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Abstract—Cerberus is a tiny x86 virtual machine monitor. It 
allows security sensitive codes to be executed in an isolated 
circumstance. The codes could attest their integrity to a remote 
party by a two-step attestation provided by Cerberus. 
Cerberus does not require the security sensitive applications to 
be modified or recompiled to run on it. These applications are 
packaged with the operating systems as virtual appliances 
(VA). The on-disk VA files are read-only to simplify the 
attestation process. Any storage file is sealed to the 
corresponding secure domain. Cerberus leveraged the nested 
paging technology to isolate the memory regions efficiently. 
And it also introduced a novel secure display sharing 
technology. It can guarantee the security property even when 
the attackers get control of everything but the core hardware 
infrastructures. Our performance experiment results show 
that the overhead introduced by Cerberus is less than 5%.  
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I.  INTRODUCTION 
Commodity operating systems are pervasively used in 

home, commercial companies, governments and military 
settings. They tend to contain increasingly valuable 
information for personal or/and corporations. Unfortunately, 
the security facilities that they provide are not always 
adequate for protecting the sensitive data against various 
attackers [1, 2]. Moreover, the main-streaming commodity 
operating systems, such as Windows and Linux are 
becoming larger and more complex, which makes the 
security flaws inevitable in OS software.  

Unfortunately, traditional approaches[1, 3] are either too 
complicated to apply[4] or are not enough functional to attest 
itself to a remote party, some implementations even have 
some security flaws[5-8].  

We offer an alternative named Cerberus. Cerberus allows 
secure sensitive codes to be executed in an isolated 
circumstance from the main domain, and could be attested 
by a remote party. This protects the secure sensitive codes 
and their saved sensitive data against the malicious codes in 
the main domain, e.g. the kernel rootkits. Cerberus can 
guarantee this property even against attackers who get 
control of everything but the core hardware infrastructures, 
i.e. the main chip, the trusted platform module (TPM)[9, 10], 

the CPU, the memory controller and the system memory 
chips. 

Cerberus is composed of the underlying virtual machine 
monitor (VMM) and a kernel driver running on the main 
domain. The kernel driver is used to allocate memory from 
the main domain, just like the balloon driver[11] does, and 
communicates with the VMM. 

II. THEREAT MODEL 
Cerberus protects codes and data of the secure domain 

from being subverted and read from the main domain. 
We assumed that intruders can attack any entity in the 

main domain, i.e. they can subvert and take over complete 
control of the main domain. In this case, they can execute 
any instructions in the main domain both in privileged level 
and user level. These attacks can bypass security 
functionalities in the main domain. Above and beyond that, 
an intruder can hide any process to the main domain. 

We also assumed that the VMM is transparent to the 
attackers from the main domain. This means that an attacker 
to the main domain can’t subvert the underlie VMM through 
the main domain. If the VMM is bypassed or modified in 
early stage of booting time, it will be aware to the remote 
party by remote attestation. The attackers could neither cheat 
in the remote attestation nor retrieve the information saved in 
the encrypted files which are sealed with the VMM’s state 
by hardware TPM. 

III. ARCHITECTURE VIEW OF CERBERUS 
This section presents the architecture of Cerberus in a 

nutshell. Details will be described in the next section. 
Cerberus is composed of the underlying virtual machine 

monitor (VMM) and a kernel driver running on the main 
domain. The kernel driver is used to allocate memory from 
the main domain, just like the balloon driver does, and 
communicates with the VMM. The Architecture of Cerberus 
is as Fig.1 illustrates. 

Cerberus leverages the nested paging mechanism to 
isolate the memory regions of main domain and the secure 
domain. When the platform starts, Cerberus map the whole 
memory but the memory region Cerberus itself resides to the 
main domain by setting the nested page table of main 
domain. Cerberus allocates memory space for the secure   
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Figure 1.  Architecture view of Cerberus  

domain in its first execution and unmapped these memory 
regions from the nested page table of the main domain with 
assist of the main domain side drive. 

Because the secure domain is always trimmed very 
compact, we design the secure domain’s root filesystem to 
reside on the memory to enhance performance and security. 
Thus the filesystem for secure domain is volatile, every time 
it shuts down, the data it saved in its filesystem will be 
cleared. Cerberus provides the secure domain with a disk 
image to save its data. The disk image is implemented as a 
file in the main domain’s file system and any data content 
saved/read from that file is sealed/unsealed by Cerberus 
transparently.  

The virtualization of TPM is implemented in VMM, i.e. 
Cerberus. It catches the i/o ports and memory mapped i/o 
(MMIO) memory region accesses in main domain and the 
secure domain and emulates the hardware TPM operations. 

The display sharing is implemented by mapping the 
VESA mode video memory to different domains to 
demarcate display regions of main domain and the secure 
domain. 

IV. DESIGN AND IMPLEMENTATION 

A. Cerberus Memory Management 
Cerberus leverages the nested paging mechanism to 

manage system memory in an efficient way.  
Cerberus resides in the top 16MB memory of the system 

physical memory space. When the platform starts, Cerberus 
set the nested page table of main domain to map to the whole 
machine memory space but the memory region that Cerberus 
itself resides and the MMIO space of the hardware TPM. 
The layout of the system physical memory is shown in Fig. 
2. 

The nested page table[12, 13] is set as that the entry’s 
value is equal to the physical address of main domain with 
4K size aligned; only the addresses from 0 to top address 
minus 16MB have nested page table entries. The P bit of the 
nested page table entry is set to 0, if the address is in the 
MMIO region of the hardware TPM. Thus if these addresses 
are accessed, a nested page fault exception will occur. 
Cerberus could catch this exception and handle it. The nested 
page fault handler will check whether the address is in the 
MMIO region of the hardware TPM. If the exception is 
caused  in this situation, Cerberus will invoke the virtual  

 
Figure 2.  Layout of the system physical memory before secure domain 

starts 

TPM routine to emulate the TPM operations. 
When Cerberus starts a secure domain, it allocates 

memory space from main domain with the main domain side 
driver and set the P bit of the corresponding nested pagetable 
entry to 0. After this, Cerberus builds the nested pagetables 
of the secure domain and its root filesystem respectively to 
map to the memory space ripped from the main domain. It 
does not map all ripped memory. It reserves some memory 
for access violation pool. In the view of the main domain, the 
ripped memory space is allocated to the main domain side 
driver and shouldn’t access it in normal situation. If the main 
domain tries to access such a memory space, owing to the P 
bit of the nested pagetable entry being set to 0, a nested page 
fault exception will occur and Cerberus could catch it. In this 
situation, Cerberus will map the nested pagetable entry to a 
page from the access violation pool if the pool isn’t empty. 

When secure domain is shut down, Cerberus erases the 
memory the secure domain and its root filesystem have used. 
After the erasure, the main domain side driver releases the 
memory it has allocated and Cerberus will return the 
memory to the main domain. 

B. Secure Display Sharing 
If the secure domain is displayed in a normal way, e.g. 

through the vncviewer in the main domain, a malicious 
program running on the main domain could retrieve the 
sensitive information as easy as falling a log. All it has to do 
to grab the secrets displayed on secure domain is just to print 
the whole screen and send it back to the intruder. To avoid 
the information leaking when displayed, Cerberus provides a 
secure display sharing approach.  

When a secure domain is created, Cerberus sets the video 
card work in VESA mode with the function number 0118h, 
which is 1024*768 resolution and 32bit per pixel. Thus each 
row on the display is mapped to the video memory as 4KB 
size, which equal to one page size. Meanwhile the main 
domain side driver registers a dialog window with 1024 
pixels width on the main domain and sends its location to 
Cerberus. Cerberus maps the corresponding video memory 
of the dialog to the secure domain and other video memory 
to the main domain by modifying their nested pagetables. 
Beyond and above that, Cerberus also maps some system 
memory from its pool to the nested pagetables to complete 
the domain video MMIO region. For example, if the dialog 
occupies row number 300-500 on the display, Cerberus maps 
the corresponding video pages of these rows and other 567 ( 
equals to 768 minus 201 ) pages from its pool to the secure 
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domain video card MMIO region. The mapping to the main 
domain is similar.  

Only the pages that mapped to the machine video card 
MMIO will be presented on the display. Hence, both main 
domain and secure domain could only display parts of their 
graphic contents. They could change the displayed graphic 
region dynamically. Cerberus provides two approaches to 
change the displayed region of the domains. One way is to 
change the dialog’s location in main domain. And the other 
way is to modify the display_startrow variable, which 
defines the first row to be shown of the secure domain. 

The screenshot of display sharing is presented as Fig.3. 
After the video mode is set to VESA function number 

0118h, Cerberus modify the main domain’s VMCS to 
prevent it from subverting the machine video settings. 

C. Virtualization of TPM 
We implemented the virtualization of TPM in Cerberus 

for performance and security concerns. Both main domain 
and the secure domain have a vTPM structure, which 
contains the TPM emulation variables, such as the virtual 
Platform Configuration Register (PCR) and key pairs. These 
structures are sealed with the PCR state of the machine. 

Cerberus exploits both the hardware and virtual TPM to 
seal data when store the data of secure domain to the 
nonvolatile storage device, as Fig. 4 shows. 

The virtual TPM generates seal key for the secure 
domain and seals the data using this key pair. Cerberus will 
unseal the data only for the secure domain that seals it. The 
key pair itself is sealed by the hardware TPM with the 
platform state when Cerberus is running. Hence, the data will 
be unsealed only for the right secure domain running on 
Cerberus. 

 
Figure 3.  Screenshot of display sharing. 

 
Figure 4.  Sealing protocol when storing Data of secure domain. 

The remote attestation procedure is similar to the data 
sealing, both Cerberus and the secure domain will be 
attested. Cerberus is attested by the hardware PCRs signed 
by the AIK of the hardware TPM, while the secure domain is 
attested by the virtual PCRs signed by the AIK of the virtual 
TPM. 

V. PERFORMANCE EVALUATION 
These experiments were conducted on an assembly 

computer configured with a MSI 785GTM-E45 main board, 
an AMD Phenom X4 9100e CPU, two Apacer DDR2 
667MHZ memory chips and a Seagate 250GB 5400RPM 
disk running CentOS 5.2 as the main domain, Puppy 4.3.1 as 
the secure domain and CentOS 5.2 without Cerberus as 
native. 

Tab .1 presents the results of process related operations.  
Null call is a simple system call operation that retrieves 

the current process ID; null IO is a simple I/O read/write 
operation; stat is the operation to get a file stat; Fork proc is 
the operation that forks a new process and exits immediately; 
exec proc forks a new process and executes “execve” before 
exit; sh proc forks a new process and executes the shell 
program before exit. 

The overhead is mainly caused by the nested paging 
mechanism which makes the address translation drag on. 
This experiment shows that the overhead introduced by 
Cerberus is less than 5%. The performance of main domain 
is competitive to the native OS. The overhead in secure 
domain is more than the main domain but still acceptable. 

Tab .2 presents the result of context switching test.  
2p/16K means that the workload is 2 processes handling 

16K data concurrently; 8p/64K means that the workload is 8 
processes handling 64K data concurrently and etc. 

The overhead is mainly caused by the vm-exit and vm-
enter events when schedule domains. This experiment 
presents that the overhead introduced by Cerberus in context 
switching is slight. It is also less than 5%. Both the 
performances of main domain and the secure domain are 
competitive to the native OS, which runs on a nonvirtualized 
environment.  

TABLE I.  PROCESSES OPERATIONS COST TIME (MICROSECONDS) 

Test 
environment 

NULL 
CALL 

NULL 
IO STAT Fork 

proc 
Exec 
proc Sh proc

Native 0.37 0.74 4.65 172 499 2253 

Main Domain 0.42 0.75 4.93 195 531 2495 
Secure 
Domain 0.45 0.81 5.02 229 554 2608 

TABLE II.  CONTEXT SWITCHING COST TIME (MICROSECONDS) 

Test 
environment 2p/0K 2p/16K 2p/64K 8p/16K 8p/64K 

Native 1.86 2.03 9.27 4.26 11 

Main Domain 2.02 2.15 9.66 4.31 11.6 

Secure Domain 2.14 2.13 9.54 4.5 12.4 
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VI. CONCLUSION AND FUTRURE WORK 
In this paper, we present Cerberus, a tiny hypervisor 

designed to provide trusted and isolated code execution 
based on hardware virtualization technologies.  

Cerberus protects the secure sensitive codes against the 
malicious codes in the main domain by executing it in a 
trusted and isolated environment. By leveraging the latest 
hardware virtualization support, using the hardware TPM 
and virtualized TPM to attest the integrity of Cerberus itself 
and the secure domain respectively to a remote party and 
employing the display sharing technique, Cerberus has many 
advantages over previous works, such as easily adoptable, 
remote attestation and high assurance. Our performance 
experiments show that the overhead introduced by Cerberus 
is less than 5%. Both the main domain and the secure 
domain running on Cerberus have a performance competitive 
to the native operating systems executing on a nonvirtualized 
environment. 

We fixed the display resolution to 1024 X 768 in 
Cerberus for performance concerns. It may be inconvenient 
for some situations. We are investigating some way to 
efficiently share the display in a wide range of resolutions. 
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