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Major Theme: Lower Cost 

Cost Trend 
Understanding cost trends of  component  is 

important for designers, since we design for 
tomorrow ! 

The impact factors for cost: 
Time----Component prices drop over time 

without major improvements in manufacturing 
technology 

Volume ----Volume decreases cost due to 
increases in manufacturing efficiency. 

Commodification----The competition among the 
suppliers of the components will decrease 
overall product cost. 
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Understanding Cost Trend by  
Learning Curve  

芯片成本趋势
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Rules of Thumb 

Time:   learning curve ----yield 
Twice the yield will have half the cost. 

Volume: 
Cost decrease about 10% for each doubling of 

volume. 

Commodities: 
Vendor competition 

Supplier competition 

Volume increase, however limited profits. 



2014/4/13 6 

Microelectronics Process 
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Cost of an Integrated Circuit 
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Distribution of Cost in a System 
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Cost vs. Price 

 Component costs 
 Raw material cost.  

 Direct cost:  
 Costs incurred to make a single item. Adds 20% to 40% 

to component cost.  

 Gross margin ( Indirect cost):  
 Overhead not associated with a single item, i.e. R&D, 

marketing, manufacturing equipment, taxes, etc.  
 Only 4%-12% of income are spent on  R&D 

 Average Selling Price (ASP):  
 Component cost + direct cost + indirect cost.  

 List price :  
 Not ASP. Stores add to the ASP to get their cut. Want 

50% to 75% of list price. 
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The components of price for a $1000 PC 
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Cost vs. Price 

This gives you insight on how a design 
decision will affect selling price,  
 i.e. changing cost by $1,000 increases selling price 

by $3,000 to $4,000.  

Also, consider volume and price relationship:  
In general, the fewer computers that are sold, 

the higher the price.  

Also, a decrease in volume causes cost to 
increase, further increasing price.    

Therefore, small changes in cost can have an 
unexpected large increase in price.  
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Dependability 

Dependability is a deliberately broad term to 
encompass many facets including reliability, 
security and availability.  



2014/4/13 14 

Dependability vs. Reliability 
Dependability. A measure of the degree to 

which an item is operable and capable of 
performing its required function at any 
(random) time during a specified mission 
profile, given item availability at the start of 
the mission.  

its use is restricted to general descriptions in 
non-quantitative terms.  

Dependability is related to reliability; the 
intention was that dependability would be a 
more general concept then reliability.  
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    Measurements of Dependability 
Module reliability: continuous service 

accomplishment 
MTTF: Mean Time To Failure 

MTTR:  Mean Time To Repair 

FIT   : Failure In Time = 1/MTTF 

MTBF: Mean Time Between Failure = 
MTTF+MTTR 

Module availability 
     MTTF            =   MTTF 

    MTTF + MTTR        MTBF 
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Resolution to dependability 

Redundancy: 

Time redundancy:  repeat the operation 
again to see if it is still in erroneous. 

Resource redundancy: have other 
components to take over from the one that 
failed. 
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performance 
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Measuring and Reporting Performance 

Comparing Machines 
Execution time (latency) 
Throughput 
MIPS - millions of instructions per second 

Comparing Machines Using Sets of 
Programs 
Choosing which program to evaluate 

performance 
Benchmark Suites 

Different Means: Arithmetic, Harmonic, and 
Geometric Means 
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Defining performance 
 Performance means different things to 

different people, therefore its assessment 
is subtle 
 
 
 
 
 
 
 
 

 Criteria of performance evaluation 
differs among users and designers 

Just a piece of  
cake ! Even for   

50 guys 

Faint ! When will  
they bring me the meal? 

Sorry, Lady is first ! 
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Perf. Metrics --response time 
Wall-clock time 
Start the program and watch the clock - 
when the program ends, that’s the total wall-

clock time 
Also called response time or elapsed time or  
Measures user perception of the system 

speed 

Problems with wall-clock time 
What if more than one program is running on 
   the same machine ? 
What if the program asks for user input ? 
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Performance Metrics --CPU time 

Measures the time the CPU is computing, (not 
waiting for I/O) 
Measures designer perception of the CPU speed 

CPU time is further divided into: 
User CPU time - time spent in user mode 
System CPU time - time spent in the operating system 

(OS) 

Unix time command reports CPU time as: 
 90.7u 12.9s 2:39 65% 
 90.7 user CPU seconds (in the user’s program) 
 12.9 system CPU seconds (in the system calls e.g. printf) 
 2 minutes, 39 seconds wall-clock time 
 65% of the wall clock time was spent running on the CPU 
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Performance Metrics ----throughput 

 Amount of work done in a given time 
Measure administrator perception of the system perf.  

 We often use throughput to measure 
 Number of lines of code per day 
 Number bits per second transmitted over a wire 
 Number of web pages served 

 In contrast to latency 
 amount of time to produce 1 line of code 
 amount of time to send 1 bit over a wire 
 Amount of time spent waiting to receive web page 

 Often, processor performance is only quoted in terms 
of relative latency 
 Program A ran 10 times faster than program B 

 But, for many apps, throughput much more important 
than latency 
 Financial markets, government statistics (census) 
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Response time vs. Throughput  

If you improve response time, you usually 
improve throughput 
Replacing the processor of a computer with a 

faster version 

you can also improve throughput without 
improving response time 
Adding additional processors to a system that 

uses multiple processors 
 for separate tasks (e.g. handling of airline 

reservations system) 
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Another industry Metric: MIPS 

MIPS - Millions of Instructions per Second 
 
 
 

When comparing two machines (A, B) with 
the same instruction set, MIPS is a fair 
comparison(sometimes…) 

But, MIPS can be a “meaningless indicator 
of performance…” 



2014/4/13 26 

Example: MIPS might be meaningless 

Machine A has a special instruction for 
performing square root calculations. It takes 
100 cycles to execute. 

Machine B doesn’t have the special instruction -
- must perform square root calculations in 
software using simple instructions (.e.g, Add, 
Mult, Shift) that each take 1 cycle to execute 

Machine A: 1/100 MIPS = 0.01 MIPS 

Machine B: 1 MIPS 
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Another view:  
Power consumption and Efficiency 

Critical factors for embedded systems: 
cost 
physical size 
memory 
power consumption 

Fig. 1.27 (old versioin) 
AMD ElanSC520  
AMD K6-2E 
IBM PowerPC 750CX 
NEC VR 5432 
NEC VR 4122 

The NEC VR 4122 is the big  
winner for its best 
performance/watt,  
though it is the second lowest 
performing processor. 
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Summary of performance metrics 

Response (Execution) time  
user perception 
system performance 
 the only unimpeachable measure of 

performance 

CPU time  
designer perception 
CPU performance 

Throughput 
administrator perception 

MIPS 
merchant perception 
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Choose Programs to Evaluate 
Performance 

 Ideal performance evaluation:  
A random sample of users running their programs and 

OS commands.  

Many different types of benchmarks 
 Real applications--- Scientific and engineering 
 Modified (or scripted) applications--- focus on specific 

features 
 Kernels --- critical program fragments 
 Toy --- small programs, often measure very little 
 Synthetic -- created to represent some aspects of a   

program (e.g., mix of instruction types) 
 Database -- a world unto itself 
 What really matters is how YOUR application performs 
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Something about Synthetic 
Synthetic benchmarks :  
Programs that try to "exercise" the system in the same 

way to match the average frequency of operations and 
operands of a large set of programs.  

Whetstone and Dhrystone.  
Similar to kernels but are NOT real programs ! 
Compiler and hardware optimizations can artificially 

inflate performance of these benchmarks but not of 
real programs.  

These benchmarks don’t reward optimizations! 

SQRT(EXP(x))= e x  = e x/2 = EXP(X/2) 
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Notes on performance benchmark 

 Benchmarks can focus on specific aspects of a system 
 floating point & integer ALU, memory system, I/O, OS 

 Universal benchmarks can be misleading since hardware 
and compiler vendors might optimize their design for 
ONLY these programs 

 The best types of benchmarks are real applications since 
they reflect the end-user interest 

 Architectures might perform well for some applications 
and poorly for others 

 Compilation can boost performance by taking advantage 
of architecture-specific features. Application-specific 
compiler optimization are becoming more popular. 
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SPEC 

SPEC - The System Performance Evaluation 
Cooperative 
 founded in 1988 by a small number of workstation vendors who 

realized that the marketplace was in desperate need of realistic, 
standardize performance tests. 

 Grown to become successful performance standardization bodies 
with more than 40 member companies.  

 http://www.spec.org 

SPEC's Philosophy 
 The goal of SPEC is to ensure that the marketplace has a fair and 

useful set of metrics to differentiate candidate systems. 
 The basic SPEC methodology is to provide the benchmarker with a 

standardized suite of source code based upon existing applications 
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SPEC benchmarks  
Desktop Benchmarks 

CPU-intensive benchmarks 
SPEC89 
SPEC92 
SPEC95 
SPEC2000 
SPEC CPU2006 ( 12 CINT2006, 17 CFP2006)  

graphics-intensive benchmarks 
SPEC2000 
SPECviewperf 

 is used for benchmarking systems supporting the OpenGL 
graphics library 

SPECapc 
 consists of applications that make extensive use of 

graphics. 



2014/4/13 34 

SPEC INT 95 Benchmark descriptions 
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SPEC FP 95 Benchmark Descriptions 
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New SPEC Int 2000 Benchmarks 
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New SPEC FP 2000 Benchmarks 
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SPEC benchmarks  
Server Benchmarks 

SPECrate--processing rate of a multiprocessor 
SPEC CPU2000—throughput-oriented benchmark 

SPECrate—processing rate of a multiprocessor 

SPECSFS--file server benchmark 

SPECWeb--Web server benchmark 

Transaction-processing (TP) benchmarks 

TPC benchmark—Transaction Processing Council 
TPC-A, 1985 

TPC-C, 1992, 

TPC-H TPC-RTPC-W 
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SPEC benchmarks  
Embedded Benchmarks 

EDN Embedded Microprocessor Benchmark 
Consortium (or EEMBC, pronounced 
“embassy”). 
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Running Benchmarks  

Key factor: Reproducibility by other 
experimenters.  

Details, details, and more details !!! List 
all assumptions and conditions of your 
experiments.  
i.e. program input, version of the program, 

version of the compiler, optimization level, 
OS version, main memory size, disk types, 
etc.  

A system’s software configuration can 
significantly affect the performance 
results for a benchmark. 
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Comparing Two Machines 

 Machine        CPI       Clock Period   Avg Instruction Time (secs) 

 Machine A     1.2                    2 ns  

 Machine B      2.5                   1 ns 

 

 CPU Time = # of instructions executed * avg instruction time 

 Assume 1,000,000, 000 instructions 

 Machine A:   1,000,000,000 * 2.4ns = 2.4 seconds 

 Machine B:   1,000,000,000 * 2.5ns = 2.5 seconds 

 Which machine is faster? Machine A 

 How much faster?             2.5 / 2.4 = 1.04 times faster 
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Comparing Performance 

 

 

• Often, we want to compare the performance of different 
machines or different programs. Why? 

•To help engineers understand which is “better” 
•To give marketing a “silver bullet” for the press release 
•To help customers understand why they should buy <my machine> 

•  
• Performance and Execution time are reciprocals 
            Maximizing performance means minimizing response 
(execution) time 
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Common used phrases 

 “Performance of P1 is better than P2  ” is, for a 
given work load L, P1 takes less time to 
execute L than P2 does 

       performance(P1) > Performance(P2) 

            Execution Time(P1, L) < Execution 
Time(P1, L) 

 “Processor X is n times fast than Y” is   
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Comparing Performance Across 
Multiple Programs 

 A is 10 times faster than B for program 1 

 B is 10 times faster than A for program 2 

 A is 20 times faster than C for program 1 

 C is 50 times faster than A for program 2 

 B is 2 times faster than C for program 1 

 C is 5 times faster than B for program 2 

Each statement above is correct…, 
…but we want to know which machine is the best? 
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Let’s Try a Simpler Example 
Two machines timed on two benchmarks 
How much faster is Machine A than Machine B? 

 

 

Attempt 1: ratio of run times, normalized to 
Machine A times 
program1: 4/2 program2 : 8/12 

Machine A ran 2 times faster on program 1, 
2/3 times faster on program 2 

On average, Machine A is (2 + 2/3) /2 = 4/3 
times faster than Machine B 

It turns this “averaging” stuff can 
fool us 
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Example: Second answer  
Two machines timed on two benchmarks 
How much faster is Machine A than Machine B? 

 
 
 

Attempt 2: ratio of run times, normalized to 
Machine B times 
program 1: 2/4 program 2 : 12/8 
Machine A ran program 1 in 1/2 the time and program 

2 in 3/2 the time 
On average, (1/2 + 3/2) / 2 = 1 
Put another way, Machine A is 1.0 times faster than 

Machine B 
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Example: Third answer 

Two machines timed on two benchmarks 
How much faster is Machine A than Machine B? 

 

 

Attempt 3: ratio of run times, aggregate (total 
sum) times,  
Machine A took 14 seconds for both programs 
Machine B took 12 seconds for both programs 
Therefore, Machine A takes 14/12 of the time of 

Machine B 
Put another way, Machine A is 6/7 faster than 

Machine B 
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Which is Right? 

Question: 
How can we get three different answers? 

Solution 
Because, while they are all reasonable 

calculations… 
…each answers a different question 

We need to be more precise in 
understanding and posing these 
performance & metric questions 
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Arithmetic and Harmonic Mean 

Total Execution Time: A Consistent 
Summary Measure 
Arithmetic mean is the average of the 

execution time that tracks total execution time. 

 

 
If performance is expressed as a rate, then 

the average that tracks total execution time is 
the harmonic mean 
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Problems with Arithmetic Mean 
 Applications do not have the same probability of being run 

 Longer programs weigh more heavily in the average 

 For example, two machines timed on two benchmarks 

                               Machine A                   Machine B 

      Program 1        2 seconds (20%)        4 seconds (20%) 

      Program 2        12 seconds (80%)       8 seconds (80%) 

 If we do arithmetic mean, Program 2 “counts more” than 
Program 1 
 an improvement in Program 2 changes the average more than a 

proportional improvement in Program 1 

 But perhaps Program 2 is 4 times more likely to run than 
Program 1 



2014/4/13 51 

Weighted Execution Time 

Often, one runs some programs more 
often than others. Therefore, we should 
weight the more frequently used 
programs’ execution time 

 

 

Weighted Harmonic Mean 
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Using a Weighted Sum  
(or weighted average) 

Allows us to determine relative 
performance 10/7.2 = 1.38 

--> Machine B is 1.38 times faster than 
Machine A 
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Another Solution 
Normalize run time of each program to a 

reference 

 

 

 

 

 
So when we normalize A to B, and average, it 

looks like A & B are the same. 
But when we normalize B to A, it looks like B is 

33% better! 
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Example on P37(old version) 

33744            1              
W(B)1=  = 0.909 
                  10×(1/10＋1/100) 

                            1 
W(B)2=  = 0.091 
                 100×(1/10＋1/100) 
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Geometric Mean 

Used for relative rate or 
performance numbers 

 

 

 

Geometric mean 
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Using Geometric Mean 

Drawback: 
Geometric mean does NOT predict run time 

because it automatically 
normalizes. 
Each application now counts equally. 
Irrelevance of the reference computer in 

relative performance 
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Summary of comparing performance 

 Total execution time or arithmetic mean 
 consistent result 

 programs in the workload are NOT always run an equal number of 
times 

 Weighted arithmetic mean 
 take into account the frequency of use in the workload 

 solution depends on which machine is the reference. 

 Normalized Geometric Mean 
 consistent result, no matter which machine is the reference. 

 Geometric mean does NOT predict run time 

 Ideal solution : Measure a real workload and weight the 
programs according to their frequency of execution.  

 What really matters is how YOUR application performs 
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New SPEC Performance Numbers 

Geometric Mean of 12 (SpecInt) and 14 
(SpecFP) Benchmarks 
Performance measured against SPARC 10/40 

2000 Performance Numbers 
(Microprocessor Report, Dec. 2000) 

 



2014/4/13 59 

New SPEC Performance Numbers 

Geometric Mean of 12 (SpecInt) and 14 
(SpecFP) Benchmarks 
Performance measured against SPARC 10/40 

2001 Performance Numbers 
(Microprocessor Report, Aug. 2001) 
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1.9 Quantitative Principles  

Take advantage of parallelism 

Principle of Locality 

Focus on  the common case 

Amdahl's Law  

CPU Performance Equation 
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Take advantage of parallelism 

Most important methods of improving 
performance 

Parallelism levels 
System level: use multiple processors  

Instruction level: 
Pipelining 

Operation level:  
set-associate cache 

Pipelined function unit 

Any other examples ? 
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Principle of Locality 
Program Property: Programs tend to 

reuse data and instructions they have 
used recently. 

Rule of thumb: 
a program spends 90% of its execution time 

in only 10% of the code. 
Temporal locality  
Recently accessed items are likely to be 

accessed in the near future. 
Spatial locality  
Items whose addresses are near one 

another tend to be referenced close 
together in time. 

Any example ? 
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Focus on the common case  

The most important and pervasive 
principle of computer design. 
Power, resource allocation, performance, 

dependability. 
Rule of thumb:  simple is fast. 
Frequent case is often simpler and can be 

done faster. 

A fundamental law, called Amdahl’s Law, 
can be used to quantify this principle. 
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Amdahl’s Law 

The performance improvement to be 
gained from using some faster mode of 
execution is limited by the fraction of 
the time the faster mode can be used. 

Example 
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Amdahl’s law 

• Increasing the clock rate would not affect 

memory access time 

• Using a floating point processing unit does 

not speed integer ALU operations 

unaffected time Execution                             

timprovemen of Amount

timprovemen theby  affected time Execution
                            

  timrpovemen after time Execution




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Amdahl’s law 

Amdahl's law defines the speedup 

 

 
 If we know two factors: 
Fraction enhanced : Fraction of computation 

time in original machine that can be 
converted to take advantage of the 

enhancement.  
 Speedup enhanced in enhanced mode : Improvement 

gained by enhanced execution mode:  
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Speedup Equation 

 Example: 
A server system with an enhanced CPU( 10 times faster 

than the original one) used for Web serving. Assuming 
the original CPU is busy with computation 40% of the 
time and is waiting for I/O 60% of the time.  

 Answer: 

Fractionenhanced = 0.4, Speedupenhanced =10  
Speedup =        1       =     1    = 1.56   
                    0.6 + 0.4      0.64  
                             10 
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Another Example 
 Implementations of floating-point (FP) square 

root vary significantly in performance 
Two enhancement proposal 
One proposal is to enhance the FPSQR hardware and 

speed up this operation by a factor of 10.  
The alternative is just to try to make all FP 

instructions in the graphics processor run faster by a 
factor of 1.6;  

Assuming 
FP square root (FPSQR) is responsible for 20% of the 

execution time of a critical graphics benchmark. 
FP instructions are responsible for a total of 50% of 

the execution time for the application. 
The design team believes that they do both 

enhancement  with the same effort. 
  Compare these two design alternatives. 
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Solution of the example 
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example 

Assume: 
An enhancement to a computer that improves 

some mode of execution by a factor of 10.  

Enhanced mode is used 50% of the 
time,measured as a percentage of the execution 
time when the enhancec mode is in use. 

Question: 
What is the speedup we have obtained from fast 

mode ? 

What percentage of the original execution time 
has been converted of fast mode ? 

Important Notes ! 

 

F is  the fraction in original machine !  
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What the Amdahl’s Law imply ? 
 If an enhancement is only usable for a fraction 

of task, then the total speedup will be no more 
than 1/ (1-F). 

Serve the guide 
 to how much an enhancement will improve 

performance 
 to how to distribute resource to improve cost-

performance  
Useful for comparing 
 the overall system performance of two 

alternatives, 
 two CPU design alternatives 

We can improve the performance by 
 increasing the Fractionenhanced 

or, increasing the Speedupenhanced  



2014/4/13 73 

The CPU Performance Equation 

The “Iron Law” of processor 
performance: 
Often it is difficult to measure the 

improvement in time using a new 
enhancement directly. 

CPU Performance Equation  
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Calculation of CPU Time 

     CPU time = Instruction count  CPI  Clock cycle time 
 

Or  
rate Clock

CPIcount nInstructio
time CPU




cycleClock 

Seconds

nInstructio

 cyclesClock 

Program

nsInstructio
 timeCPU 

Component of performance Units of measure

CPU execution time for a program Seconds for the program

Instruction count Instructions executed for the program

Clock cycles per instructions (CPI) Average number of clock cycles/instruction

Clock cycle time Seconds per clock cycle

 Architecture -->  Implementation -->  Realization 
 Compiler Designer  Processor Designer  Chip Designer 



2014/4/13 75 

Related technologies  
 CPU performance is dependent upon 3 characteristics: 

 clock cycle (or rate)        ( CCT ) 

 clock cycles per instruction ( CPI ) 

 instruction count.            ( IC ) 

 

 

 

 

 

 

 

 One difficulty: It is difficult to change one in isolation of 

the others.  

     Inst Count    CPI Clock Rate 

Program           X  
Compiler           X     (X) 
Inst. Set.           X      X 
Organization      X    X 
Technology      X 
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Other format of  
CPU Performance Equation  
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Example of CPUtime calculation 

 Suppose we have made the following measurements: 

 Frequency of FP operations (other than FPSQR) = 25% 

 Average CPI of FP operations = 4.0 

 Average CPI of other instructions = 1.33 

 Frequency of FPSQR =  2% 

 CPI of FPSQR = 20 

 Two design alternatives 

 decrease the CPI of FPSQR to 2  

 decrease the average CPI of all FP operations to 2.5. 

 Compare these two design alternatives using the CPU 

performance equation. 
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Answer to the question 

Since the CPI of the overall FP enhancement is 
slightly lower, its performance will be 
marginally better. 
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Compare the result with that 
from Amdahl’s law 

This is the same speedup we 
obtained using Amdahl’s Law: 
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Performance & price-performance 

Performance & price-performance  for 
desktop systems    Fig1.18 

Factors that responsible for the wide 
variation in price 
Different levels of expandability 

Use of cheaper disks and cheaper memory 

Cost of CPU varies 

Software differences 

Lower-end system use PC commodity parts in 
fans, power supply, support chip sets 

Commoditization effect 
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Five desktop and rack-
mountable systems 

Expandability:  Sun Java worktation < Dell ….< HP BL25p 
 
Cost of processor:  die size and L2 cache ,   processor  
 
Softerware difference  
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Price-performance 
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Messurements-1  

For Servers  Fig 1.17, 1.18 

TPC-C : standard industry benchmark for 
OLTP 

Reasonable approximation 

Measure total system performance 

Rules of measurement are very complete 

Vendors devote significant effort 

Report both performance & price-performance  
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Price-performance 
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Fallacies & pitfalls 

Pitfall:   

Falling prey to Amdahl’s Law. 

A single point of failure 

Fault detection can lower availability 
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Fallacy 

The cost of the processor 
dominates the cost of the system. 
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Fallacy 

Benchmarks remain valid indefinitely 

The rated mean time to failure of the disks 
is 1200000hours or almost 140 years, so 
disks practically never fail. 

Peak performance tracks observed 
performance. 
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Homework for Chapter 1 

Read the section of 1.0  

Question:  
You can select any 4 questions from textbook.   

Due time:  Before the lecture begin 

write your answer in English.  
submit it to website, NOT  via email. 
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