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1.2 Classes of computers in curren’r compu'rer
market

1.3 Defining computer architecture and What's
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1.5 Trends in power in Integrated circuits

1.6 Trends in Cost
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1.8 Measuring, Reporting and summerizing Perf.
1.9 Quantitative Principles of computer Design
O Pgitting it altogether
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Major Theme: Lower 5

> Cost Trend

»Understanding cost trends of component is
important for designers, since we design for

tomorrow |

» The impact factors for cost:

» Time----Component prices drop over time
without major improvements in manufacturing
technology

> \Volume ----Volume decreases cost due to
increases in manufacturing efficiency.

»Commodification----The competition among the
“« suppliers of the components will decrease
averall product cost.
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‘¥) Rules of Thumb

»Time: learning curve —-—-yie'IEI
» Twice the yield will have half the cost.

> Volume:

» Cost decrease about 10% for each doubling of
volume.

» Commodities:
»Vendor competition
»Supplier competition
»Volume increase, however limited profits.




Microelectronics

Silicon Ingot Blank wafers
. 20 to 30
—» | Slicer —» —> -
processing steps
) Individual dies l
Tested dies (one wafer) Patterned wafers
XX O
: Oxo0 Die oob
Bond die X O 0 X X g <«— 00000 «— Dicer -=-—
to package oO00Q tester o0O0g
XX 0
Packaged dies Tested packaged dies
Part 3 '
g g g __, 0o . Ship to
g@go —  iester [=]R[=]R[=] customers




&) Cost of an Integ

Cost of integrated circuit = Cost of die + Cost of testing die 4+ Cost of packaging and hnal test

Final test vield

Cost of waler

es perwaler = Dhe vield

Cost of die =

o« Waler diamseten2 ]3 X Waler chameter

[ Mes per waler = -
[Me area W2 Die amca

Defects per umt area = Dhe area &
i i

Dic vield = Waleryield «| 1 +




Distribution of

Systam Subsystam Fraction of total
Cabinet Sheet metal, plastic 205
Posacer supply, fans 205
Cables, nuts, bolis | €&
Shipping box, manuals | €&
subitotal O
Proces=or board Processor 22%
DREAM (128 MRE) 3
Video card 3
Motherboard with ba=sic 1/O suppon, 3%
networking
mubtoatal AT %
LA devices Fevboard and mouse A%
Momitor |2
Hard disk (20 (G QCE
DYDY drive o
Subtotal AT %
Sof haeare (5 4+ Basic (Ohoe Suile 205




» Component costs
> Raw material cost.

> Direct cost:
> Costs incurred to make a single item. Adds 20% to 40%
to component cost.
» Gross margin ( Indirect cost):

» Overhead not associated with a single item, i.e. R&D,
marketing, manufacturing equipment, taxes, etc.

> Only 4%-12% of income are spent on R&D
> Average Selling Price (ASP):
> Component cost + direct cost + indirect cost.
> List price :
» Not ASP. Stores add to the ASP to get their cut. Want
% to 75% of list price.




@he components of [

100%

List

_ ™[ Average
Average price 25% | discount
selling Gross Gross
. V) Q
price 2% | margin 16.8% margin
17% [Directcoss | '28% [ Directcosts |  96% | Direct costs
Component Component Component Component
costs 83% |  costs 622% |  costs 16.6%|  Cosis
N ’ T
* Add 20% for 7 Add 33% for ~ " Add 33% for ~
direct costs Qross margin average discount
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decision will affect selling price,

> i.e. changing cost by $1,000 increases selling price
by $3,000 to $4,000.

> Also, consider volume and price relationship:

» In general, the fewer computers that are sold,
the higher the price.

> Also, a decrease in volume causes cost to
increase, further increasing price.

> Therefore, small changes in cost can have an

unexpected large increase in price.
@@@ H
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‘) Dependability

S

» Dependability is a deliberately broad term to
encompass many facets including reliability,
security and availability.

D |



&) Dependability vs. Reliabigy

» Dependability. A measure of the degree to
which an item is operable and capable of
performing its required function at any
(random) time during a specified mission

profile, given item availability at the start of
the mission.

> its use is restricted to general descriptions in
non-quantitative terms.

» Dependability is related to reliability; the
intention was that dependability would be a
SMQLE general concept then reliability.

14



accomplishment
»MTTF: Mean Time To Failure
»MTTR: Mean Time To Repair
»>FIT : Failure In Time = 1/MTTF

»MTBF: Mean Time Between Failure =
MTTF+MTTR

»Module availability
= MTTF

> MTTF =
WTW +MTTR  MTBF )




»Redundancy:

»Time redundancy: repeat the operation
again to see if it is still in erroneous.

»Resource redundancy: have other
components to take over from the one that
failed.

D |
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Measuring and Repdrting-_ : ?;- :

» Comparing Machines
»Execution time (latency)
» Throughput
»MIPS - millions of instructions per second
»Comparing Machines Using Sets of
Programs

»Choosing which program to evaluate
performance

»Benchmark Suites

>Different Means: Arithmetic, Harmonic, and
Wome’rric Means
19




Defining performance =g

o Performance means different things to
different people, therefore its assessment
is subtle

Just a piece o
cake | Even for

aint | When will

o frat |
Sorry, Lady is first | they bring me the meal

o-Criteria of performance evaluation
iffers among users and designers

20



‘ Perf Metrics --respe 1sezkn
»>Wall-clock time

» Start the program and wa’rch the clock -

»when the program ends, that's the total wall-
clock time

> Also called response time or elapsed time or
>Measures user perception of the system g =
speed
»>Problems with wall-clock time |
»What if more than one program is running on
the same machine ?

W@T if the program asks for user input ?
21




‘Performance Metric

» Measures the time the CPU is compu‘rmg (no’r
waiting for I/0)

> Measures designer perception of the CPU speed

> CPU time is further divided into:

» User CPU time - time spent in user mode
> (Sgg’sem CPU time - time spent in the operating system

> Unix time command reports CPU time as:
> 90.7u 12.9s 2:39 65%
> 90.7 user CPU seconds (in the user's program)
> 12.9 system CPU seconds (in the system calls e.g. printf)
> 2 minutes, 39 seconds wall-clock time
65% of the wall clock time was spent running on the CPU

22
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erformance Metrics ===

> Amount of work done in a given time =~
» Measure administrator perception of the system perf.

> We often use throughput to measure
» Number of lines of code per day
» Number bits per second transmitted over a wire
» Number of web pages served

» In contrast to latency
» amount of time to produce 1 line of code
» amount of time o send 1 bit over a wire
> Amount of time spent waiting to receive web page
» Often, processor performance is only quoted in terms
of relative latency
» Program A ran 10 times faster than program B

> But, for many apps, throughput much more important
.+, than latency
e ‘ > Piligncial markets, government statistics (census)

R Eni QIR
014 s;ﬁ"

23



@)Response time vs. T

»If you improve response time, you usually
improve throughput

»Replacing the processor of a computer with a
faster version
»you can also improve throughput without
Improving response time
» Adding additional processors to a system that
uses multiple processors

> for separate tasks (e.g. handling of airline
eservations system)

24



> MIPS - Millions of Instructions per Second

# of instructions benchmark

MIPS =

benchmark total run time
1,000,000

»When comparing two machines (A, B) with
the same instruction set, MIPS is a fair
comparison(sometimes...)

»But, MIPS can be a "meaningless indicator

a afiéerformance..."
25




i xample:MIPS migh

» Machine A has a special instruction for
performing square root calculations. It takes
100 cycles to execute.

» Machine B doesn't have the special instruction -
- must perform square root calculations in
software using simple instructions (.e.g, Add,
Mult, Shift) that each take 1 cycle to execute

> Machine A: 1/100 MIPS = 0.01 MIPS
> Machine B: 1 MIPS

D |



b Tri_o—t ‘erVIe _— «1 - =1 3
Power consumption and Effi@e

> Critical factors for embedded systems:
» cost
»physical size
> memory
»power consumption

> Fig. 1.27 (old versioi
winner for its best
> AMD K6-2E

performance/watt,
» IBM PowerPC 750CX though it is the second lowest

> NEC VR 5432 performing processor.
WEC VR 4122
27




Summary of perfc

»user perception

»system performance

> the only unimpeachable measure of
performance

»CPU time
»>designer perception
»CPU performance

» Throughput
»administrator perception

» MIPS

W‘erchan’r perception

»Response (Execution) time

28



> Ideal performance evaluation:

» A random sample of users running their programs and
OS commands.

» Many different types of benchmarks

> Real applications--- Scientific and engineering
> Modified (or scripted) applications--- focus on specific

features
> Kernels --- critical program fragments
» Toy --- small programs, often measure very little

> Synthetic -- created to represent some aspects of a
program (e.g., mix of instruction types)

> Database -- a world unto itself
» What really matters is how YOUR application performs

29



» Synthetic benchmarks :

» Programs that try to "exercise" the system in the same
way to match the average frequency of operations and
operands of a large set of programs.

» Whetstone and Dhrystone.
» Similar to kernels but are NOT real programs !

» Compiler and hardware optimizations can artificially
inflate performance of these benchmarks but not of

real programs.
» These benchmarks don't reward optimizations!

>SQRT(EXP(x))= Ve X = e X2 = EXP(X/2)

D |



Notes on performance be

> Benchmarks can focus on specific aspects of a system
> floating point & integer ALU, memory system, I/0, OS

e Universal benchmarks can be misleading since hardware
and compiler vendors might optimize their design for
ONLY these programs

e The best types of benchmarks are real applications since
they reflect the end-user interest

e Architectures might perform well for some applications
and poorly for others

| = . !
— -

| 1
B

‘
el
—

e Compilation can boost performance by taking advantage
of architecture-specific features. Application-specific

compiler optimization are becoming more popular.
31



¥) SPEC L

» SPEC - The System Performance _E—V_&_Iua’rion
Cooperative

> founded in 1988 by a small number of workstation vendors who
realized that the marketplace was in desperate need of realistic,
standardize performance tests.

> Grown to become successful performance standardization bodies
with more than 40 member companies.

> http://www.spec.org

» SPEC's Philosophy

» The goal of SPEC is to ensure that the marketplace has a fair and
useful set of metrics to differentiate candidate systems.

> The basic SPEC methodology is to provide the benchmarker with a
standardized suite of source code based upon existing applications

32



%2 Desktop Benchmarks

> CPU-intensive benchmarks
> SPECS89
> SPEC92
> SPEC95
» SPEC2000

» SPEC CPU2006 (12 CINT2006, 17 CFP2006)

> graphics-intensive benchmarks

»SPEC2000
» SPECviewperf

is used for benchmarking systems supporting the OpenGL
graphics library

»SPECapc
consists of applications that make extensive use of
graphics. "



B ‘.Sﬁ;cific Task

Plays the game Go against itself.

processor running Dhrystone and

Compiles pre-processed source

into optimized SPARC assembly code.

Compresses large text files (about
16MB) using adaptive Limpel-Ziv coding.

Performs jpeg image compression

manipulations (anagrams/prime

Benchmark Ref Time (Sec) Application Area

099.g0 4600 Game playing; artificial intelligence

124.m88ksim 1900 Simulation Simulates the Motorola 88100
a memory test program.

126.gce 1700 Programming & compilation

129.compress 1800 Compression

1301 1900 Language interpreter Lisp interpreter.

132.ijpeg 2400 Imaging
with various parameters.

134 perl 1900 Shell interpreter Performs text and numeric
number factoring).

147 vortex 2700 Database

Builds and manipulates three
interrelated databases.

34
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PEC FP 95 Bencl

Generation of a two-dimensional
boundary-fitted coordinate system

around general geometric domains.

solves shallow water eguations using

finite difference approximations. (The

only single precision benchmark in CFP93.)

Masses of elementary particles are
compuied in the Quark-Gluon theory.

Hydrodynamical Navier Siokes equations are

Calculation of a 3D potential field.
solves matrix system with pivoting.

Simulates turbulence in a cubic area.

Calculates statistics on temperature

Performs multi-electron dervatives.

Ben
chmark Ref Time (Sec) Application Area Specific Task
101 tomcatv 2700 Fluid Dynamics /
Geometric Translation

102.5wim 8600 Weather Prediction
103.5u2cor 1400 Quantum Physics
104 hydro2d 2400 Astrophysics

used o compute galactic jets.
107 .mgrid 2500 Electromagnetism
110.applu 2200 Fluid Dynamics/Math
125.turb3d 4100 Simulation
141 .apsi 2100 Weather Predication

and pollutants in a grid.
145.fpppp 2600 Chemistry

) 146 wave 3000 Electromagnetics

Solve's Maxwell's egn on cartesian mesh.

35



164.gzip
175.vpr
176.gcc
181.mcf
186.crafty
197 .parser
252.eon
253 . perlbmk
254 .gap
255.vortex
256.bzip2
300.twolf

O O 0 O O O

O

++

O O 0O O O

Compression

FPGA Circuit Placement and Routing

C Programming Language Compiler
Combinatorial Optimization

Game Playing: Chess

Word Processing

Computer Visualization

PERL Programming Language
Group Theory, Interpreter
Object-oriented Database
Compression

Place and Route Simulator
36



168.wupwise

171.swim
172.mgrid
173.applu
177.mesa
178.galgel
179.art
183.equake
187 .facerec
188.ammp
189.lucas
191.fma3d
200.sixtrack
i 301.apsi

g™

@ew SPEC FP Bench

Fortran 77
Fortran 77
Fortran 77
Fortran 77
C

Fortran 90
C

C

Fortran 90
C

Fortran 90
Fortran 90
Fortran 77
Fortran 77

ks

Physics / Quantum:(:Z“Zh»fﬁ)m'odyn-aﬂmics

Shallow Water Modeling

Multi-grid Solver: 3D Potential Field

Parabolic / Elliptic Partial Differential Equations
3-D Graphics Library

Computational Fluid Dynamics

Image Recognition / Neural Networks

Seismic Wave Propagation Simulation

Image Processing: Face Recognition
Computational Chemistry

Number Theory / Primality Testing
Finite-element Crash Simulation

High Energy Nuclear Physics Accelerator Design

Meteorology: Pollutant Distribution

37
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@400 S
< Sarver Benchmarks

» SPECrate--processing rate of a multiprocessor
» SPEC CPU2000—throughput-oriented benchmark
» SPECrate—processing rate of a multiprocessor
> SPECSFS--file server benchmark
» SPECWeb--Web server benchmark
» Transaction-processing (TP) benchmarks

» TPC benchmark—Transaction Processing Council
» TPC-A, 1985
» TPC-C, 1992,
» TPC-H-> TPC-R>TPC-W

38



SPEC benc (S |
Y Fmbedded Benchmarks
» EDN Embedded Microprocessor Benchmark

Consortium (or EEMBC, pronounced

" n"
embassy").
Humber of

Benchmark type kernels  Example benchmarks

Automot vefinclustrial [ ( microbenc hmarks {arithmetic operations, pomter chasing, memory
perfomance, matrix arthmetic, table lookop, bitmanpulaton), 3 automobile
control benchmarks, and 3 filter or FFT benchmarks

Consumer 3 5 multimedia benchmarks (TPEG compress/ecompress, flterng, and RGR
Converslons |

Networking 3 Shortest-path caleulation, [P routing, and packet low operations

CHhee automat on 4 Crraphics and text benchmarks ( Bener curve caleulation, dithering, image
rolation, lext processing)

Telecommunications f Filtering and DSP benchmarks (autocorrelation, FF, decoder, encoder)

ANNE



‘Runnlng Benchmar

» Key factor: Reproducibility by o’rher'
experimenters.

> Details, details, and more details !ll List
all assumptions and conditions of your
experiments.

>i.e. program input, version of the program,
version of the compiler, optimization level,
OS version, main memory size, disk types,

etc.

40



S

Machine CPI Clock Period A\?é Instruction Time (secs)
Machine A 1.2 2 NS
MachineB 2.5 1ns

» CPU Time = # of instructions executed * avg instruction time
» Assume 1,000,000, 000 instructions

> Machine A: 1,000,000,000 * 2.4ns = 2.4 seconds
> Machine B: 1,000,000,000 * 2.5ns = 2.5 seconds

> Which machine is faster? Machine A
» How much faster? 25/ 2.4 =104 times faster

e |



- Often, we want to compare the perfoi"'—r'n‘d’ri&e of different

machines or different programs. Why?
- To help engineers understand which is "better”
*To give marketing a "silver bullet” for the press release
*To help customers understand why they should buy <my machine>

» Performance and Execution time are
Maximizing performance means minimizing response
(execution) time

1
Execution Time

Performance =

42




> “Performance of P, is better than PZ "is, for a
given work load L, P,takes less time to
execute L than P, does

performance(P1) > Performance(P2)

— Execution Time(P1, L) < Execution
Time(P1, L)

> "Processor X is n times fast than Y" is

Execution time 7
IF-'I jr—

Execution time 5

D |




‘Vlultlple Programs

Computer A Combil;c-er B Computer C

Program 1 (secs) 1 10 20
Program 2 (secs) 1000 100 20
Program 3 (secs) 1001 110 40

> A is 10 times faster than B for program 1
> B is 10 times faster than A for program 2
> A is 20 times faster than C for program 1
> C is 50 times faster than A for program 2
> B is 2 times faster than C for program 1
> C is 5 times faster than B for program 2

> Each statement above is correct...,
we want to know which machine is the best?

44



Let's Trya

**Two machines timed on two benc
> How much faster is Machine A than Machine B?
Machine A Machine B
Program 1 2 seconds 4 seconds
Program 2 12 seconds 8 seconds

» Attempt 1. ratio of run times, normalized to
Machine A times
> programl: 4/2 program2 : 8/12

> Machine A ran 2 times faster on program 1,
2/3 times faster on program 2

> On average, Machine A is (2 + 2/3) /2 = 4/3
times faster than Machine B

urns this "averaging” stuff can

ol us 4




‘Example ‘Second'<

> Two machines timed on two benchmar'ks
> How much faster is Machine A than Machine B?

Machine A Machine B
Program 1 2 seconds 4 seconds
Program 2 12 seconds 8 seconds

> Attempt 2: ratio of run times, normalized to
Machine B times
> program 1: 2/4 program 2 : 12/8

> Machine A ran program 1 in 1/2 the time and program
2 in 3/2 the time

> On average, (1/2 + 3/2) /2 =1

Wother way, Machine A is 1.0 times faster than
ne B
46




| xample: Third

>Two machines timed on two benchmar'ks
> How much faster is Machine A than Machine B?

Machine A Machine B
Program 1 2 seconds 4 seconds
Program 2 12 seconds 8 seconds
» Attempt 3: ratio of run times, aggregate (total

sum) times,
> Machine A took ' seconds for both programs

> Machine B took '~ seconds for both programs

> Therefore, Machine A takes 14/12 of the time of
Machine B

» Put another way, Machine A is 6/7 faster than
hine B
47



= Which is Rig

» Question:
»How can we get three different answers?

> Solution

> Because, while they are all reasonable
calculations...

> ...each answers a different question

»We need to be more precise in
understanding and posing these

erormance & metric questions
48



>To’ral Execution Time: A Consus’ren’r

Summary Measure

» Arithmetic mean is the average of the
execution time that tracks total execution time.

1 " .
P > Time,

> If performance is expressed as a rate, then
the average that tracks total execution time is

the harmonic mean
H

1
2
w Rate, -
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& roblems with Arrthmeticcle
plica’rions do not have the same probaﬁi_ being run
> Longer programs weigh more heavily in the average
> For example, two machines timed on two benchmarks

Machine A Machine B
Program 1 2 seconds (20%) 4 seconds (20%)
Program 2 12 seconds (80%) 8 seconds (80%)

» If we do arithmetic mean, Program 2 "counts more" than
Program 1

> an improvement in Program 2 changes the average more than a
proportional improvement in Program 1

» But perhaps Program 2 is 4 times more likely to run than
Program 1

50



Weighted Execution“Mmgs -
Qe — ‘ S
»Often, one runs some programs more
often than others. Therefore, we should
weight the more frequently used
programs’ execution time

2. Weight xlime

» Weighted Harmonic Mean
1

. Weight.
2 :
w Rate ‘.




Machine A Machine B

Program 1 2 seconds (20%) 4 seconds (20%)
Program 2 12 seconds (80%) 8 seconds (80%)
Total 10 seconds 7.2 seconds

Allows us to determine relative
performance 10/7.2 = 1.38

--> Machine B is 1.38 times faster than
Machine A

D |



‘Another Solutlon

» Normalize run time of each progmm 1o

reference
Machine A (ref) Machine B
Program 1 2 seconds 4 seconds
Program 2 12 seconds 8 _seconds
Total 10 seconds 7.2 seconds
Machine A Machine B
(norm to B) (norm to A)
Program 1 0.5 2.0
Program 2 1.5 0.666
Average? 1.0 1.333

» So when we normalize A to B, and average, it
looks like A & B are the same.

B hen we normalize B to A, it looks like B is
better! 53




&) Example on P3

Programs Welghtings
A E C Wili Wi Wil
Program Pl (secs) 1.00 101,01 20,000 (.50 0,909 (.999
Program P2 (secs) 100,00 100.0K) 20,000 (.50 0091 (.01
Anthmetc mean: Wil) 00,50 53,000 20,000
Anthmene mean: Wi2) w191 18.19 20,000
Anthmetc mean: Wi3) 2.00 1006 20,000
1
W(B),= =0.909 " |
10X (1/10+1/100) P = m ]
I
1 Time, = Z = |
W(B)2= =0.001 Time, |
100X (1/1041/100) 1=

54



‘w) Geometric Mean

>Used for relative rate or
performance numbers
Rate  Time,,

Relative Rate = 7
Ratem , Time

»Geometric mean

n ﬁRatej
i=1

A HRelative_Ratej .
=l Rate,,
55
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Machine A Machine B

(horm to B) (horm to A)
Program 1 0.5 2.0
Program 2 1.5 0.666
Geometric Mean 0.866 1.155

1.155 = 1/0.8666!

> Drawback:

»Geometric mean does predict run time
because it automatically

»normalizes.
»Each application now counts equally.

»Irrelevance of the reference computer in
wmhve performance

56



ummary

> Total execution time or arithmetic mean
> consistent result

> programs in the workload are NOT always run an equal number of
times

> Weighted arithmetic mean
> take into account the frequency of use in the workload
> solution depends on which machine is the reference.

> Normalized Geometric Mean

> consistent result, no matter which machine is the reference.
> Geometric mean does NOT predict run time

» Ideal solution : Measure a real workload and weight the

programs according to their frequency of execution.
What really matters is how YOUR application performs

57



»Geometric Mean of 12 (SpeEI'h;ryand 14
(SpecFP) Benchmarks
»Performance measured against SPARC 10/40

» 2000 Performance Numbers
(Microprocessor Report, Dec. 2000)

Alpha Intel MIPS HP |IBM Sun

21264B Pentiumlll  R12000 PA-8600  Power 3-ll Ultra lll

833MHz  1GHz 400MHz 552MHz 450MHz  900MHz
Int 518 454 320 417 286 438

329 319 400 356 369

FP 390

58



»Geometric Mean of 12 (Sb.éé_:InT) and 14
(SpecFP) Benchmarks

»Performance measured against SPARC 10/40

» 2001 Performance Numbers
(Microprocessor Report, Aug. 2001)

Alpha Intel MIPS HP IBM Sun
21264C P4 R14000 PA-8600  Power 3-Il Ultra Il
1001MHz  1.8GHz 500MHz 592MHz ~ 450MHz  900MHz

Int 961 999 397 417 286 439

»| FP 383 615 362 400 336 369
59



g\ TOPICS in Chapter

ake this course? Frie

1 2 Classes of computers in curren’r compu’rer
market

1.3 Defining computer architecture and What's
the task of computer design?

1.4 Trends in Technology

1.5 Trends in power in Integrated circuits

1.6 Trends in Cost

1.7 Dependability

1.8 Measuring, Reporting and summerizing Perf.

9 Quantitative Principles of computer Design
ting it altogether
60




1.9 Quantitl F

( y ul‘wbs

» Take advantage of parallelism
»>Principle of Locality
»Focus on the common case

»Amdahl’'s Law
»CPU Performance Equation

D |



==

»Most important methods chf"i’mproving
performance

»Parallelism levels
»System level: use multiple proces

» Instruction level:
»Pipelining

»Operation level:
»set-associate cache

Welined function unit
62



. rinciple of Loce y =

rogram Property: Programs tend -
rege data aFr)\d iRstructions they have
used recently.

> Rule of thumb:

>a prolgrcmg spends 907 of its execution time
inon

» Tempo

»RecenTly accessed Itfems are likely to be
accessed in the near future.

» Spatial locality

»Items whose addresses are near one
another tend to be referenced close
ogether in time.

63



@ Focus on the comft

> The most important and pervasive
principle of computer design.
»Power, resource allocation, performance,
dependability.
>»Rule of thumb: simple is fast.

»Frequent case is often simpler and can be
done faster.

> A fundamental law, called Amadah/s Law,
can be used to quantify this principle.

D |



>The performance |mprovemenT fo be
gained from using some faster mode of
execution is limited by the fraction of
the time the faster mode can be used.

»Example

10 s 90 s
+-— ———ee iy

100s

A 1ox ¥

speedup 91s

on this part.“_>
ﬁ
1 s 90 s
65




‘@pmdahl'slaw

Execution time after imrpovement =

Execution time affected by the improvement
Amount of improvement

+ Execution time unaffected

» Increasing the clock rate would not affect
memory access time

» Using a floating point processing unit does

$ n?’r speed integer ALU operations
66



@ : I‘hd d h|5S— law

> Amdahl's law defines the speed'u’PJ

Geed Performance with enhancement Execution time w/o enhancement
Speedup = =

Performance without enhancement  Execution tume with enhancement

> If we know two factors:

» Fraction enhanced : Fraction of computation
time in original machine that can be
converted to take advantage of the

enhancement.

» Speedup enhanced in enhanced mode : Improvement
gained by enhanced execution mode:

Fraction
enhanced

enhanced +Sﬁ€€dup
, enhanced] 67

Fxec time = Exectime ; ,x|{1-Fraction
new old
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E.ﬂrgcﬂm%m 1

Speed =
PECERE sverall EIEETJ&‘MEHQW Fraciion

(1= Fraction enhanced

j-l-
enhanced Spgedupﬂ;mﬂﬁd

> Example:

> A server system with an enhanced CPU( 10 times faster
than the original one) used for Web serving. Assuming
the original CPU is busy with computation 40% of the

time and is waiting for I/O 60% of the time.
> Answer:

> ch’rionenhanced = 04, Speedupenhanced =10

> Speedup = 1 =_1 =156
06+04 064

1_
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nother Example

>Implemen’ra‘rions of floating-point (
root vary significantly in performance

» Two enhancement proposal

» One proposal is to enhance the FPSQR hardware and
speed up this operation by a factor of 10.

» The alternative is just to try to make all FP
instructions in the graphics processor run faster by a
factor of 1.6;

» Assuming

» FP square root (FPSQR) is responsible for 20% of the
execution time of a critical graphics benchmark.

» FP instructions are responsible for a total of 50% of
the execution time for the application.

«_ > The design team believes that they do both

¢ghancement with the same effort.

judiigompare these two design alternatives. 69
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Solution of t

1 1
fl — 02 + == ]
1101
1 1
Spccdupye = = ———— = ].23
Q08203 T ORITS

Z)®
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> Assume:
»An enhancement

» Questiarr.
»What is the speedup we have obtained from fast
mode ?

»What percentage of the original execution time
been converted of fast mode ?
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~ @What the Amdahl's Lawdih

> If an enhancement is only usable for a fraction
of task, Then the total speedup will be no more
than 1/ (1-F).

» Serve the guide

> to how much an enhancement will improve
performance

> to how to distribute resource to improve cost-
performance
» Useful for comparing

> the overall system performance of two
alternatives,

> two CPU design alternatives

We can improve the performance by
i asing the Fraction.phanced

,-increasing the Speedup.hanced 72




The CPU Performance Eqe it

» The "Iron Law" of processor
performance:

»Often it is difficult to measure the
iImprovement in time using a hew
enhancement directly.

» CPU Performance Equation

CPUtime = CPU clock eveles for a program x Clock cycle time

CPU clock cycles for a program

CPUtime =
e Clock rate
73




| alcu lation of

CPU time = Instruction count x CPI x Clock cycle time
Instructlo n count x CPI
Clock rate

Or CPUtim

CPU tim Instructlons 9 Clock cycles 9 Seconds

Program Instruction  Clock cycle

Architecture --> Implementation --> Realization
Compiler Designer Processor Designer Chip Designer

Component of performance Units of measure
CPU execution time for a program | Seconds for the program
Instruction count Instructions executed for the program

Average number of clock cycles/instruction

Seconds per clock cycle
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~Related technoloc -5

— *,‘

> CP performance is dependent upon 3 chcxr'acﬁlr Istics:

> clock cycle (or rate) (CCT)

> clock cycles per instruction ( CPI )

> instruction count. (IC)

Inst Count CPI Clock Rate

‘Program X
Compiler X (X)
Inst. Seft. X X
Organization X X
Technology X

> One difficulty: It is difficult to change one in isolation of

e ofhers.
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n
CPU clock eyeles = E IC. = CPL

=1
s on

CPL time = ‘ N IC, « CPLL ‘:{ Clock evele time

“op=]

[y
810« CPI i "

CPr = =L =% —
[nstruction count 4 Instruction count

< CPL

76



¥

> Suppose we have made the following measurements:
> Frequency of FP operations (other than FPSQR) = 25%
> Average CPI of FP operations = 4.0
> Average CPI of other instructions = 1.33
> Frequency of FPSQR = 2%
> CPT of FPSQR = 20
> Two design alternatives
> decrease the CPI of FPSQR to 2
> decrease the average CPI of all FP operations to 2.5.

» Compare these two design alternatives using the CPU
pe mance equation.
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Answer to the qt

- _ i ! F
I:'PIII-"fi.!i"HI B :.'_’:;- Ul I":{l-_ Instruction count _-I
= (4« 253% 041133 =« T3% ) = 2.0
CPl i e pson = O = 2% (P ypsn = CFL G b nly!
= 20-2%«(20-2) = |4
E'.]]Imw = (T30 = LAJ 40295 = 2.3 = L6235

> Since the CPI of the overall FP enhancement is
slightly lower, its performance will be

a mgrginally better.
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> This is the same speedup we
obtained using Amdahl's Law:

CPL time

1€« Clock evele = CPL . .
Eip:.:.:lupmw P = 3 lI]le::l.ﬁrllglr:.ll _ 3 Inng,ln:ll

vepp WO x Clock eyele = CPI

rew [T
CPI

— eoiginal _ 200 - 1.7
CPI o

1625

e FJP

Z)® 79



erformance & price-pi

> Performance & price-performanCefor
desktop systems Figl.18

» Factors that responsible for the wide
variation in price
» Different levels of expandability
»Use of cheaper disks and cheaper memory
» Cost of CPU varies
»Software differences

»Lower-end system use PC commodity parts in
fans, power supply, support chip sets

~@ymmoditization effect
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Vendor/model Processor Clockrate L2 cache Type Price
Dell Precision Workstation 380 Intel Pentium 4 Xeon 3.8 GHz 2MB Desk b3 346
HP ProLiant BL25p AMD Opteron 252 2.6 GHz | MB Rack 53099
HP ProLiant ML350 G4 Intel Pentium 4 Xeon 34 GHz | MB Desk 52907
HP Integrity rx2620-2 [tanium 2 1.6 GHz IMB Rack 35201
Sun Java Workstation W1 100z AMD Opteron 150 24 GHz | MB Desk b2 145

Expandability: Sun Java worktation < Dell ....< HP BL25p
Cost of processor: die size and L2 cache , processor

Softerware difference
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SPEC2000
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>For Servers Fig 1.17, 1.18

»TPC-C : standard industry benchmark for
OLTP

»Reasonable approximation

»Measure total system performance

»Rules of measurement are very complete
~Vendors devote significant effort

»Report both performance & price-performance

D |
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) Fallacies & pitfalls ™ &

> Pitfall;
»Falling prey to Amdahl’s Law.
> A single point of failure
»Fault detection can lower availability

D |



Processor +

cabinetry Memory Storage |Software
IBM eServer p5 595 28% 16% 31% 6%
IBM eServer p5 595 13% 31% 52% 4%
HP Integrity rx5670 Cluster 11% 22% 35% 33%
HP Integrity Superdome 33% 32% 15% 20%
IBM eServer pSeries 690 21% 24% 48% T%
Median of high-performance computers 21% 245 48% T%
Dell PowerEdge 28500 6% 3% 80% 11%
Dell PowerEdge 2850 1% 3% T6% 14%
HP ProLiant ML350 5% 4% T0% 21%
HP ProLiant ML350 9% 8% 65% 19%
HP ProLiant ML350 8% 6% 65% 21%
Median of price-performance computers 7% 4% —T0% —  19%
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»Fallacy
»Benchmarks remain valid indefinitely

»The rated mean time to failure of the disks
is 1200000hours or almost 140 years, so
disks practically never fail.

»Peak performance tracks observed
performance.

D |



>Read the section of 1.0 1177~
» Question:

»You can select any 4 questions from textbook.
»Due time: Before the lecture begin
»>write your answer in English.
>submit it to website, NOT via email.

D |
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