
9
7
9

1
9
8
0

1
9
8
1

1
9
8
2

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

16Kb 64Kb 256Kb 1Mb 4Mb 16Mb

2014/4/13 5

Rules of Thumb

Time: learning curve ----yield
Twice the yield will have half the cost.

Volume:
Cost decrease about 10% for each doubling of

volume.

Commodities:
Vendor competition

Supplier competition

Volume increase, however limited profits.

2014/4/13 6

Microelectronics Process

Slicer
20 to 30

processing steps

Dicer
Die

tester
Bond die

to package

Part

tester
Ship to

customers

Packaged dies Tested packaged dies

Patterned wafers

Individual dies

(one wafer)
Tested dies

Silicon Ingot Blank wafers

2014/4/13 7

Cost of an Integrated Circuit

2014/4/13 8

Distribution of Cost in a System

2014/4/13 9

Cost vs. Price

 Component costs
 Raw material cost.

 Direct cost:
 Costs incurred to make a single item. Adds 20% to 40%

to component cost.

 Gross margin (Indirect cost):
 Overhead not associated with a single item, i.e. R&D,

marketing, manufacturing equipment, taxes, etc.
 Only 4%-12% of income are spent on R&D

 Average Selling Price (ASP):
 Component cost + direct cost + indirect cost.

 List price :
 Not ASP. Stores add to the ASP to get their cut. Want

50% to 75% of list price.

2014/4/13 10

The components of price for a $1000 PC

2014/4/13 11

Cost vs. Price

This gives you insight on how a design
decision will affect selling price,
 i.e. changing cost by $1,000 increases selling price

by $3,000 to $4,000.

Also, consider volume and price relationship:
In general, the fewer computers that are sold,

the higher the price.

Also, a decrease in volume causes cost to
increase, further increasing price.

Therefore, small changes in cost can have an
unexpected large increase in price.

2014/4/13 12

Topics in Chapter
1.1 Why take this course ?
1.2 Classes of computers in current computer

market
1.3 Defining computer architecture and What’s

the task of computer design?
1.4 Trends in Technology
1.5 Trends in power in Integrated circuits
1.6 Trends in Cost
1.7 Dependability
1.8 Measuring, Reporting and summerizing Perf.
1.9 Quantitative Principles of computer Design
1.10 Putting it altogether

2014/4/13 13

Dependability

Dependability is a deliberately broad term to
encompass many facets including reliability,
security and availability.

2014/4/13 14

Dependability vs. Reliability
Dependability. A measure of the degree to

which an item is operable and capable of
performing its required function at any
(random) time during a specified mission
profile, given item availability at the start of
the mission.

its use is restricted to general descriptions in
non-quantitative terms.

Dependability is related to reliability; the
intention was that dependability would be a
more general concept then reliability.

2014/4/13 15

 Measurements of Dependability
Module reliability: continuous service

accomplishment
MTTF: Mean Time To Failure

MTTR: Mean Time To Repair

FIT : Failure In Time = 1/MTTF

MTBF: Mean Time Between Failure =
MTTF+MTTR

Module availability
 MTTF = MTTF

 MTTF + MTTR MTBF

2014/4/13 16

Resolution to dependability

Redundancy:

Time redundancy: repeat the operation
again to see if it is still in erroneous.

Resource redundancy: have other
components to take over from the one that
failed.

2014/4/13 17

Topics in Chapter
1.1 Why take this course ?
1.2 Classes of computers in current computer

market
1.3 Defining computer architecture and What’s

the task of computer design?
1.4 Trends in Technology
1.5 Trends in power in Integrated circuits
1.6 Trends in Cost
1.7 Dependability
1.8 Measuring, Reporting and summerizing Perf.
1.9 Quantitative Principles of computer Design
1.10 Putting it altogether

2014/4/13 18

performance

2014/4/13 19

Measuring and Reporting Performance

Comparing Machines
Execution time (latency)
Throughput
MIPS - millions of instructions per second

Comparing Machines Using Sets of
Programs
Choosing which program to evaluate

performance
Benchmark Suites

Different Means: Arithmetic, Harmonic, and
Geometric Means

2014/4/13 20

Defining performance
 Performance means different things to

different people, therefore its assessment
is subtle

 Criteria of performance evaluation
differs among users and designers

Just a piece of
cake ! Even for

50 guys

Faint ! When will
they bring me the meal?

Sorry, Lady is first !

2014/4/13 21

Perf. Metrics --response time
Wall-clock time
Start the program and watch the clock -
when the program ends, that’s the total wall-

clock time
Also called response time or elapsed time or
Measures user perception of the system

speed

Problems with wall-clock time
What if more than one program is running on
 the same machine ?
What if the program asks for user input ?

2014/4/13 22

Performance Metrics --CPU time

Measures the time the CPU is computing, (not
waiting for I/O)
Measures designer perception of the CPU speed

CPU time is further divided into:
User CPU time - time spent in user mode
System CPU time - time spent in the operating system

(OS)

Unix time command reports CPU time as:
 90.7u 12.9s 2:39 65%
 90.7 user CPU seconds (in the user’s program)
 12.9 system CPU seconds (in the system calls e.g. printf)
 2 minutes, 39 seconds wall-clock time
 65% of the wall clock time was spent running on the CPU

2014/4/13 23

Performance Metrics ----throughput

 Amount of work done in a given time
Measure administrator perception of the system perf.

 We often use throughput to measure
 Number of lines of code per day
 Number bits per second transmitted over a wire
 Number of web pages served

 In contrast to latency
 amount of time to produce 1 line of code
 amount of time to send 1 bit over a wire
 Amount of time spent waiting to receive web page

 Often, processor performance is only quoted in terms
of relative latency
 Program A ran 10 times faster than program B

 But, for many apps, throughput much more important
than latency
 Financial markets, government statistics (census)

2014/4/13 24

Response time vs. Throughput

If you improve response time, you usually
improve throughput
Replacing the processor of a computer with a

faster version

you can also improve throughput without
improving response time
Adding additional processors to a system that

uses multiple processors
 for separate tasks (e.g. handling of airline

reservations system)

2014/4/13 25

Another industry Metric: MIPS

MIPS - Millions of Instructions per Second

When comparing two machines (A, B) with
the same instruction set, MIPS is a fair
comparison(sometimes…)

But, MIPS can be a “meaningless indicator
of performance…”

2014/4/13 26

Example: MIPS might be meaningless

Machine A has a special instruction for
performing square root calculations. It takes
100 cycles to execute.

Machine B doesn’t have the special instruction -
- must perform square root calculations in
software using simple instructions (.e.g, Add,
Mult, Shift) that each take 1 cycle to execute

Machine A: 1/100 MIPS = 0.01 MIPS

Machine B: 1 MIPS

2014/4/13 27

Another view:
Power consumption and Efficiency

Critical factors for embedded systems:
cost
physical size
memory
power consumption

Fig. 1.27 (old versioin)
AMD ElanSC520
AMD K6-2E
IBM PowerPC 750CX
NEC VR 5432
NEC VR 4122

The NEC VR 4122 is the big
winner for its best
performance/watt,
though it is the second lowest
performing processor.

2014/4/13 28

Summary of performance metrics

Response (Execution) time
user perception
system performance
 the only unimpeachable measure of

performance

CPU time
designer perception
CPU performance

Throughput
administrator perception

MIPS
merchant perception

2014/4/13 29

Choose Programs to Evaluate
Performance

 Ideal performance evaluation:
A random sample of users running their programs and

OS commands.

Many different types of benchmarks
 Real applications--- Scientific and engineering
 Modified (or scripted) applications--- focus on specific

features
 Kernels --- critical program fragments
 Toy --- small programs, often measure very little
 Synthetic -- created to represent some aspects of a

program (e.g., mix of instruction types)
 Database -- a world unto itself
 What really matters is how YOUR application performs

2014/4/13 30

Something about Synthetic
Synthetic benchmarks :
Programs that try to "exercise" the system in the same

way to match the average frequency of operations and
operands of a large set of programs.

Whetstone and Dhrystone.
Similar to kernels but are NOT real programs !
Compiler and hardware optimizations can artificially

inflate performance of these benchmarks but not of
real programs.

These benchmarks don’t reward optimizations!

SQRT(EXP(x))= e x = e x/2 = EXP(X/2)

2014/4/13 31

Notes on performance benchmark

 Benchmarks can focus on specific aspects of a system
 floating point & integer ALU, memory system, I/O, OS

 Universal benchmarks can be misleading since hardware
and compiler vendors might optimize their design for
ONLY these programs

 The best types of benchmarks are real applications since
they reflect the end-user interest

 Architectures might perform well for some applications
and poorly for others

 Compilation can boost performance by taking advantage
of architecture-specific features. Application-specific
compiler optimization are becoming more popular.

2014/4/13 32

SPEC

SPEC - The System Performance Evaluation
Cooperative
 founded in 1988 by a small number of workstation vendors who

realized that the marketplace was in desperate need of realistic,
standardize performance tests.

 Grown to become successful performance standardization bodies
with more than 40 member companies.

 http://www.spec.org

SPEC's Philosophy
 The goal of SPEC is to ensure that the marketplace has a fair and

useful set of metrics to differentiate candidate systems.
 The basic SPEC methodology is to provide the benchmarker with a

standardized suite of source code based upon existing applications

2014/4/13 33

SPEC benchmarks
Desktop Benchmarks

CPU-intensive benchmarks
SPEC89
SPEC92
SPEC95
SPEC2000
SPEC CPU2006 (12 CINT2006, 17 CFP2006)

graphics-intensive benchmarks
SPEC2000
SPECviewperf

 is used for benchmarking systems supporting the OpenGL
graphics library

SPECapc
 consists of applications that make extensive use of

graphics.

2014/4/13 34

SPEC INT 95 Benchmark descriptions

2014/4/13 35

SPEC FP 95 Benchmark Descriptions

2014/4/13 36

New SPEC Int 2000 Benchmarks

2014/4/13 37

New SPEC FP 2000 Benchmarks

2014/4/13 38

SPEC benchmarks
Server Benchmarks

SPECrate--processing rate of a multiprocessor
SPEC CPU2000—throughput-oriented benchmark

SPECrate—processing rate of a multiprocessor

SPECSFS--file server benchmark

SPECWeb--Web server benchmark

Transaction-processing (TP) benchmarks

TPC benchmark—Transaction Processing Council
TPC-A, 1985

TPC-C, 1992,

TPC-H TPC-RTPC-W

2014/4/13 39

SPEC benchmarks
Embedded Benchmarks

EDN Embedded Microprocessor Benchmark
Consortium (or EEMBC, pronounced
“embassy”).

2014/4/13 40

Running Benchmarks

Key factor: Reproducibility by other
experimenters.

Details, details, and more details !!! List
all assumptions and conditions of your
experiments.
i.e. program input, version of the program,

version of the compiler, optimization level,
OS version, main memory size, disk types,
etc.

A system’s software configuration can
significantly affect the performance
results for a benchmark.

2014/4/13 41

Comparing Two Machines

 Machine CPI Clock Period Avg Instruction Time (secs)

 Machine A 1.2 2 ns

 Machine B 2.5 1 ns

 CPU Time = # of instructions executed * avg instruction time

 Assume 1,000,000, 000 instructions

 Machine A: 1,000,000,000 * 2.4ns = 2.4 seconds

 Machine B: 1,000,000,000 * 2.5ns = 2.5 seconds

 Which machine is faster? Machine A

 How much faster? 2.5 / 2.4 = 1.04 times faster

2014/4/13 42

Comparing Performance

• Often, we want to compare the performance of different
machines or different programs. Why?

•To help engineers understand which is “better”
•To give marketing a “silver bullet” for the press release
•To help customers understand why they should buy <my machine>

•
• Performance and Execution time are reciprocals
 Maximizing performance means minimizing response
(execution) time

2014/4/13 43

Common used phrases

 “Performance of P1 is better than P2 ” is, for a
given work load L, P1 takes less time to
execute L than P2 does

 performance(P1) > Performance(P2)

 Execution Time(P1, L) < Execution
Time(P1, L)

 “Processor X is n times fast than Y” is

2014/4/13 44

Comparing Performance Across
Multiple Programs

 A is 10 times faster than B for program 1

 B is 10 times faster than A for program 2

 A is 20 times faster than C for program 1

 C is 50 times faster than A for program 2

 B is 2 times faster than C for program 1

 C is 5 times faster than B for program 2

Each statement above is correct…,
…but we want to know which machine is the best?

2014/4/13 45

Let’s Try a Simpler Example
Two machines timed on two benchmarks
How much faster is Machine A than Machine B?

Attempt 1: ratio of run times, normalized to
Machine A times
program1: 4/2 program2 : 8/12

Machine A ran 2 times faster on program 1,
2/3 times faster on program 2

On average, Machine A is (2 + 2/3) /2 = 4/3
times faster than Machine B

It turns this “averaging” stuff can
fool us

2014/4/13 46

Example: Second answer
Two machines timed on two benchmarks
How much faster is Machine A than Machine B?

Attempt 2: ratio of run times, normalized to
Machine B times
program 1: 2/4 program 2 : 12/8
Machine A ran program 1 in 1/2 the time and program

2 in 3/2 the time
On average, (1/2 + 3/2) / 2 = 1
Put another way, Machine A is 1.0 times faster than

Machine B

2014/4/13 47

Example: Third answer

Two machines timed on two benchmarks
How much faster is Machine A than Machine B?

Attempt 3: ratio of run times, aggregate (total
sum) times,
Machine A took 14 seconds for both programs
Machine B took 12 seconds for both programs
Therefore, Machine A takes 14/12 of the time of

Machine B
Put another way, Machine A is 6/7 faster than

Machine B

2014/4/13 48

Which is Right?

Question:
How can we get three different answers?

Solution
Because, while they are all reasonable

calculations…
…each answers a different question

We need to be more precise in
understanding and posing these
performance & metric questions

2014/4/13 49

Arithmetic and Harmonic Mean

Total Execution Time: A Consistent
Summary Measure
Arithmetic mean is the average of the

execution time that tracks total execution time.

If performance is expressed as a rate, then

the average that tracks total execution time is
the harmonic mean

2014/4/13 50

Problems with Arithmetic Mean
 Applications do not have the same probability of being run

 Longer programs weigh more heavily in the average

 For example, two machines timed on two benchmarks

 Machine A Machine B

 Program 1 2 seconds (20%) 4 seconds (20%)

 Program 2 12 seconds (80%) 8 seconds (80%)

 If we do arithmetic mean, Program 2 “counts more” than
Program 1
 an improvement in Program 2 changes the average more than a

proportional improvement in Program 1

 But perhaps Program 2 is 4 times more likely to run than
Program 1

2014/4/13 51

Weighted Execution Time

Often, one runs some programs more
often than others. Therefore, we should
weight the more frequently used
programs’ execution time

Weighted Harmonic Mean

2014/4/13 52

Using a Weighted Sum
(or weighted average)

Allows us to determine relative
performance 10/7.2 = 1.38

--> Machine B is 1.38 times faster than
Machine A

2014/4/13 53

Another Solution
Normalize run time of each program to a

reference

So when we normalize A to B, and average, it

looks like A & B are the same.
But when we normalize B to A, it looks like B is

33% better!

2014/4/13 54

Example on P37(old version)

33744 1
W(B)1= = 0.909
 10×(1/10＋1/100)

 1
W(B)2= = 0.091
 100×(1/10＋1/100)

2014/4/13 55

Geometric Mean

Used for relative rate or
performance numbers

Geometric mean

2014/4/13 56

Using Geometric Mean

Drawback:
Geometric mean does NOT predict run time

because it automatically
normalizes.
Each application now counts equally.
Irrelevance of the reference computer in

relative performance

2014/4/13 57

Summary of comparing performance

 Total execution time or arithmetic mean
 consistent result

 programs in the workload are NOT always run an equal number of
times

 Weighted arithmetic mean
 take into account the frequency of use in the workload

 solution depends on which machine is the reference.

 Normalized Geometric Mean
 consistent result, no matter which machine is the reference.

 Geometric mean does NOT predict run time

 Ideal solution : Measure a real workload and weight the
programs according to their frequency of execution.

 What really matters is how YOUR application performs

2014/4/13 58

New SPEC Performance Numbers

Geometric Mean of 12 (SpecInt) and 14
(SpecFP) Benchmarks
Performance measured against SPARC 10/40

2000 Performance Numbers
(Microprocessor Report, Dec. 2000)

2014/4/13 59

New SPEC Performance Numbers

Geometric Mean of 12 (SpecInt) and 14
(SpecFP) Benchmarks
Performance measured against SPARC 10/40

2001 Performance Numbers
(Microprocessor Report, Aug. 2001)

2014/4/13 60

Topics in Chapter
1.1 Why take this course ?
1.2 Classes of computers in current computer

market
1.3 Defining computer architecture and What’s

the task of computer design?
1.4 Trends in Technology
1.5 Trends in power in Integrated circuits
1.6 Trends in Cost
1.7 Dependability
1.8 Measuring, Reporting and summerizing Perf.
1.9 Quantitative Principles of computer Design
1.10 Putting it altogether

2014/4/13 61

1.9 Quantitative Principles

Take advantage of parallelism

Principle of Locality

Focus on the common case

Amdahl's Law

CPU Performance Equation

2014/4/13 62

Take advantage of parallelism

Most important methods of improving
performance

Parallelism levels
System level: use multiple processors

Instruction level:
Pipelining

Operation level:
set-associate cache

Pipelined function unit

Any other examples ?

2014/4/13 63

Principle of Locality
Program Property: Programs tend to

reuse data and instructions they have
used recently.

Rule of thumb:
a program spends 90% of its execution time

in only 10% of the code.
Temporal locality
Recently accessed items are likely to be

accessed in the near future.
Spatial locality
Items whose addresses are near one

another tend to be referenced close
together in time.

Any example ?

2014/4/13 64

Focus on the common case

The most important and pervasive
principle of computer design.
Power, resource allocation, performance,

dependability.
Rule of thumb: simple is fast.
Frequent case is often simpler and can be

done faster.

A fundamental law, called Amdahl’s Law,
can be used to quantify this principle.

2014/4/13 65

Amdahl’s Law

The performance improvement to be
gained from using some faster mode of
execution is limited by the fraction of
the time the faster mode can be used.

Example

2014/4/13 66

Amdahl’s law

• Increasing the clock rate would not affect

memory access time

• Using a floating point processing unit does

not speed integer ALU operations

unaffected time Execution

timprovemen of Amount

timprovemen theby affected time Execution

 timrpovemen after time Execution

2014/4/13 67

Amdahl’s law

Amdahl's law defines the speedup

 If we know two factors:
Fraction enhanced : Fraction of computation

time in original machine that can be
converted to take advantage of the

enhancement.
 Speedup enhanced in enhanced mode : Improvement

gained by enhanced execution mode:

2014/4/13 68

Speedup Equation

 Example:
A server system with an enhanced CPU(10 times faster

than the original one) used for Web serving. Assuming
the original CPU is busy with computation 40% of the
time and is waiting for I/O 60% of the time.

 Answer:

Fractionenhanced = 0.4, Speedupenhanced =10
Speedup = 1 = 1 = 1.56
 0.6 + 0.4 0.64
 10

2014/4/13 69

Another Example
 Implementations of floating-point (FP) square

root vary significantly in performance
Two enhancement proposal
One proposal is to enhance the FPSQR hardware and

speed up this operation by a factor of 10.
The alternative is just to try to make all FP

instructions in the graphics processor run faster by a
factor of 1.6;

Assuming
FP square root (FPSQR) is responsible for 20% of the

execution time of a critical graphics benchmark.
FP instructions are responsible for a total of 50% of

the execution time for the application.
The design team believes that they do both

enhancement with the same effort.
 Compare these two design alternatives.

2014/4/13 70

Solution of the example

2014/4/13 71

example

Assume:
An enhancement to a computer that improves

some mode of execution by a factor of 10.

Enhanced mode is used 50% of the
time,measured as a percentage of the execution
time when the enhancec mode is in use.

Question:
What is the speedup we have obtained from fast

mode ?

What percentage of the original execution time
has been converted of fast mode ?

Important Notes !

F is the fraction in original machine !

2014/4/13 72

What the Amdahl’s Law imply ?
 If an enhancement is only usable for a fraction

of task, then the total speedup will be no more
than 1/ (1-F).

Serve the guide
 to how much an enhancement will improve

performance
 to how to distribute resource to improve cost-

performance
Useful for comparing
 the overall system performance of two

alternatives,
 two CPU design alternatives

We can improve the performance by
 increasing the Fractionenhanced

or, increasing the Speedupenhanced

2014/4/13 73

The CPU Performance Equation

The “Iron Law” of processor
performance:
Often it is difficult to measure the

improvement in time using a new
enhancement directly.

CPU Performance Equation

2014/4/13 74

Calculation of CPU Time

 CPU time = Instruction count CPI Clock cycle time

Or
rate Clock

CPIcount nInstructio
time CPU

cycleClock

Seconds

nInstructio

 cyclesClock

Program

nsInstructio
 timeCPU

Component of performance Units of measure

CPU execution time for a program Seconds for the program

Instruction count Instructions executed for the program

Clock cycles per instructions (CPI) Average number of clock cycles/instruction

Clock cycle time Seconds per clock cycle

 Architecture --> Implementation --> Realization
 Compiler Designer Processor Designer Chip Designer

2014/4/13 75

Related technologies
 CPU performance is dependent upon 3 characteristics:

 clock cycle (or rate) (CCT)

 clock cycles per instruction (CPI)

 instruction count. (IC)

 One difficulty: It is difficult to change one in isolation of

the others.

 Inst Count CPI Clock Rate

Program X
Compiler X (X)
Inst. Set. X X
Organization X X
Technology X

2014/4/13 76

Other format of
CPU Performance Equation

2014/4/13 77

Example of CPUtime calculation

 Suppose we have made the following measurements:

 Frequency of FP operations (other than FPSQR) = 25%

 Average CPI of FP operations = 4.0

 Average CPI of other instructions = 1.33

 Frequency of FPSQR = 2%

 CPI of FPSQR = 20

 Two design alternatives

 decrease the CPI of FPSQR to 2

 decrease the average CPI of all FP operations to 2.5.

 Compare these two design alternatives using the CPU

performance equation.

2014/4/13 78

Answer to the question

Since the CPI of the overall FP enhancement is
slightly lower, its performance will be
marginally better.

2014/4/13 79

Compare the result with that
from Amdahl’s law

This is the same speedup we
obtained using Amdahl’s Law:

2014/4/13 80

Performance & price-performance

Performance & price-performance for
desktop systems Fig1.18

Factors that responsible for the wide
variation in price
Different levels of expandability

Use of cheaper disks and cheaper memory

Cost of CPU varies

Software differences

Lower-end system use PC commodity parts in
fans, power supply, support chip sets

Commoditization effect

2014/4/13 81

Five desktop and rack-
mountable systems

Expandability: Sun Java worktation < Dell ….< HP BL25p

Cost of processor: die size and L2 cache , processor

Softerware difference

2014/4/13 82

Price-performance

2014/4/13 83

Messurements-1

For Servers Fig 1.17, 1.18

TPC-C : standard industry benchmark for
OLTP

Reasonable approximation

Measure total system performance

Rules of measurement are very complete

Vendors devote significant effort

Report both performance & price-performance

2014/4/13 84

Price-performance

2014/4/13 85

Fallacies & pitfalls

Pitfall:

Falling prey to Amdahl’s Law.

A single point of failure

Fault detection can lower availability

2014/4/13 86

Fallacy

The cost of the processor
dominates the cost of the system.

2014/4/13 87

Fallacy

Benchmarks remain valid indefinitely

The rated mean time to failure of the disks
is 1200000hours or almost 140 years, so
disks practically never fail.

Peak performance tracks observed
performance.

2014/4/13 88

Homework for Chapter 1

Read the section of 1.0

Question:
You can select any 4 questions from textbook.

Due time: Before the lecture begin

write your answer in English.
submit it to website, NOT via email.

2014/4/13 89

