
Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Smart VM co-scheduling with the precise prediction of performance
characteristics
Yuxia Cheng a,∗, Wenzhi Chen b, Zonghui Wang b, Zhongxian Tang b, Yang Xiang a,b

a Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
b Zhejiang University, Zheda Road 38, Xihu District, Hangzhou, China

h i g h l i g h t s

• Identify the performance interference factors between contention VMs.
• Build VM performance prediction model to quantify the precise levels of performance degradation.
• Design contention-aware VM scheduling algorithms to improve system efficiency and guarantee the QoS of VMs.

a r t i c l e i n f o

Article history:
Received 9 August 2016
Received in revised form
1 November 2016
Accepted 21 November 2016
Available online xxxx

Keywords:
Virtual machine
Shared resource contention
Performance prediction
VM co-location

a b s t r a c t

Traditional virtualization systems cannot effectively isolate the shared micro-architectural resources
among VMs. Different types of CPU and memory-intensive VMs contending for these shared resources
will lead to different levels of performance degradation, which decreases the system efficiency and
Quality of Service (QoS) in the cloud. To address these problems, we design and implement a smart
VM co-scheduling system with precise prediction of performance characteristics. First, we identify the
performance interference factors and design synthetic micro-benchmarks. By co-running these micro-
benchmarks with VMs, we decouple two kinds of VM performance characteristics: VM contention
sensitivity and contention intensity. Second, based on the characteristics, we build VM performance
prediction model using machine learning techniques to quantify the precise levels of performance
degradation. By co-running large numbers of different VMs and collecting their performance scores, we
train a robust performance predictionmodel. Finally, based on the predictionmodel,wedesign contention
aware VM scheduling algorithms to improve system efficiency and guarantee the QoS of VMs in the cloud.
Our experimental results show that the performance prediction model achieves high accuracy and the
smart VMscheduling algorithms based on the prediction improves systemefficiency andVMperformance
stability.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

System virtualization is the fundamental technique in the
Infrastructure as a Service (IaaS) cloud computing paradigm.
The virtualization software enables multiple virtual machines
(VMs) to share underlying physical machines. Typically, multiple
VMs running on the same physical server, which is called VM
consolidation, can improve resource utilization in cloud data
centers. As cloud computing is pervasive, it becomes increasingly
important to exploit performance opportunities and improve the
efficiency of cloud platform.

∗ Corresponding author.
E-mail address: yuxia.cheng@deakin.edu.au (Y. Cheng).

However, the widely used commodity hypervisors (Xen, KVM,
and VMware ESX etc.) cannot effectively provide performance
isolation between VMs [1,2]. In the typical SMP (Symmetric Multi-
Processor) server, VMs will contend for the underlying shared
micro-architectural resources as shown in Fig. 1. The sharedmicro-
architectural resources, including shared Last Level Cache (LLC),
integrated memory controller, prefetcher, and bus bandwidth etc.,
are critical for the overall system performance [3]. Therefore,
different types of CPU and memory-intensive VMs contending
for these resources will lead to different levels of performance
degradation, which decreases the system efficiency and Quality of
Service (QoS) in the cloud [4]. As themicro-architectural resources
play an increasingly important role in the system performance,
it becomes more and more important to efficiently address the
shared resource contention problem in the cloud.

http://dx.doi.org/10.1016/j.future.2016.11.022
0167-739X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2016.11.022
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:yuxia.cheng@deakin.edu.au
http://dx.doi.org/10.1016/j.future.2016.11.022

2 Y. Cheng et al. / Future Generation Computer Systems () –

Fig. 1. The simplified architecture of multicore systems.

To alleviate the performance degradation caused by shared re-
source contention in the multicore systems, previous researchers
proposed cache partitioning [5] and page coloring techniques [6]
to prevent contention problems. While these techniques guaran-
tee fairness among different tasks, they lack flexibility and re-
duce overall cache utilization [7]. Contention-aware scheduling
techniques [8–10,1] are proposed to more flexibly address re-
source contention by co-scheduling cooperative tasks to share re-
sources. Through effectively co-locating tasks to reduce perfor-
mance bottlenecks, these scheduling techniques can improve sys-
tem efficiency. But some tasks may still encounter unstable per-
formance due to the inaccurate performance prediction in the
scheduling [11].

To more precisely manage contention problems, researchers
proposed performance modeling techniques [12–15] to infer
application behaviors when they are sharing physical resources.
Typically, based on the performance monitoring events, the
model predicts the application’s performance behaviors. Then,
performance optimization solutions can be applied according
to the predictions. However, these modeling techniques were
proposed in the non-virtualized and small-scale environment that
mainly focused on the shared cache utilization. Other modeling
techniques [16–18] proposed in the virtualized environment
considered coarse grained factors, such as CPU, memory, storage
and network factors. The fine grained micro-architectural level
resource contention problems in the large-scale virtualized cloud
environment needs further investigation.

In the large-scale cloud data center, addressing the shared
resource contention problem to improve system efficiency and
performance stability faces three major challenges. (1) First of
all, different types of VMs have complex interactions with the
underlying micro-architectural resources. How to effectively and
efficiently measure the performance of VMs online and capture
their performance characteristics are non-trivial in the large-
scale data center. (2) Secondly, the overhead of migration VMs
between physical servers is high, which requires extra compute
and network resources. How to precisely predict the performance
of co-scheduled VMs in advance to reduce re-schedulingmigration
overhead remains the open problem. (3) Thirdly, how to build
a smart co-scheduling system, which integrates the process
of VM performance monitoring, characterizing, predicting, and
scheduling, requires intricate system design.

In this paper, we design and implement a smart VM co-
scheduling system with the precise prediction of different VMs’
performance characteristics in the cloud data center. The main
contributions of this paper are described as follows:

(1) We identify the main resource contention factors between co-
located VMs, and design the correspondingmicro-benchmarks
to quantify the levels of contention. We find that the data
access patterns and working set sizes are the dominant factors
for micro-architectural resource contentions. The synthetic
micro-benchmarks are used to stress the micro-architectural
shared resources. By co-running micro-benchmarks with real
application VMs, we decouple two kinds of VM performance
characteristics: the VM contention sensitivity and contention
intensity. The sensitivity and intensity features are well
correlated with the eventual performance degradation of VMs
contending for shared resources.

(2) Using the obtained contention features, we build the perfor-
mance prediction model with machine learning algorithms to
quantify the precise levels of performance degradation. We
collect the sensitivity and intensity features of applications in
VMs, and record the performance degradation results of VMs
with a large number of different co-scheduling combinations.
The collected features and the performance degradation re-
sults are used as training set. Themore numbers of VMs trained
in the model, the more precise the online prediction results.
The contention features collection time and themodel training
time are reduced using the decoupled sensitivity and intensity
features.

(3) Based on the performance prediction model, we design the
contention-aware VM scheduling algorithms in cloud data
center according to different scheduling objectives: to improve
overall system throughput or to guarantee the QoS of each VM.
Before a new VM is deployed into the cloud, its contention
features are first collected in a training server. Then, the
model predicts performance degradation of the new VMwhen
co-scheduling with other VMs, which provides the precise
guidance for contention-aware VM scheduling.

The experimental results show that the performance prediction
model achieves high accuracy and the mean absolute error is
2.83%. The contention aware VM scheduling algorithms based on
the prediction model can effectively improve system throughput
and guarantee the QoS of VMs compared with the traditional
scheduling algorithms.

The rest of this paper is organized as follows: Section 2discusses
related work. Section 3 analyzes VM runtime performance metrics
and contention features. Section 4 presents the performance
prediction model and the contention aware VM scheduling
algorithms. Section 5 shows the experimental results. Section 6
concludes this paper.

2. Related work

In cloud data center, performance optimization for the virtual-
ized system is an important research area. How to exploit the per-
formance opportunities in multicore systems, and how to improve
resource utilization in cloud data centers as well as guarantee the
QoS of VMs face many challenges.

In multicore systems, the shared last level cache is the
performance critical resource. Previous researchers [12,19,20,13]
proposed methods to analyze the shared cache usage in multicore
systems. Hardware performance monitoring techniques [21–23]
are used to capture program cache behaviors. Tam et al. [24]
proposed a technique to estimate shared cache occupation for
each core using online cache miss rate curve detection. West
et al. [14] proposed hardware performance monitoring based
method to predict cache usage for each thread. Based on the cache
usage estimation, researchers proposed hardware partitioning [5,
25] and page coloring [6,26] techniques to optimize shared cache
contention problems in multicore systems.

Y. Cheng et al. / Future Generation Computer Systems () – 3

Efficient co-scheduling of different threads to more construc-
tively use shared on chip resources is another promising technique
to alleviate contentionproblems [7]. Jiang et al. [27] andRadojković
et al. [9] theoretically analyzed the optimal thread co-scheduling
combinations on multicore processors. Tang et al. [11] analyzed
the performance impact of co-scheduling large scale datacenter
applications due to resource sharing, and showed that there ex-
ists both positive and negative impacts of co-scheduling as ap-
plication behavior changes. Fedorova et al. proposed DI [10] and
DINO [8] thread scheduling algorithms to reduce cache contention
by spreading cache intensive threads apart and co-scheduling
them with less cache intensive threads. Mars et al. [28] proposed
a mechanism named Bubble-up to infer the performance degrada-
tion due to co-locating multiple applications on a single multicore
server. Based on the Bubble-upmechanism, Yang et al. [29] further
proposed the Bubble-Flux mechanism to effectively co-locate la-
tency sensitive applications with batch jobs. Zhang et al. [15] and
Eyerman et al. [30] proposed performance models in the multi-
thread multicore systems to more precisely co-schedule appropri-
ate tasks. These techniques were proposed in the non-virtualized
environment.

In virtualized environments, Rao et al. [1] proposed a VCPU
migration algorithm to optimize resource contention problems
in NUMA (Non-Uniform Memory Access) multicore systems.
The algorithm uses the uncore penalty metric to infer VCPU
performance in the system and adaptively migrates VCPUs to
minimize the system-wide uncore penalty. Liu et al. [2] proposed
a NUMA overhead aware hypervisor memory management policy.
They introduced a method to estimate the memory zone access
overhead using hardware performance counters. Based on the
estimation, they proposed two optimization techniques: a NUMA
overhead aware buddy allocator and a P2M swap FIFO. Lee
et al. [31] proposed a region-based scheduling algorithm to
manage shared cache resources in multicore platform. Their
approach put emphasis on cache/memory-centric scheduling
rather than CPU-centric load balancing due to the increasing
importance of cache and memory structures to the system
performance.

The VM performance modeling techniques [16,17,4,18,32,
33] were proposed to more precisely manage resources in the
system. Govindan et al. [4] proposed a method of estimating
the cache usage of applications through active probing with the
synthetic cache loader benchmark, and uses the cache usage
estimation to predict performance degradation of applications
upon consolidation with other applications. Kundu et al. [17]
proposed a method of modeling the performance of VM-hosted
applications as a function of resources allocated to the VM and
the I/O resource contention it experiences. Chiang et al. [18]
proposed the I/O interference aware scheduling for data-intensive
applications in virtualized environment. They used the non-
linear models to capture the bursty I/O patterns in data-intensive
applications and incorporated the model into the VM scheduling
systems.

In cloud data centers, many solutions [34–38] were proposed
to increase server utilization and reduce resource conflicts.
Nathuji et al. [34] designed a virtual machine QoS aware control
framework named Q-Clouds. The Q-Clouds framework reserves
suitable resources and tunes resource allocations to mitigate
performance interference effects. Delimitrou et al. [35] proposed
a heterogeneity and interference aware cluster management that
uses collaborative filtering techniques to classify and deploy
different applications in datacenter. Vasic et al. [36] proposed the
DeepDive system to identify andmanageperformance interference
among VMs co-located on the same physical server in cloud
environments. Their approach to identify interference is based
on VM performance classification and exhaustive interference
analysis. Once identified the interference, the VM is migrated to
a less loaded machine.

3. VM performance characteristics analysis

In this section, we describe the method of collecting VM
runtime performance metrics and analyze resource contention
factors that contribute to VM performance degradation.

3.1. Performance metrics

VMs simultaneously running on the same multicore systems
will contend for shared resources, and a single VM running alone
has no resource contention from other VMs. Therefore, we use Eq.
(1) to measure the level of performance degradation caused by
resource contention when two VMs are co-located on the same
multicore processor.

PDA
co-run/B =

PA
co-run/B − PA

alone

PA
alone

(1)

where PDA
co-run/B represents the performance degradation of VM A

when it is co-running with VM B, PA
co-run/B represents the actual

performance of VM A when it is co-running with VM B, PA
alone

represents the performance of VM A when it is running alone.
The shared resource contention inmulticore systems aremainly

caused by CPU andmemory intensiveworkloads. The performance
of these workloads can be measured online using the Cycles Per
Instruction (CPI) metric [39,40]. Through hardware performance
monitoring counters (PMC) [22], we can monitor each VM’s CPI
with low overhead. Therefore, Eq. (1) can be written as Eq. (2).

PDA
co-run/B =

CPIAco-run/B − CPIAalone
CPIAalone

(2)

where CPIAco-run/B is the CPI of VM A when it is co-running with VM
B, CPIAalone is the CPI of VM A when it is running alone.

Fig. 2 shows the NPB benchmark [41] performance results
reported inside VM compared with the CPI results monitored
from outside VM using PMC. The x-axis represents different cases
that two benchmarks are running inside two co-located VMs
respectively. The y-axis represents performance degradation of
benchmarks. The performance degradation is calculated using both
benchmark reported runtime and the monitored CPI. Two metrics
Pearson correlation coefficient is 0.995, which demonstrates that
CPI is a suitable metric to measure VM performance for CPU and
memory intensive workloads. The CPI metric of each VM can be
easily obtained using PMC in the hypervisor, which does not need
to enter into VMs to get the application’s reported performance
results that will violate the user’s confidentiality in the cloud.

3.2. Resource contention features

In multicore systems, each core has its private processing unit
and L1/L2 caches. Data requests that miss in the private caches
are sent to the ‘uncore’ subsystem shared by multiple cores [1],
which contains the shared LLC, interconnect, prefetcher, memory
controller and other micro-architectural units. However, system
software (hypervisor or operating system) [22] cannot directly
manage the usage of these shared micro-architectural resources.
Applications simultaneously contending for these resources will
lead to performance degradation [11].

To characterize the VM’s contention features that cause the
performance degradation, we design several synthetic micro-
benchmarks to co-runwith VMs. Previous research [42] has shown
that data access patterns and working set sizes are the dominant
factors that contribute to the performance degradation caused by
resource contention in multicore systems. Therefore, the micro-
benchmarks are designed according to the data access patterns

4 Y. Cheng et al. / Future Generation Computer Systems () –

Fig. 2. The VM performance degradation metrics comparison.

and working set sizes. Random and sequential accesses have large
difference in the usage of cache and prefetch units. Read and
write data accesses are through separate ports and channels in the
multicore systems. The application’s performance differs when its
working set fits in the shared cache or resides in themainmemory.

We design micro-benchmarks with three major dimensions
of Random/Sequential, Read/Write, and working set sizes. Then,
we use the following micro-benchmarks to characterize different
resource contention features. (1) Cache Sequential Read (CSR); (2)
Cache Random Read (CRR); (3) Cache Sequential Write (CSW);
(4) Cache Random Write (CRW); (5) Memory Sequential Read
(MSR); (6) Memory Random Read (MRR); (7) Memory Sequential
Write (MSW); (8)Memory RandomWrite (MRW). The eightmicro-
benchmarks are carefully designed to maximize the resource
contention in terms of their respective resource utilization
dimensions. These micro-benchmarks generate approximately
linear interference to the corresponding resource dimensions
with the increase of intensity. Based on this property, previous
studies [28,15,35] have demonstrated that we can sample only
two intensity points to reduce the feature profiling overhead.
Cache/Memory represent the micro-benchmark’s working set
size that fits in the cache or resides in the main memory. As
the experiment section shows, the eight micro-benchmarks are
sufficient to capture the required contention features that help the
model to obtain precise prediction.

For the observed VM A, the performance interference caused
by contention can be two folds. One is contention sensitivity, the
other is contention intensity. The VM A’s contention sensitivity is
the performance degradation of VM A that is caused by other VMs’
resource contention. Conversely, the VM A’s contention intensity
is the performance degradation of other VMs that is caused by the
resource contention of VMA.Weuse the Eqs. (3) and (4) to quantify
the contention sensitivity and intensity features of the VMwhen it
is co-running with different micro-benchmarks.

Eq. (3) shows the VM Contention Sensitivity (VCS).

VCSAbenchi =
CPIAco-run/benchi − CPIAalone

CPIAalone
(3)

where VCSAbenchi is the contention sensitivity of VM A when it
is co-running with benchi (the benchi is one of the eight micro-
benchmarks), CPIAco-run/benchi is the CPI of VMAwhen it is co-running
with benchi, CPIAalone is the CPI of VM A when it is running alone.

Eq. (4) shows the VM Contention Intensity (VCI).

VCIAbenchi =
CPIbenchico-run/A − CPIbenchialone

CPIbenchialone

(4)

where VCIAbenchi is the contention intensity of VM A when it is co-

running with benchi, CPI
benchi
co-run/A is the CPI of benchi when it is co-

running with VM A, CPIbenchialone is the CPI of benchi when it is running
alone.

Fig. 3 plots the contention sensitivity and intensity distributions
of NPB [41] and SPEC CPU 2006 [43] benchmarkswhen they are co-
running with different micro-benchmarks. The results show that
different applications have a wide range of contention sensitivity
and intensity. For example, the VCS under the contention of CRR
micro-benchmark ranges from 0% to 20%, while the VCI of CRR
micro-benchmark ranges from 0% to 60%. Each micro-benchmark
co-running with the VM profiles a representative contention
feature. As Fig. 3 shows, the contention sensitivity and intensity
values have low correlations with each other, which helps the
model capture more effective features to generate prediction
results.

By co-running with the micro-benchmarks, we collect a set of
contention features of the VM. These features are the dominant
factors that contribute to the performance degradation due to
resource contention. The following section describes how to
leverage these features in the model to predict performance
degradation.

4. Contention-aware VM scheduling framework

In this section, we present the shared resource contention
aware VM scheduling system. The systemmainly consists of three
parts: the VM performance training module, the VM performance
prediction model, and the contention-aware VM scheduler.

Y. Cheng et al. / Future Generation Computer Systems () – 5

(a) VM contention sensitivity (VCS). (b) VM contention intensity (VCI).

Fig. 3. The VM performance degradation distribution under different types of micro-architectural resource contention.

4.1. Overview

We propose the performance prediction based contention-
aware VM scheduling system to alleviate resource contention
problems among VMs and to improve system efficiency or to
guarantee the QoS of VMs. In our deployment scenario, we assume
that applications deployed in the VMs are typically long running,
CPU and memory intensive workloads.

The overview of the contention-aware VM scheduling system is
presented in Fig. 4, which includes three major parts:

(1) VM performance training module is responsible for collecting
new VMs performance features. The training features include
the VCS and VCI of VMs collected in the training server.
These features are used in the prediction model to predict
performance degradation of co-located VMs.

(2) VM performance prediction model is used to predict the
performance degradation of co-located VMs and to indicate
which co-location combinations can be applied. The model
regards VCS&VCI features as inputs and outputs the predicted
performance degradation. The prediction results are used for
contention-aware VM scheduler. The VM online performance
events are periodically monitored to update the prediction
model when the prediction error is larger than a predefined
threshold.

(3) Contention-aware VM scheduler is responsible for schedul-
ing VMs onto proper physical servers based on the predic-
tion result. The scheduler executes the proper scheduling al-
gorithms to guarantee QoS of VMs, or to improve overall sys-
tem throughput according to predefined resource manage-
ment strategies.

4.2. VM Training

Applications deployed in the VMs are typically long running
services. Before new VMs are deployed onto the physical
production server, we collect the VM’s runtime features on the
training server. The runtime features are the VM’s VCS and VCI
metrics described in Section 3.2.

During the model training phase, we collect both VM’s
contention features and the actual performance degradation when
two VMs are co-located onto the same multicore server. The VM’s
contention features are obtained via co-locating the new VM with
different micro-benchmarks respectively as Eqs. (3) and (4) show.

The actual performance degradation of VMs are obtained via co-
locating two application VMs onto the same multicore server as
Eq. (2) shows.

By running the VM alone, running the VM with micro-
benchmarks, and running the VM with other VMs, we can collect
the contention features and performance degradation results as
training data to build our prediction model.

[VCScgmicro1
, VCIspmicro1

, . . . , VCScgmicro8
, VCIspmicro8

, PDcg
co-run/sp] (5)

[VCSspmicro1
, VCIcgmicro1

, . . . , VCSspmicro8
, VCIcgmicro8

, PDsp
co-run/cg]. (6)

Eqs. (5) and (6) present two examples of training data records
that are used to build the prediction model. Eq. (5) shows the
training data of using VM contention sensitivity of cg and VM
contention intensity of sp to predict the performance degradation
of VM cg when it is co-runningwith VM sp. Similarly, Eq. (6) shows
the training data of performance degradation of VM sp when it is
co-running with VM cg. cg and sp are two benchmarks in the NPB
benchmark suite. After the prediction model is built, the model
can use the contention features of VM A and VM B as input to
predict the performance degradation of VM A (PDA

co-run/B) and VM
B (PDB

co-run/A) respectively.

4.3. Prediction model

In the predictionmodel, we usemachine learning algorithms to
build the relationships between VMs’ contention features and the
performance degradation. Eq. (7) shows the input variables and the
output result in the prediction model. When VM A is co-running
with VM B in the same multicore system, the equation outputs
the predicted performance degradation of VM A (PDA

co-run/B), using
the contention sensitivity features of VM A and the contention
intensity features of VM B as inputs.

PDA
co-run/B = ML(VCSAmicro1 , VCI

B
micro1 , . . . , VCS

A
micron , VCI

B
micron). (7)

The ML in Eq. (7) denotes machine learning algorithms. In
our prediction model, we can utilize multiple machine learning
algorithms once the input variables and output results are properly
defined. For example, Eq. (8) shows the linear regression model.

PDA
co-run/B =

N
i=1


aiVCSAmicroi + biVCIBmicroi


+ c. (8)

6 Y. Cheng et al. / Future Generation Computer Systems () –

Fig. 4. Overview of the smart VM co-scheduling system with the precise prediction of performance characteristics.

In the linear model, the performance degradation of VM A is
proportional to each dimension of VM A’s contention sensitivity
and VM B’s contention intensity. The weights that each dimension
of A’s sensitivity and B’s intensity contribute to the overall
performance degradation are determined by the coefficient ai and
bi. The linearmodel assumes that VMA’s performance degradation
from each dimension is additive. However, different dimensions
of contention features may be overlapped and interact with each
other in the real system, we rely on the regression algorithm to
alleviate this effect.

In Section 5, we use other advanced non-linear algorithms and
the experiment results show the improvedprediction accuracy. For
example, in the regression tree model, the relationships between
VM’s contention features and the performance degradation are
learned through information gain theory to address the complex
interaction problems.

4.4. Contention aware VM scheduling

Based on the prediction model, we can design VM scheduling
algorithms to determine VM co-location strategies according to
different resource management goals. For example, in order to
improve overall system throughput and guarantee VM quality of
service, we propose the following two algorithms as the use cases
of the prediction model.

(1) Contention-Aware Best Fit (CABF) algorithm aims to
improve overall system throughput by searching the best location
for each VM that reduces the performance degradation caused by
resource contention. The CABF algorithm is a greedy algorithm.
First, CABF sorts the physical servers in the system by their
available physical CPU andmemory capacities in descending order.
Second, CABF searches the sorted server list SL to find the suitable
server Sj for the new VM i so that Sj’s CPU and memory capacities
meet the requirement of VM i. At the same time, the algorithm
uses the prediction model to predict the performance degradation
(PDj

i) of VM i when it is running on Sj. Finally, CABF returns the best
server Sk that meets VM i’s resource requirement and has the least
performance degradation.

(2) Contention-Aware QoS Assurance (CAQA) algorithm aims to
guarantee VM’s QoS by searching the proper location for each VM
thatmakes sure the performance degradation iswithin some given
threshold. The CAQA algorithm is an greedy algorithm similar

Algorithm 1 : Contention Aware Best Fit (CABF)
Input: VMi; Server List SL = {Sj|j = 1, ..., n}
Output: VMi to Sk placement
1: sort SL by each Sj’s CPU and memory capacities in descending

order;
2: PDmin

i = IntMax;
3: for j = 1→ n do
4: if Sj’s CPU and memory capacities meet the requirement of

VMi then
5: PDj

i ← model(VMi, VMSj);
6: if PDj

i < PDmin
i then

7: PDmin
i ← PDj

i; Sk ← Sj;
8: end if
9: end if

10: end for
11: return Sk;

to CABF. The difference is that CAQA adds QoS guarantee when
searching proper server Sj (line 6). CAQA makes sure that the
performance degradation ofVM i iswithin the predefined threshold
PDQoS . However, with the QoS requirement, the algorithmmay fail
to find a suitable server, then extra physical servers are needed in
the system.

The two scheduling algorithms give examples of how to
leverage the prediction model. With the ability of precise
performance prediction, we can deploymore advanced algorithms
to further improve system efficiency in the future.

4.5. Discussion

In the previous section, we present the prediction model based
on the twoVMs contention for the ease of description. In themulti-
VM scenario, we can extend the model by regarding VM B as the
sum of the rest VMs (denoted as VMmix) in the system. To obtain
the VCS and VCI features of VMmix, we use the micro-benchmarks
to co-run with VMmix online and monitor their CPIs respectively.
We calculate the micro-benchmark’s performance degradation as
the VCI of VMmix. For the VCS of VMmix, we select the VM among
VMmix that has the largest performance degradation as the VCS of
VMmix, so that we can guarantee the new VM will not violate the
QoS of all VMs in the VMmix. In this way, we can obtain the VCS and

Y. Cheng et al. / Future Generation Computer Systems () – 7

Algorithm 2 : Contention Aware QoS Assurance (CAQA)
Input: VMi; Server List SL = {Sj|j = 1, ..., n}
Output: VMi to Sk placement
1: sort SL by each Sj’s CPU and memory capacities in descending

order;
2: PDmin

i = IntMax;
3: for j = 1→ n do
4: if Sj’s CPU and memory capacities meet the requirement of

VMi then
5: PDj

i ← model(VMi, VMSj);
6: if PDj

i < PDQoS and PDj
i < PDmin

i then
7: PDmin

i ← PDj
i; Sk ← Sj;

8: end if
9: end if

10: end for
11: return Sk;

Table 1
Physical server configurations.

Server models Dell R710 Dell R910

Processor type Intel Xeon E5620 Intel Xeon E7520
Num. of cores 4 cores (2 sockets) 4 cores (4 sockets)
Shared cache 12 MB 18 MB
Clock frequency 2.4 GHz 1.87 GHz
Memory 32 GB 64 GB

VCI features of VMmix, and use them as input variables of themodel
to predict performance degradation as described in Section 4.3.

The heterogeneous multicore servers are commonly seen in
cloud data centers [44,45]. We build the prediction model on
the same type of multicore systems. When it comes to the
heterogeneous multicore servers, we have to build the model
for each type of the multicore system using the same procedure
described in our framework. As the contention aware scheduling
system runs for a long period of time [35], we can accumulatemore
and more new VMs’ contention statistics and periodically update
the model to refine the prediction accuracy.

In our deployment scenario, we assume that applications in
the VMs are long running services and their workloads change
infrequently. To address the workload phase change problem, we
continuously monitor the CPI of VMs. When the performance
monitor observes the CPI of a VM has drastic changes for a
predefined period, the scheduler will re-schedule the VM to
another physical server using the proposed scheduling algorithms.

As we focused on the multicore resource contention problems,
the I/O and network contention problems [46,47] are beyond the
scope of this paper.

5. Performance evaluation

We evaluate the proposed prediction model and scheduling
algorithms on two types of multicore servers summarized in
Table 1. VMs run on the qemu-kvm-1.0 virtualized platform. Both
the host and guest operating systems used in the experiments are
Ubuntu 12.04 with the Linux kernel version 3.8.0-35. Each VM is
configured with 4 VCPUs and 8 GB memory. We use the following
benchmarks to run in VMs.
(1) NPB. The NAS Parallel Benchmark (NPB) suite [41] is a set

of benchmarks developed for evaluating the performance
of parallel systems. The NPB benchmark suite consists of 5
parallel kernels and 3 simulated application benchmarks.

(2) SPEC CPU 2006. The SPEC CPU 2006 [43] is an industry-
standardized, CPU and memory intensive benchmark suite.
The benchmarksmainly test a system’s processor andmemory
subsystem resources.

We collect training and testing data sets to train the prediction
model. In the experiment, we use NPB-OMP and NPB-MPI
benchmarks with B and C classes, and use SPEC CPU 2006
benchmark with ref inputs as our workloads. Workloads are
running inside VMs. VMs are pair-wise co-located onto the
multicore processors. During the offline training phase, we co-run
600 combinations of different workloads contending for shared
resources and collect the corresponding performance data. The
collected data format is regularized according to the weka arff
file [48]. Each data record contains VM’s VCS and VCI features as
well as the actual performance degradation results.We use the 10-
fold cross-validationmethod [49] to evaluate the predictionmodel.

5.1. Prediction accuracy

In the evaluation, we randomly choose 90% of the collected data
as the training data set and 10% of the collected data as the testing
data set. The predictionmodel is built using the training data. Then,
using VM’s VCS and VCI features in the testing data, the model
outputs the predicted performance degradation. We compare the
model predicted results with the actual performance degradation
recorded in the testing data.

Fig. 5 presents the comparison of the actual performance
degradation results and the predicted results under the linear
regression model. The x-axis shows different benchmarks co-run
combinations. The y axis is the VM’s performance degradation.
For example, the first combination in the x axis ompBmg.ompBsp
represents the OMP B class benchmark mg is co-running with
the OMP B class benchmark sp in the same multicore system.
The corresponding y axis shows that the predicted and actual
performance degradation of the benchmark mg are 12.1% and
12.3% respectively. From the comparisons, we observe that inmost
cases the linear model predicts the performance degradation very
close to the actual results. However, in some cases, there exist a
relatively large gap between the predicted and actual results. The
reason is that the linear model is insufficient to explore the non-
linear parts in the complex interactions amongmicro-architectural
resources.

In our proposed framework, we can replace the linear
regression algorithm with other machine learning algorithms.
Fig. 6 presents the actual and predicted results under the
REPTree model. The REPTree algorithm is one of the decision
tree implementations in the Weka tool [48]. The decision tree
uses the divide-and-conquer strategy to learn a set of rules to
build the relationships between the input variables and the output
result. Unlike the linearmodel, the treemodel canmore effectively
capture the complex non-linear correlations. As shown in Fig. 6, the
gap between the predicted and actual results under the REPTree
model is relatively smaller than that under the linear model.

To compare the prediction accuracy between two models,
we use the mean absolute error metric (MAE) to get a more
comprehensive overview about the prediction results. Eq. (9)
shows the method of calculating the mean absolute error, where
pi represents the predicted performance degradation of VM i, and
ai represents the actual performance degradation of VM i.

MAE =
|p1 − a1| + · · · + |pn − an|

n
. (9)

Fig. 7 shows the MAE comparisons between the linear model
and the REPTree model. The x axis shows the benchmark that co-
runswith other benchmarks. The y axis shows the predictionmean
absolute error. For example, ompBmg in the x axis represents the
OMP class B benchmark mg co-runs with other benchmarks. We
record the predicted and actual performance degradation ofmg in
each run and calculate the MAE using Eq. (9).

8 Y. Cheng et al. / Future Generation Computer Systems () –

Fig. 5. The comparisons between the actual performance degradation and the predicted performance degradation under the linear regression model.

As shown in Fig. 7, most benchmarks have smaller MAE when
using the REPTree model than using the linear model. In general,
the REPTree model has higher prediction accuracy than the linear
model. The reason is that the REPTree model can more effectively
dig out the non-linear portions of the relationships between
shared resource contention and the performance degradation
of VMs. While the linear model is based on the assumption
that the contention interference factors and the performance
degradation have linear correlations, other non-linear interactions
that contribute to the performance is not captured in the linear
model.

Table 2 shows five classic machine learning algorithms that
are used in our proposed scheduling framework. To compare the
performance of these algorithms, we present four metrics that
are commonly used in evaluation: Correlation coefficient, Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE), and Root
Relative Squared Error (RRSE). The Linear and REPTree algorithms
have discussed in previous section. The rest three algorithms are
the M5P, Bagging, and Neural Networking.

The M5P algorithm is a classic decision tree model, and is
typically used in the numeric prediction scenarios. The Bagging
algorithm is a strengthen version of the REPTree algorithm.
The Bagging algorithm consists of multiple REPTrees, and the
prediction result is the mean value of multiple REPTree output
results. The Neural Networking algorithm is a popular machine
learning algorithm in processing big data, and it can be used in the
non-linear relationships of numeric prediction.

As shown in Table 2, all five algorithms obtain acceptable
prediction accuracy. This demonstrates that the VM’s contention
sensitivity (VCS) and intensity (VCI) features are the dominant

Table 2
Summary of machine learning algorithms.

Algorithms Correlation coefficient MAE RMSE RRSE

Linear 0.7939 0.0480 0.0708 0.6054
REPTree 0.8133 0.0357 0.0679 0.5806
M5P 0.8526 0.0344 0.0609 0.5204
Bagging 0.8799 0.0283 0.0557 0.4760
Neural network 0.8309 0.0382 0.0724 0.6189

factors that contribute to the VM’s performance degradation.
Therefore, using advancedmachine learning algorithms with VM’s
VCS and VCI features as inputs, we can achieve desirable prediction
accuracy. The Bagging algorithm shows the best prediction results
due to its synthetic property. In the following experiments, we use
the Bagging algorithm to predict performance degradation of VMs.

5.2. Contention-aware VM scheduling evaluation

Based on the precise performance prediction, the VM sched-
uler can take advantage of smart VM co-locations to alleviate per-
formance degradation problems caused by shared resource con-
tention. We compare the following three scheduling algorithms to
analyze the benefits of precise performance prediction: (1) Con-
tention Unaware Least Load, short for CULL algorithm; (2) Con-
tention Aware Best Fit, short for CABF algorithm; (3) Contention
Aware QoS Assurance, short for CAQA algorithm. The CULL algo-
rithm only considers VM’s CPU and memory requirements, but
does not utilize the performance prediction capability proposed in
this paper. When a new VM needs to be deployed onto physical
server, the CULL algorithm searches the least loaded server to hold

Y. Cheng et al. / Future Generation Computer Systems () – 9

Fig. 6. The comparisons between the actual performance degradation and the predicted performance degradation under the REPTree model.

Fig. 7. The prediction mean absolute error (MAE) comparisons of the Linear regression model and the REPTree model.

the VMwithout considering the resource contention problem. The

CABF and CAQA algorithms are presented in Section 4.4.

In the experiment, we simulate a scenario of 1000 VMs to

be deployed onto 100 R710 servers and 75 R910 servers (a

10 Y. Cheng et al. / Future Generation Computer Systems () –

Fig. 8. The relative performance of VMs under three scheduling algorithms.

total of 100∗2 + 75∗4 = 500 multicore chips, R710 and
R910 configurations shown in Table 1). We use three different
scheduling algorithms to schedule 1000 VMs onto proper physical
servers respectively.

Fig. 8 shows the VMs relative performance under three different
scheduling algorithms. The x axis shows the deployed VMs in the
system, and the VMs are sorted by their performance degradation
in descending order numbered from 1 to 1000. The y axis
represents the VM’s relative performance compared to when it is
running alone. For example, in the CULL algorithm, the highest
performance degradation reaches 36%. In the CABF algorithm,
the average performance of VMs are improved than in the CULL
algorithm where no resource contention factors are taken into
consideration. In the CAQA algorithm, more than 95% of VMs
meet the predefined QoS requirement that the VM’s performance
degradation cannot exceed 10%. Due to the QoS requirement, the
number of VMs that can be deployed onto the same amount of
physical servers is smaller than no QoS requirement scheduling
strategies. Therefore, when the CAQA algorithm cannot find
suitable servers for new VMs that meet the QoS requirement, the
scheduler will report the requirement of more physical resources.

As shown in Fig. 8, the VM performance degradation problem
is much worse in the CULL algorithm than in the CABF and
CAQA algorithms. This demonstrates that the contention aware
VM scheduling algorithms can avoid co-locate VMs that will
intensively contend for shared resources and can improve the
overall system efficiency in cloud data center.

Fig. 9 shows the QoS of VMs under different VM scheduling
algorithms. The x axis shows four scheduling algorithms, where
CAQA-10% and CAQA-5% represent the predefined QoS require-
ment that the VM’s performance degradation cannot exceed 10%
and5% respectively. The y axis shows the distribution of VMperfor-
mance degradation, and the color of histogram from deep to shal-
low represents the level of performance degradation from high to
low. For example, in the CULL algorithm, the number of VMswhose
performance degradation is less than 5% only occupies 46.3% of the
total number of VMs in the system. While in the CAQA-5% algo-
rithm, the number of VMs whose performance degradation is less
than 5% occupies 91.45% of the total number of VMs in the sys-
tem. Due to the precise performance prediction, the CAQA-5% al-
gorithm guarantees the QoS of most VMs in the system, and the
performance degradation of the rest 8.55% VMs is within 5%–10%.

From the experiment, we show the benefits of leveraging per-
formance prediction capabilities in VM scheduling algorithms, and
the results demonstrate that contention-aware VM scheduling al-
gorithms not only improves system efficiency but also guarantees
the QoS of VMs.

Fig. 9. The VM QoS distribution under four scheduling algorithms.

5.3. Overhead analysis

The extra overhead of the contention aware VM scheduling
system mainly consists of 4 parts: (1) the VM training overhead;
(2) the model building overhead; (3) the online performance
monitoring overhead; (4) the prediction calculation overhead.
Once the training data is collected, the model building and the
prediction calculation overhead is negligible. For example, in
the REPTree model, the algorithm uses the divide-and-conquer
techniques to learn the rules. The time complexity of building
the REPTree model is O(n|D| log(|D|)), where n is the number of
features in the training set D, |D| is the number of training samples.
The models used in the experiment can be built within tens of
milliseconds on our physical server. After the model is built, the
prediction calculation only needs small constant CPU time.

Due to the performance monitor is periodically running online,
we keep the monitoring overhead under 0.5% CPU consumption
by using the low overhead hardware performance monitoring
counters. The VM training requires co-running the VMwithmicro-
benchmarks for tens of seconds. We use the micro-benchmarks
to capture the contention features of the VM which reduces the
exhaustive co-running combinations with other VMs. In terms
of the VM’s long running service time, the training overhead is
worthwhile to improve the systemefficiency. To further reduce the
training overhead,we save the VM’s contention features.When the
same type of newVMsneed to bedeployed, the contention features
can be used without repeated training process.

6. Conclusions and future work

In this paper, we present the performance prediction based
contention aware VM scheduling system. Based on the analysis
of VM performance degradation caused by shared resource
contention, we find that VM’s data access patterns andworking set
sizes are dominant factors that interfere with the behavior of VM
performance. Therefore, we design syntheticmicro-benchmarks to
obtain VM’s contention sensitivity and intensity features. These
features are well captured the cause of performance degradation
due to shared resource contention. Based on these features,
we build the VM performance prediction model using machine
learning techniques. The precise performance prediction capability
makes possible of the contention-aware VM scheduling algorithm
design. The experimental results show that the proposed solutions
can improve the overall efficiency of virtualized systems and also
help guarantee the QoS of single VM.

Y. Cheng et al. / Future Generation Computer Systems () – 11

References

[1] J. Rao, K. Wang, X. Zhou, C.-Z. Xu, Optimizing virtual machine scheduling in
numamulticore systems, in: 2013 IEEE 19th International SymposiumonHigh
Performance Computer Architecture, (HPCA), IEEE, 2013, pp. 306–317.

[2] M. Liu, T. Li, Optimizing virtual machine consolidation performance on NUMA
server architecture for cloud workloads, in: 2014 ACM/IEEE 41st International
Symposium on Computer Architecture, (ISCA), IEEE, 2014, pp. 325–336.

[3] Y. Cheng, W. Chen, Z. Wang, X. Yu, Performance Monitoring based traffic-
aware virtual machine deployment on NUMA systems, IEEE Syst. J. PP (99)
(2015) 1–10.

[4] S. Govindan, J. Liu, A. Kansal, A. Sivasubramaniam, Cuanta: quantifying effects
of shared on-chip resource interference for consolidated virtual machines,
in: Proceedings of the 2nd ACM Symposium on Cloud Computing, ACM, 2011,
p. 22.

[5] F. Liu, Y. Solihin, Studying the impact of hardware prefetching and bandwidth
partitioning in chip-multiprocessors, in: Proceedings of the ACM SIGMETRICS
Joint International Conference on Measurement and Modeling of Computer
Systems, ACM, 2011, pp. 37–48.

[6] X. Zhang, S. Dwarkadas, K. Shen, Towards practical page coloring-based
multicore cache management, in: Proceedings of the 4th ACM European
Conference on Computer Systems, ACM, 2009, pp. 89–102.

[7] S. Zhuravlev, J.C. Saez, S. Blagodurov, A. Fedorova, M. Prieto, Survey
of scheduling techniques for addressing shared resources in multicore
processors, ACM Comput. Surv. (CSUR) 45 (1) (2012) 4.

[8] S. Blagodurov, S. Zhuravlev, M. Dashti, A. Fedorova, A case for NUMA-aware
contention management on multicore systems, in: USENIX Annual Technical
Conference, USENIX, 2011.

[9] P. Radojković, V. Čakarević, M. Moretó, J. Verdú, A. Pajuelo, F.J. Cazorla, M.
Nemirovsky,M. Valero, Optimal task assignment inmultithreaded processors:
a statistical approach, ACM SIGARCH Comput. Archit. News 40 (1) (2012)
235–248.

[10] S. Zhuravlev, S. Blagodurov, A. Fedorova, Addressing shared resource
contention in multicore processors via scheduling, in: ACM SIGARCH
Computer Architecture News, ACM, 2010, pp. 129–142.

[11] L. Tang, J. Mars, N. Vachharajani, R. Hundt, M.L. Soffa, The impact of memory
subsystem resource sharing on datacenter applications, in: 2011 38th Annual
International Symposium on Computer Architecture, (ISCA), IEEE, 2011,
pp. 283–294.

[12] T. Dey, W. Wang, J.W. Davidson, M.L. Soffa, Characterizing multi-threaded
applications based on shared-resource contention, in: 2011 IEEE International
Symposium on Performance Analysis of Systems and Software, (ISPASS), IEEE,
2011, pp. 76–86.

[13] A. Sandberg, A. Sembrant, E. Hagersten, D. Black-Schaffer, Modeling perfor-
mance variation due to cache sharing, in: High Performance Computer Ar-
chitecture (HPCA), 2013 IEEE 19th International Symposium on, 2013, pp.
155–166.

[14] R. West, P. Zaroo, C.A. Waldspurger, X. Zhang, Online cache modeling for
commodity multicore processors, ACM SIGOPS Oper. Syst. Rev. 44 (4) (2010)
19–29.

[15] Y. Zhang, M.A. Laurenzano, J. Mars, L. Tang, SMiTe: Precise QoS prediction
on real-system SMT processors to improve utilization in warehouse scale
computers, in: 2014 47th Annual IEEE/ACM International Symposium on
Microarchitecture, (MICRO), IEEE, 2014, pp. 406–418.

[16] S. Kundu, R. Rangaswami, K. Dutta, M. Zhao, Application performance
modeling in a virtualized environment, in: 2010 IEEE 16th International
Symposium on High Performance Computer Architecture, (HPCA), IEEE, 2010,
pp. 1–10.

[17] S. Kundu, R. Rangaswami, A. Gulati, M. Zhao, K. Dutta, Modeling Virtualized
Applications using Machine Learning Techniques, in: Proceedings of the 8th
ACM SIGPLAN/SIGOPS Conference on Virtual Execution Environments, ACM,
2012, pp. 3–14.

[18] R.C. Chiang, H.H. Huang, TRACON: Interference-aware schedulingfor data-
intensive applicationsin virtualized environments, IEEE Trans. Parallel Distrib.
Syst. 25 (5) (2014) 1349–1358.

[19] T. Dwyer, A. Fedorova, S. Blagodurov,M. Roth, F. Gaud, J. Pei, A practicalmethod
for estimating performance degradation on multicore processors, and its
application to HPC workloads, in: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, IEEE,
2012, p. 83.

[20] C. Xu, X. Chen, R.P. Dick, Z.M. Mao, Cache contention and application
performance prediction for multi-core systems, in: Performance Analysis of
Systems & Software (ISPASS), 2010 IEEE International Symposium on, 2010,
pp. 76–86.

[21] L. Zhao, R. Iyer, R. Illikkal, J. Moses, S. Makineni, D. Newell, CacheScouts:
Fine-grain monitoring of shared caches in CMP platforms, in: Proceedings of
the 16th International Conference on Parallel Architecture and Compilation
Techniques, IEEE, 2007, pp. 339–352.

[22] R. Azimi, D.K. Tam, L. Soares, M. Stumm, Enhancing operating system support
for multicore processors by using hardware performance monitoring, ACM
SIGOPS Oper. Syst. Rev. 43 (2) (2009) 56–65.

[23] A. Yasin, A top-down method for performance analysis and counters
architecture, in: 2014 IEEE International Symposium on Performance Analysis
of Systems and Software, (ISPASS), IEEE, 2014, pp. 35–44.

[24] D.K. Tam, R. Azimi, L.B. Soares, M. Stumm, RapidMRC: approximating L2 miss
rate curves on commodity systems for online optimizations, in: ACM SIGARCH
Computer Architecture News, ACM, 2009, pp. 121–132.

[25] E. Ebrahimi, C.J. Lee, O. Mutlu, Y.N. Patt, Fairness via source throttling: A
configurable and high-performance fairness substrate for multicore memory
systems, ACM Trans. Comput. Syst. (TOCS) 30 (2) (2012) 7.

[26] X. Ding, K. Wang, X. Zhang, ULCC: a user-level facility for optimizing
shared cache performance on multicores, in: Proceedings of the 16th ACM
Symposium on Principles and Practice of Parallel Programming, ACM, 2011,
pp. 103–112.

[27] Y. Jiang, X. Shen, J. Chen, R. Tripathi, Analysis and approximation of optimal co-
scheduling on chip multiprocessors, in: Proceedings of the 17th International
Conference on Parallel Architectures and Compilation Techniques, ACM, 2008,
pp. 220–229.

[28] J. Mars, L. Tang, K. Skadron, M.L. Soffa, R. Hundt, Increasing utilization in
modern warehouse-scale computers using bubble-up, IEEE Micro 32 (3)
(2012) 88–99.

[29] H. Yang, A. Breslow, J. Mars, L. Tang, Bubble-flux: precise online QoS manage-
ment for increased utilization in warehouse scale computers, in: Proceedings
of the 40th Annual International Symposium on Computer Architecture, ACM,
2013, pp. 607–618.

[30] S. Eyerman, L. Eeckhout, Probabilistic job symbiosis modeling for SMT
processor scheduling, in: Proceedings of the 15th International Conference
on Architectural Support for Programming Languages and Operating Systems,
ACM, 2010, pp. 91–102.

[31] M. Lee, K. Schwan, Region scheduling: efficiently using the cache architectures
via page-level affinity, ACM SIGARCH Comput. Archit. News 40 (1) (2012)
451–462.

[32] S.M. Zahedi, B.C. Lee, REF: Resource elasticity fairness with sharing incentives
for multiprocessors, in: Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and Operating Systems,
ACM, 2014, pp. 145–160.

[33] Y. Cheng, W. Chen, Z. Wang, Y. Xiang, Precise contention-aware performance
prediction on virtualized multicore system, J. Syst. Archit. (2016).

[34] R. Nathuji, A. Kansal, A. Ghaffarkhah, Q-clouds: managing performance
interference effects for QoS-aware clouds, in: Proceedings of the 5th European
Conference on Computer Systems, ACM, 2010, pp. 237–250.

[35] C. Delimitrou, C. Kozyrakis, Paragon: QoS-aware scheduling for heterogeneous
datacenters, in: Proceedings of the 18th International Conference on
Architectural Support for Programming Languages and Operating Systems,
ACM, 2013, pp. 77–88.

[36] N. Vasic, D. Novaković, S. Miučin, D. Kostic, R. Bianchini, Dejavu: accelerating
resource allocation in virtualized environments, ACM SIGARCH Comput.
Archit. News 40 (1) (2012) 423–436.

[37] R.C. Chiang, J. Hwang, H.H. Huang, T. Wood, Matrix: Achieving predictable
virtual machine performance in the clouds, in: USENIX 11th International
Conference on Autonomic Computing, USENIX, 2014, pp. 45–56.

[38] J. Moses, R. Iyer, R. Illikkal, S. Srinivasan, K. Aisopos, Shared resource monitor-
ing and throughput optimization in cloud-computing datacenters, in: Parallel
& Distributed Processing Symposium (IPDPS), 2011 IEEE International, IEEE,
2011, pp. 1024–1033.

[39] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, R. Hundt, Google-wide profiling: A
continuous profiling infrastructure for data centers, IEEE Micro 30 (4) (2010)
65–79.

[40] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, J. Wilkes, CPI2: CPU
performance isolation for shared compute clusters, in: Proceedings of the 8th
ACM European Conference on Computer Systems, ACM, 2013, pp. 379–391.

[41] The NAS Parallel Benchmarks. http://www.nas.nasa.gov/publications/npb.
html [online].

[42] C. Delimitrou, C. Kozyrakis, iBench:Quantifying interference for datacenter ap-
plications, in: 2013 IEEE International Symposium onWorkload Characteriza-
tion, (IISWC), IEEE, 2013, pp. 23–33.

[43] Spec cpu 2006. http://www.spec.org/cpu2006/ [online].
[44] C. Reiss, A. Tumanov, G.R. Ganger, R.H. Katz, M.A. Kozuch, Heterogeneity and

dynamicity of clouds at scale: Google trace analysis, in: Proceedings of the
Third ACM Symposium on Cloud Computing, ACM, 2012, p. 7.

[45] J. Mars, L. Tang, Whare-map: heterogeneity in homogeneous warehouse-
scale computers, in: ACM SIGARCH Computer Architecture News, ACM, 2013,
pp. 619–630.

[46] H. Li, M. Dong, K. Ota, Radio Access Network Virtualization for the social
Internet of things, IEEE Cloud Comput. 2 (6) (2015) 42–50.

[47] G. Luo, Z. Qian, M. Dong, K. Ota, S. Lu, Network-aware re-scheduling:
Towards improving network performance of virtualmachines in a data center,
in: International conference on algorithms and architectures for parallel
processing, 2014.

[48] Weka 3. http://www.cs.waikato.ac.nz/ml/weka/ [online].
[49] Cross-validation. https://en.wikipedia.org/wiki/cross-validation-

(statistics) [online].

Yuxia Cheng received the Ph.D. degree in computer sci-
ence and technology from Zhejiang University, Hangzhou,
China, in 2015. He is currently an associate research fellow
at the School of Information Technology, Deakin Univer-
sity. His current research interests include multicore ar-
chitecture, operating systems, virtualization and security.

http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref1
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref2
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref3
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref4
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref5
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref6
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref7
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref8
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref9
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref10
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref11
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref12
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref14
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref15
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref16
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref17
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref18
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref19
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref21
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref22
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref23
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref24
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref25
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref26
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref27
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref28
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref29
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref30
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref31
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref32
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref33
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref34
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref35
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref36
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref37
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref38
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref39
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref40
http://www.nas.nasa.gov/publications/npb.html
http://www.nas.nasa.gov/publications/npb.html
http://www.nas.nasa.gov/publications/npb.html
http://www.nas.nasa.gov/publications/npb.html
http://www.nas.nasa.gov/publications/npb.html
http://www.nas.nasa.gov/publications/npb.html
http://www.nas.nasa.gov/publications/npb.html
http://www.nas.nasa.gov/publications/npb.html
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref42
http://www.spec.org/cpu2006/
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref44
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref45
http://refhub.elsevier.com/S0167-739X(16)30661-6/sbref46
http://www.cs.waikato.ac.nz/ml/weka/
https://en.wikipedia.org/wiki/cross-validation-(statistics)
https://en.wikipedia.org/wiki/cross-validation-(statistics)
https://en.wikipedia.org/wiki/cross-validation-(statistics)

12 Y. Cheng et al. / Future Generation Computer Systems () –

Wenzhi Chenwas born in 1969. He received the Ph.D. de-
gree from Zhejiang University, Hangzhou, China. He is cur-
rently a Professor and a Ph.D. Supervisor with the College
of Computer Science and Technology, Zhejiang University.
His areas of research include computer graphics, computer
architecture, system software, embedded systems, and se-
curity.

Zonghui Wang was born in March 1979. He received
the Ph.D. degree from the College of Computer Science
and Technology, Zhejiang University, Hangzhou, China,
in 2007. He is a Lecturer with the College of Computer
Science and Engineering, Zhejiang University. His research
interests focus on cloud computing, distributed systems,
computer architecture, and computer graphics.

Zhongxian Tang received the B.S. degree in computer sci-
ence and technology from Zhejiang University, Hangzhou,
China, in 2014. He is currently pursuing the M.S. degree
of computer science and technology in Zhejiang Univer-
sity, Hangzhou, China. His current research interests in-
clude operating systems, virtualization technology, and
distributed systems.

Yang Xiang received his Ph.D. in Computer Science
from Deakin University, Australia. He is currently a Full
Professor at the School of Information Technology, Deakin
University. He is the Director of the Network Security
and Computing Lab (NSCLab) and the Associate Head
of School (Industry Engagement). His research interests
include network and system security, distributed systems,
and networking. In particular, he is currently leading his
team developing active defense systems against largescale
distributed network attacks. He is the Chief Investigator of
several projects in network and system security, funded

by the Australian Research Council (ARC). He has published more than 180
research papers in many international journals and conferences, such as IEEE
Transactions on Computers, IEEE Transactions on Parallel and Distributed Systems,
IEEE Transactions on Information Security and Forensics, and IEEE Journal on
Selected Areas in Communications.

	Smart VM co-scheduling with the precise prediction of performance characteristics
	Introduction
	Related work
	VM performance characteristics analysis
	Performance metrics
	Resource contention features

	Contention-aware VM scheduling framework
	Overview
	VM Training
	Prediction model
	Contention aware VM scheduling
	Discussion

	Performance evaluation
	Prediction accuracy
	Contention-aware VM scheduling evaluation
	Overhead analysis

	Conclusions and future work
	References

