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• SRAM:
– value is stored  on a pair of inverting gates

– very fast but takes up more space than DRAM 

(4 to 6 transistors)

7.1 Introduction
Memories:  Review
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• DRAM:
– value is stored as a charge on capacitor (must be refreshed)

– very small but slower than SRAM (factor of 5 to 10)

• Write
– Charge bitline HIGH or LOW and set wordline HIGH

• Read
– Bit line is precharged to a voltage halfway 

between HIGH and LOW, and then the 
word line is set HIGH. 

– Depending on the charge in the cap, the 
precharged bitline is pulled slightly higher
or lower.

– Sense Amp Detects change

Memories:  Review
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DRAM logical organization (64 Mbit)

• Square root of bits per RAS/CAS
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• In fact

• Users want large and fast memories! 

Memory technology Typical access time Cost per GByte (2004)

SRAM 0.5-5ns $4000-$10,000

DRAM 50-70ns $100-$200
Magnetic disk 5,000,000-20,000,000ns

Problems in memory designing



6Q.S.Shi ZheJiang University

Locality---- two important concepts

1. temporal locality (locality in time):
If an item is referenced, it will tend to be referenced

again soon.
2. spatial locality (locality in space):

If an item is referenced, items whose addresses are
close by will tend to be referenced soon.

• As we know, these tow principles actually exists in most programs.
– Why does code have locality?

• Our initial focus:  two levels (upper, lower)
– block:   minimum unit of data 

– hit:  data requested is in the upper level

– miss:  data requested is not in the upper level
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• Build a memory hierarchy

Solutions 

Memory

CPU

Memory

Size Cost ($/bit)Speed

Smallest

Biggest

Highest

Lowest

Fastest

Slowest Memory

processor

Data are transferred
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Some important items

hit: The CPU accesses the upper level and succeeds.

Miss: The CPU accesses the upper level and fails.

Hit time: 
The time to access the upper level of the memory hierarchy, which 

includes the time needed to determine whether the access is a hit or 
a miss.

miss penalty:
The time to replace a block in the upper level with the 

corresponding block from the lower level, plus the time to deliver this 
block to the processor.



9Q.S.Shi ZheJiang University

The method 
• Hierarchies bases on memories of different 

speeds and size
• The more closely CPU the level is,the faster the one is.
• The more closely CPU the level is,the smaller the one is.
• The more closely CPU the level is,the more  expensive

Exploiting Memory Hierarchy

Levels in the 
memory hierarchy

Increasing distance 
form the CPU in 

access time

Size of the memory at each level
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There has been exploited Memory Hierarchy

1. The basics of Cache: SRAM and DRAM (main memory)
The solution is in speed

2. Visual Memory: DRAM and DISK
The solution is in size
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Simple implementations

• Two issues:
– How do we know if a data item is in the cache?

– If it is, how do we find it?

• Our first example: "direct mapped"
– block size is one word of data 

7.2 The basics of Cache

a. Before  the reference to X n

X3

Xn –  1

Xn –  2

X1

X4

b. Afte r the reference to Xn

X3

Xn –  1

Xn –  2

X1

X4

Xn

X2X 2

• For each item of data at the lower 
level, there is exactly one location 
in the cache where it might be.

e.g., lots of items at the lower level 
share locations in the upper level
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• Where can a block be placed in the upper level?

Direct Mapped Cache

0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1

00
0

C a c h e

M e m o r y

00
1

01
0

01
1

10
0

10
1

11
0

11
1

• Direct-mapping algorithm. 
memory address is modulo the number of blocks in the cache

• Fortunately, while the cache has 2n blocks, the orresponding
index is equal to the lowest n bits of memory block address. 
Here n=3. Let’s check

8 Block

index
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Accessing a cache---how do we find it? 

• Memory block address is larger than cache block address

Byte offsetIndexTAG

Block address
Index V Tag Data
000 N 

001 N
010 N
011 N
100 N
101 N
110 N
111 N

a. The initial state of the cache after power-on

valid bit
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Access sequence
• 10110,11010,10110,11010,10000,00011,10000,10010
Index V Tag Data

000 N 

001 N

010 N

011 N

100 N

101 N

110 Y (10)2 Memory(10110)

111 N

b. After handling a miss of address(10110) c. After handling a miss of address(11010)

N111

Memory(10110)(10)2Y110

N101

N100

N011

Memory(11010)(11)2Y010

N001

N 000

DataTagVIndex

d. After handling a hit of address(10110)

N111

Memory(10110)(10)2Y110

N101

N100

N011

Memory(11010)(11)2Y010

N001

N 000

DataTagVIndex

e. After handling a hit of address(11010)

N111

Memory(10110)(10)2Y110

N101

N100

N011

Memory(11010)(11)2Y010

N001

N 000

DataTagVIndex
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Access sequence-2
• 10110,11010,10110,11010,10000,00011,10000,10010
Index V Tag Data

000 Y (10)2 Memory(10000)

001 N

010 Y (11)2 Memory(11010)

011 N

100 N

101 N

110 Y (10)2 Memory(10110)

111 N

f. After handling a miss of address(10000) g. After handling a miss of address(00011)

N111

Memory(10110)(10)2Y110

N101

N100

Memory(00011)(00)2Y011

Memory(11010)(11)2Y010

N001

Memory(10000)(10)2Y000

DataTagVIndex

h. After handling a hit of address(10000)

N111

Memory(10110)(10)2Y110

N101

N100

Memory(00011)(00)2Y011

Memory(11010)(11)2Y010

N001

Memory(10000)(10)2Y000

DataTagVIndex

i. After handling a miss of address(10010)

N111

Memory(10110)(10)2Y110

N101

N100

Memory(00011)(00)2Y011

Memory(10010)(11)→ (10)2Y010

N001

Memory(10000)(10)2Y000

DataTagVIndex
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• For MIPS:

What kind of locality are we taking advantage of?

Direct Mapped Cache construction
A d d r e s s ( s h o w i n g  b i t p o s i t i o n s )

2 0 1 0

B y t e  
o f f s e t

V a l id T a g D a t aI n d e x
0
1
2

1 0 2 1
1 0 2 2
1 0 2 3

T a g

I n d e x

H i t D a t a

2 0 3 2

3 1  3 0        1 3  1 2  1 1        2  1  0

temporal
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Bits in Cache

Example 
• How many total bits are required for a direct-mapped cache 

16KB of data and 4-word blocks, assuming a 32-bit address?

Answer
• 16KB=4KWord=212 words
• One block=4 words = 22 words 
• Number of blocks (index bit) = 212 ÷ 22 = 210 blocks
• Data bits of block =4×32=128 bits
• Tag bits  = address – index-block size =32-10–2-2 =18 bits 
• Valid bit = 1 bit

• Total Cache size = 210 × (128+18+1)= 210×147= 147 Kbits
= 18.4KB

• It is about 1.15 times as many as needed just for the data
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Mapping an Address to Multiword Cache Block

Example 
• Consider a cache with 64 blocks and a block size of 16 bytes.
• What block number does byte address 1200 map to?

Answer 
(Block address) modulo (Number of cache blocks)

Where the address of the block is 

75 modulo 64 =11

Byte address
Bytes per block

1200
16= = 75

Byte address
Bytes per block×Byte per block Byte address

Bytes per block×Byte per block+( Byte per block-1)

1200                1215

Notice!!!

Here:
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• Read hits
– this is what we want!

• Read misses—two kinds of misses
– instruction cache miss
– data cache miss

• let’s see main steps taken on an instruction cache miss
– stall the CPU, fetch block from memory, deliver to cache, restart 

CPU read

1. Send the original PC value (current PC-4) to the memory.
2. Instruct main memory to perform a read and wait for the memory to complete 
its access.
3. Write the cache entry, putting the data from memory in the data portion of the 
entry, writing the upper bits of the address (from the ALU) into the tag field,and
turning the valid bit on.
4. Restart the instruction execution at the first step, which will refetch the 
instruction again, this time finding it in the cache.

Handling Cache reads hit and Misses
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• Write hits:  Difference Strategy
– write-back: Cause Inconsistent 

• Wrote the data into only the data cache
• Strategy ---- write back data from the cache to memory later

Fast
– write-through: Ensuring Consistent

• Write the data into both the memory the cache
• Strategy ---- writes always update both the cache and the memory  
• Slower----write buffer 

• Write misses:
– read the entire block into the cache, then write the word

Handling Cache Writes hit and Misses
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Deep concept in Cache

Four Questions for Memory Hierarchy Designers
Caching is a general concept used in processors, operating 

systems, file systems, and applications.
There are Four Questions for Memory Hierarchy Designers
• Q1: Where can a block be placed in the upper level? 

(Block placement)
– Fully Associative, Set Associative, Direct Mapped

• Q2: How is a block found if it is in the upper level?
(Block identification)

– Tag/Block
• Q3: Which block should be replaced on a miss? 

(Block replacement)
– Random, LRU,FIFO

• Q4: What happens on a write? 
(Write strategy)

– Write Back or Write Through (with Write Buffer)
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Q1: Block Placement

• Direct mapped

– Block can only go in one place in the cache 
Usually address MOD Number of blocks in cache

• Fully associative 
Block can go anywhere in cache. 

• Set associative
– Block can go in one of a set of places in the cache. 

– A set is a group of blocks in the cache.

Block address MOD Number of sets in the cache

– If sets have n blocks, the cache is said to be n-way set 
associative. 

•Note that direct mapped is the same as 1-way set associative, and 
fully associative is m-way set-associative (for a cache with m blocks).
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Figure 8-32 Block Placement
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• Every block has an address tag that stores the main memory 
address of the data stored in the block.

• When checking the cache, the processor will compare the 
requested memory address to the cache tag -- if the two are 
equal, then there is a cache hit and the data is present in the 
cache

• Often, each cache block also has a valid bit that tells if the 
contents of the cache block are valid

Q2: Block Identification
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• The Index field selects
– The set, in case of a set-associative cache
– The block, in case of a direct-mapped cache
– Has as many bits as log2(#sets) for set-
associative caches, or log2(#blocks) for direct-
mapped caches

• The Byte Offset field selects
– The byte within the block
– Has as many bits as log2(size of block)

• The Tag is used to find the matching block within a set or in the cache
– Has as many bits as Address_size – Index_size –
Byte_Offset_Size

The Format of the Physical Address
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Direct-mapped Cache Example (1-word Blocks)
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• Assume cache has 4 blocks

Fully-Associative Cache example (1-word Blocks)
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• Assume cache has 4 blocks and each block is 1 word
• 2 blocks per set, hence 2 sets per cache

2-Way Set-Associative Cache
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• In a direct-mapped cache, there is only one block that can be 
replaced

• In set-associative and fully-associative caches, there are N blocks 
(where N is the degree of associativity

Q3: Block Replacement
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• Several different replacement policies can be used
– Random replacement - randomly pick any block

• Easy to implement in hardware, just requires a 
random number generator

• Spreads allocation uniformly across cache
• May evict a block that is about to be accessed

– Least-recently used (LRU) - pick the block in 
the set which was least recently accessed

• Assumed more recently accessed blocks more likely 
to be referenced again

• This requires extra bits in the cache to keep track 
of accesses. 

– First in,first out(FIFO)-Choose a block from 
the set which was first came into the cache

Strategy of block Replacement
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• When data is written into the cache (on a store), is the data also written to 
main memory?

– If the data is written to memory, the cache is 
called a write-through cache

• Can always discard cached data - most up-to-date data is in memory
• Cache control bit: only a valid bit
• memory (or other processors) always have latest data

– If the data is NOT written to memory, the cache is 
called a write-back cache

• Can’t just discard cached data - may have to write it back to memory
• Cache control bits: both valid and dirty bits
• much lower bandwidth, since data often overwritten multiple times

• Write-through adv: Read misses don't result in writes, memory hierarchy is 
consistent and it is simple to implement.

• Write back adv: Writes occur at speed of cache and main memory 
bandwidth is smaller when multiple writes occur to the same block. 

Q4: Write Strategy
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• Write stall ---When the CPU must wait for writes to 
complete during write through

• Write buffers 
– A small cache that can hold a few values 
waiting to go to main memory. 

– To avoid stalling on writes, many CPUs use a 
write buffer.

– This buffer helps when writes are clustered. 
– It does not entirely eliminate stalls since it 
is possible for the buffer to fill if the burst 
is larger than the buffer. 

Write stall
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Write buffers

write
buffer

CPU

in out

DRAM   
(or lower mem)

Write Buffer
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• Write misses
– If a miss occurs on a write (the block is 
not present), there are two options.

– Write allocate
• The block is loaded into the cache on a miss 

before anything else occurs.
– Write around (no write allocate)

• The block is only written to main memory
• It is not stored in the cache.

– In general, write-back caches use write-
allocate , and write-through caches use 
write-around . 

Write misses 
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• Taking advantage of spatial locality to lower miss rates with many 
word in the block:

Larger blocks exploit spatial locality

Address (showing bit positions)

16 12 Byte 
offset

V Tag Data

Hit Data

16 32

4K 
entries

16 bits 128 bits

Mux

32 32 32

2

32

Block offsetIndex

Tag

31      16 15           4 3 2 1 0
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• Make reading multiple words easier by using banks of memory

•

• It can get a lot more complicated...

Designing the Memory system to Support Cache 

CPU

Cache

Bus

Memory

a. One-word -wide 
 memory organization 
 

CPU

Bus

b. Wide memory organization

Memory

Multiplexor

Cache

CPU

Cache

Bus

Memory 
bank 1

Memory 
bank 2

Memory 
bank 3

Memory 
bank 0

c. Interleaved memory organization
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M
em

or
y 

Assume
1  clock cycles to send the address
15 memory bus clock cycles for each DRAM  

access initiated
1 bus clock cycles to send a word of data
Block size is 4 words
Every word is 4 bytes 

The time to transfer one word is 1+15+1=17
The miss penalty (The time to transfer one block is):

1+4×(1+15)＝65 CLKs
Bandwidth :

4×4
65

Performance basic memory organization

≈
1
4

Only one word is useful,and three other words may be 
useless. So, for caches using four-word blocks, this 
memory system is not viable.
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• With a main memory width of 2 words(64bits)
The miss penalty: 4words/Block

1+2×(15+1)＝33 CLKs
Bandwidth :

• With a main memory width of 4 words(128bits)
The miss penalty: 4words/Block

1+1×(15+1)＝17 CLKs
Bandwidth :

4×4
33

Performance in Wider Main Memory 

＝
16
33

4×4
17 ＝

16
17

≈0.48

≈0.98

only two times that needed 
to transfer one word.

Equal to time  to 
transfer one word.
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• With 4 banks Interleaved Memory
The miss penalty: 4words/Block

1+15 +(4 × 1)＝20
Bandwidth :

Four-way interleaved memory

Performance in Four-way interleaved memory

4×4
20 ＝ 0.8

Parallel access

Optimizes sequential address access patterns

Almost equal to time  
to transfer one word.
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DRAM developed
Year 

introduced
Chip size $ per MB Total access time to 

a new row/column
Columm access time 

to existing row

1980 64Kbit $1500 250ns 150ns
1983 128Kbit $500 185ns 100ns
1985 1Mbit $200 135ns 40ns
1989 4Mbit $50 110ns 40ns
1992 16Mbit $15 90ns 30ns
1996 64Mbit $10 60ns 12ns
1998 128Mbit $4 60ns 10ns
2000 256Mbit $1 55ns 7ns
2002 512Mbit $0.25 50ns 5ns
2004 1024Mbit $0.10 45ns 3ns

DRAM size increased by multiples of four approximately once every three year 
until 1996,and thereafter doubling approximately every two years.
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• Increasing the block size tends to decrease miss rate:

•
Use split caches because there is more spatial locality in code:

Performance in different block size

1  KB 
8  KB 
16 KB 
64 KB 
256  KB

256

40%

35%

30%

25%

20%

15%

10%

5%

0%

M
is

s 
ra

te

64164

B lock s ize (bytes)

Program
Block size in 

words
Instruction 
miss rate

Data miss 
rate

Effective combined 
miss rate

gcc 1 6.1% 2.1% 5.4%
4 2.0% 1.7% 1.9%

spice 1 1.2% 1.3% 1.2%
4 0.3% 0.6% 0.4%
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7.3 Measuring and improving cache performance

• In this section, we will discuss two questions:
1. How to measure cache performance?
2. How to improve performance?

• The main contents are the following:
1. Measuring cache performance
2. Reducing cache misses by more flexible placement of blocks
3. Reducing the miss penalty using multilevel caches

Average Memory Assess time = hit time + miss time

= hit rate × Cache time + miss rate ×memory time

= 99% × 5 + (1-99%) × 45  =5.5ns 
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Measuring cache performance
• We use CPU time to measure cache performance.
CPU time= 

(CPU execution clock cycles + Memory-stall clock cycles) ×Clock cycle time

Memory-stall clock cycles = # of instructions ´ miss ratio ´ miss penalty
= Read-stall cycles + Write-stall cycles

For Read-stall

Read-stall cycles =                     ×Read miss rate ×Read miss penalty

• For a write-through plus write buffer scheme:

Write-stall cycles=                       ×Write miss rate ×Write miss penalty

+ Write buffer stalls

• If the write buffer stalls are small, we can safely ignore them .
• If the cache block size is one word, the write miss penalty is 0.

Read
Program

Read
Program

timecycleClockCPIICPUtime ××=
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Combine the reads and writes  

• In most write-through cache organizations, the read and 
write miss penalties are the same
– the time to fetch the block from memory.

• If we neglect the write buffer stalls, we get the following 
equation:
Memory-stall clock cycles ＝

× Miss rate × Miss penalty

We can also write this as:

Memory-stall clock cycles ＝

Memory accesses
Program

Instructions
Program

Misses
Instructions ×Miss penalty×
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Calculating cache performance

• Assume:
instruction cache miss rate 2%
data cache miss rate 4%
CPI without any memory stalls 2
miss penalty 100 cycles
The frequency of all loads and stores in gcc is 36%,as we see 

in Figure 3.26, on page 288.
• Question: How faster a processor would run with a perfect cache?
• Answer:

Instruction miss cycles = I×2%×100 =2.00I
Data miss cycles = I×36%×4%×100 =1.44I
Total memory-stall cycles= 2.00I+ 1.44I =3.44 I
CPI with stall = CPI with perfect cache + total memory-stalls

= (2 + 3.44 )I = 5.44I
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How faster a processor for ideal

• What happens if the processor is made faster?
Assume CPI reduces from 2 to 1
CPI with stall = CPI with perfect cache + total memory-stalls

=(1+3.44)I = 4.44I

CPU time with stalls
CPU time with perfect cache

I×CPIstall×Clock cycle
I×CPIperfect×Clock cycle

CPIstal
lCPIperfect

5.44
2

=

= =

CPU time with stalls
CPU time with perfect cache

CPIstal
lCPIperfect

4.44
1 =4.44= =

=2.72

3.44
5.44

3.44
4.44 =77%=63%    tofrom

Ratio time for Memory stalls
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Calculating cache performance with Increased Clock Rate

• Suppose we increase the performance of the computer in the 
previous example by doubling its clock rate for same memory 
system.

• Question : How much faster will the computer be with the 
faster clock to slow clock?

• Answer
Total miss cycles per instruction = (2%×200) + 36%×(4%×200)=6.88

CPI with cache misses = 2 + 6.88 =8.88

Performance with fast clock
Performance with slow clock

Execution time with slow clock
Execution time with fast clock

IC×CPIslow clock×Clock cycle
IC×CPIfast clock×Clock cycle/2

5.44
8.88×1/2= =1.23=

=

This, the computer with the faster clock is about 1.2 
times faster rather than 2 time faster.
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Solution 1 

Reducing cache misses by more flexible placement of blocks

(1) The disadvantage of a direct-mapped cache
(2) The basics of a set-associative cache
(3) Miss rate versus set-associative
(4) Locating a block in the set-associative cache
(5) Size of tags versus set associative
(6) Choosing which block to replace
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The disadvantage of a direct-mapped cache

• If the CPU requires the following memory units sequentially: 
word  0,word 8 and word 0. Word  0 and  word 8 both are 
mapped to cache block 0, so the third access will be a miss. 

• But obviously, if one memory block can be placed in any cache 
block , the miss can be avoided. So, there is possibility that the 
miss rate can be improved.

0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1
00

0

C a c h e

M e m o r y
00

1

01
0

01
1

10
0

10
1

11
0

11
1
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The basics of a set-associative cache
Decreasing miss ratio with associativity
• A set-associative cache is divided into some sets. A set 

contains several blocks.
• A memory block is mapped to a set in the cache through a 

mapping algorithm. 
– The memory block can be placed in any block in the 

corresponding set.

• The mapping algorithm is: (set with direct-mapped)
Set number (Index) =

(Memory block number) modulo (Number of sets in the cache)

• If a set has only one block, this set-associative cache is 
actually a direct-mapped cache.
• If a set-associative cache has only one set, this 
set-associative cache is called a fully-associative cache.
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Memory block whose address is 12 in a cache with 8 blocks 
for different mapped

1 
2

Tag

Data

Block # 0 1 2 3 4 5 6 7

Search

Direct mapped

1 
2

Tag

Data

Set # 0 1 2 3

Search

Set associative

1 
2

Tag

Data

Search

Fully associativeDirect mapped Set associative Fully associative
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An eight-block cache configured as variety-way

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data

Four-w ay set associative

Set

0

1

Tag Data

One way set associative
(direct mapped)

B lock

0

7

1

2

3

4

5

6

Tag Data

Two-way set associative

Set

0

1

2

3

Tag Data
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Miss rate versus set-associativity
Assume: there are three small caches, each consisting of four one-

word blocks. 
One cache is direct-mapped, 
the second is two-way set associative
and the third is fully associative. 

Question: Given the following sequence of block addresses: 0,8,0,6,8, 
find the number of misses for each cache organization.

Answer:  for direct-mapped 6 misses
Contents after each reference

Set 0 Set 1 Set 2 Set 3
Block 0 Block 1 Block 2 Block 3

0 Miss M[0]
8 Miss M[8]
0 Miss M[0]
6 Miss M[0] M[6]
8 Miss M[8] M[6]

Memory 
block 

Hit or 
miss
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Second, for the two-way set associative cache.     5 misses
Contents after each reference

Set 0 Set 1
Block 0 Block 1 Block 2 Block 3

0 Miss M[0]
8 Miss M[0] M[8]
0 Hit M[0] M[8]
6 Miss M[0] M[6]
8 Miss M[8] M[6]

Memory 
block 

Hit or 
miss

Block 3Block 2Block 1Block 0

M[6]M[8]M[0]Hit8
M[6]M[8]M[0]Miss6

M[8]M[0]Hit0
M[8]M[0]Miss8

M[0]Miss0

Only one set
Contents after each reference

Hit or 
miss

Memory 
block 

Finally, for the fully associative cache.                3 misses
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How much of a reduction in the miss rate is achieved by 
associativity?

The data cache miss rates for organization like the 
Intrinsuty FastMATH processor for SPEC2000 benchmarks 
with associativity varying form one-way to eight-way .

• Data cache organization is 64KB data cache and 16-word block

Associativity Data miss rate
1 10.3%
2 8.6%
4 8.3%
8 8.1%
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Locating a block in the set-associative cache

• The implementation of a four-way set-associative cache 
requires four comparators and a 4-to-1 multiplexor.

2 2 8

V T a gI n d e x
0
1
2

2 5 3
2 5 4
2 5 5

D a ta V T a g D a ta V T a g D a ta V T a g D a ta

3 22 2

4 - to - 1  m u l t ip le x o r

H it D a ta

123891 01 11 23 03 1 0
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Size of tags versus set associativity
Assume 

Cache size is 4K Block 
Block size is 4 words
Physical address is 32bits

Question
Find the total number of set and total number of tag bits for 
variety associativity

Answer
Offset size (Byte) = 16= 24 4 bits for address
Number of memory block = 232÷24=228 28 bits for Block address

Number of cache block = 212 12 bits for Block address

For direct-mapped
Bits of index = 12 bits
bits of Tag   = (28-12) ×4K=16×4K=64 Kbits
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For two-way associative
Number of cache set = 212 ÷ 2= 211

Bits of index = 12-1=11 bits
Bits of Tag   = (28-11) ×2×2K=17×2×2K=68 Kbits

For four-way associative
Number of cache set = 212 ÷ 4= 210

Bits of index = 12-1=10 bits
Bits of Tag   = (28-10) ×4×1K=18×4×1K=72 Kbits

For full associative
Number of cache set = 212 ÷ 212 = 20

Bits of index = 12-12=0 bits
Bits of Tag   = (28-0) ×4K×1=128 Kbits

Direct 2-way 4-way Fully
Index(bit) 12 11 10 0
Tag(bit) 16 17 18 28
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Choosing which block to replace

• In an associative cache, we must decide which block to replace 
when a miss happens and the corresponding set is full.

• The most commonly used scheme is least recently used (LRU), 
which we used in the previous example. In an LRU scheme, the 
block replaced is the one that has been unused for the longest 
time.

• For a two-way set associative cache, the LRU can be 
implemented easily. We could keep a single bit in each set. We 
set the bit whenever a specific block in the set is referenced, 
and reset the bit whenever another block is referenced.

• As associativity increases, implementing LRU gets harder.
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Decreasing miss penalty with multilevel caches

• Add a second level cache:
– often primary cache is on the same chip as the processor

– use SRAMs to add another cache above primary memory (DRAM)

– miss penalty goes down if data is in 2nd level cache

• Example:
– CPI of 1.0 on a 5GHz machine with a 2% miss rate, 100ns DRAM access

– Adding 2nd level cache with 20ns access time decreases miss rate to 2%

• Miss penalty to main memory is

• The CPI with one level of caching

Total CPI = 1.0 + Memory-stall cycles per instruction
= 1.0 + 2% × 500 = 11.0

Miss penalty with levels of cache without access main memory

100ns
0.2 = 500 clock cycles

5ns
0.2 = 25 clock cycles
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• The CPI with Two level of cache with 0.5% miss rate for main memory

Total CPI = 1.0 + Primary stalls per instruction +  Secondary stalls per instruction
= 1 + 2% ×25 + 0.5% × 500 
= 1.0 + 0. 5 +2.5  = 4.0

• The processor with secondary cache is faster by

• Using multilevel caches:
– try and optimize the hit time on the 1st level cache

– try and optimize the miss rate on the 2nd level cache

11.0
4.0 =2.8
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7.4 Virtual Memory

• Main memory can act as a cache for the secondary storage (disk)

• Advantages:
– illusion of having more physical memory

– program relocation 

– protection

Physical addresses

Disk addresses

Virtual addresses
Address translation
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Pages:  virtual memory blocks

• Page faults:  the data is not in memory, retrieve it from disk
– huge miss penalty, thus pages should be fairly large (e.g., 

4KB)

– reducing page faults is important (LRU is worth the price)

– can handle the faults in software instead of hardware

– using write-through is too expensive so we use write back

3 2 1 011 10 9 815 14 13 1231 30 29 28 27

Page offsetVirtual page number

Virtual address

3 2 1 011 10 9 815 14 13 1229 28 27

Page offsetPhysical page number

Physical address

Translation
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Page Tables

Physical memory

Disk storage

Valid

1
1
1
1
0
1
1
0
1
1
0
1

Page table

Virtual page
number

Physical page or 
disk address
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Placing a page and finding it again ----Page Tables

P a g e  o f f s e tV ir tu a l p a g e  n u m b e r

V i r t u a l  a d d re s s

P a g e  o f f s e tP h y s i c a l p a g e  n u m b e r

P h y s ic a l a d d r e s s

P h y s i c a l p a g e  n u m b e rV a l i d

I f  0  th e n  p a g e  is  n o t  
p r e s e n t  in  m e m o r y

P a g e  ta b le  r e g i s te r

P a g e  ta b l e

2 0 1 2

1 8

3 1   3 0   2 9   2 8   2 7   1 5   1 4   1 3   1 2   1 1   1 0   9   8  3   2   1   0

2 9   2 8   2 7 1 5   1 4   1 3   1 2   1 1   1 0   9   8  3   2   1   0

Virtual memory systems use fully associative mapping method
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Page faults

• When the OS  creates a process, it usually creates the space on disk 
for all the pages of a process.

Physical memory

Disk storage

Valid

1
1
1
1
0
1
1
0
1
1
0
1

Page table

Virtual page
number

Physical page or 
disk address

• When a gage fault occurs, 
the OS will be given control 
through exception 
mechanism.

• The OS will find the page in 
the disk by the page table.

• Next, the OS will bring the 
requested page into main 
memory. If all the pages in 
main memory are in use, the 
OS will use LRU strategy to 
choose a page to replace
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What about writes?

• Because disk accesses are too slow,virtual memory systems can not 
use write-through strategy.

• Instead, they must use write-back strategy. To do so, the machines 
need add a dirty bit to the entry of page table. 

• The dirty bit is set when a page is first written. If the dirty bit of a 
page is set, the page must be written back to disk before being 
replaced.
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Making Address Translation Fast----TLB

• A cache for address translations:  translation lookaside buffer

V alid

1
1
1
1
0
1
1
0
1
1
0
1

Page table

P hysica l page  
addressValid

TLB

1
1
1
1
0
1

Tag
Virtual page  

number

Physica l page  
o r d isk  address

Phys ical m em ory

D isk s torage
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TLBs and caches

Yes

Deliver data 
to the CPU

Write?

Try to read data 
from cache

Write data into cache, 
update the tag, and put 

the data and the address 
into the write buffer

Cache hit?Cache miss stall

TLB hit?

TLB access

Virtual address

TLB miss 
exception

No

YesNo

YesNo

Write access 
bit on?

 

YesNo

Write protection 
exception

Physical  address
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Modern Systems
• Very complicated memory systems:

Characteristic Intel Pentium Pro PowerPC 604
Virtual address 32 bits 52 bits
Physical address 32 bits 32 bits
Page size 4 KB, 4 MB 4 KB, selectable, and 256 MB
TLB organization A TLB for instructions and a TLB for data A TLB for instructions and a TLB for data

Both four-way set associative Both two-way set associative
Pseudo-LRU replacement LRU replacement
Instruction TLB: 32 entries Instruction TLB: 128 entries
Data TLB: 64 entries Data TLB: 128 entries
TLB misses handled in hardware TLB misses handled in hardware

Characteristic Intel Pentium Pro PowerPC 604
Cache organization Split instruction and data caches Split intruction and data caches
Cache size 8 KB each for instructions/data 16 KB each for instructions/data
Cache associativity Four-way set associative Four-way set associative
Replacement Approximated LRU replacement LRU replacement
Block size 32 bytes 32 bytes
Write policy Write-back Write-back or write-through
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• Processor speeds continue to increase very fast
— much faster than either DRAM or disk access times

• Design challenge:  dealing with this growing disparity

• Trends:
– synchronous SRAMs (provide a burst of data)

– redesign DRAM chips to provide higher bandwidth or processing 

– restructure code to increase locality

– use prefetching (make cache visible to ISA)

Some Issues
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