
Cerberus: A Novel Hypervisor to Provide Trusted and Isolated Code Execution

Chen Wen-Zhi, Zhang Zhi-Peng, Yang Jian-Hua, and He Qin-Ming
College of Computer Science and Technology

Zhejiang University
Hangzhou, China

Email: {chenwz, zhangzp, yangjh, heqm}@zju.edu.cn

Abstract—Cerberus is a tiny x86 virtual machine monitor. It
allows security sensitive codes to be executed in an isolated
circumstance. The codes could attest their integrity to a remote
party by a two-step attestation provided by Cerberus.
Cerberus does not require the security sensitive applications to
be modified or recompiled to run on it. These applications are
packaged with the operating systems as virtual appliances
(VA). The on-disk VA files are read-only to simplify the
attestation process. Any storage file is sealed to the
corresponding secure domain. Cerberus leveraged the nested
paging technology to isolate the memory regions efficiently.
And it also introduced a novel secure display sharing
technology. It can guarantee the security property even when
the attackers get control of everything but the core hardware
infrastructures. Our performance experiment results show
that the overhead introduced by Cerberus is less than 5%.

Keywords—Virtual Machine Monitor; Code Integrity; Code
Attestation; Isolated Codes Execution; Secure Display Sharing

I. INTRODUCTION
Commodity operating systems are pervasively used in

home, commercial companies, governments and military
settings. They tend to contain increasingly valuable
information for personal or/and corporations. Unfortunately,
the security facilities that they provide are not always
adequate for protecting the sensitive data against various
attackers [1, 2]. Moreover, the main-streaming commodity
operating systems, such as Windows and Linux are
becoming larger and more complex, which makes the
security flaws inevitable in OS software.

Unfortunately, traditional approaches[1, 3] are either too
complicated to apply[4] or are not enough functional to attest
itself to a remote party, some implementations even have
some security flaws[5-8].

We offer an alternative named Cerberus. Cerberus allows
secure sensitive codes to be executed in an isolated
circumstance from the main domain, and could be attested
by a remote party. This protects the secure sensitive codes
and their saved sensitive data against the malicious codes in
the main domain, e.g. the kernel rootkits. Cerberus can
guarantee this property even against attackers who get
control of everything but the core hardware infrastructures,
i.e. the main chip, the trusted platform module (TPM)[9, 10],

the CPU, the memory controller and the system memory
chips.

Cerberus is composed of the underlying virtual machine
monitor (VMM) and a kernel driver running on the main
domain. The kernel driver is used to allocate memory from
the main domain, just like the balloon driver[11] does, and
communicates with the VMM.

II. THEREAT MODEL
Cerberus protects codes and data of the secure domain

from being subverted and read from the main domain.
We assumed that intruders can attack any entity in the

main domain, i.e. they can subvert and take over complete
control of the main domain. In this case, they can execute
any instructions in the main domain both in privileged level
and user level. These attacks can bypass security
functionalities in the main domain. Above and beyond that,
an intruder can hide any process to the main domain.

We also assumed that the VMM is transparent to the
attackers from the main domain. This means that an attacker
to the main domain can’t subvert the underlie VMM through
the main domain. If the VMM is bypassed or modified in
early stage of booting time, it will be aware to the remote
party by remote attestation. The attackers could neither cheat
in the remote attestation nor retrieve the information saved in
the encrypted files which are sealed with the VMM’s state
by hardware TPM.

III. ARCHITECTURE VIEW OF CERBERUS
This section presents the architecture of Cerberus in a

nutshell. Details will be described in the next section.
Cerberus is composed of the underlying virtual machine

monitor (VMM) and a kernel driver running on the main
domain. The kernel driver is used to allocate memory from
the main domain, just like the balloon driver does, and
communicates with the VMM. The Architecture of Cerberus
is as Fig.1 illustrates.

Cerberus leverages the nested paging mechanism to
isolate the memory regions of main domain and the secure
domain. When the platform starts, Cerberus map the whole
memory but the memory region Cerberus itself resides to the
main domain by setting the nested page table of main
domain. Cerberus allocates memory space for the secure

2010 International Conference of Information Science and Management Engineering

978-0-7695-4132-7/10 $26.00 © 2010 IEEE

DOI 10.1109/ISME.2010.172

330

Figure 1. Architecture view of Cerberus

domain in its first execution and unmapped these memory
regions from the nested page table of the main domain with
assist of the main domain side drive.

Because the secure domain is always trimmed very
compact, we design the secure domain’s root filesystem to
reside on the memory to enhance performance and security.
Thus the filesystem for secure domain is volatile, every time
it shuts down, the data it saved in its filesystem will be
cleared. Cerberus provides the secure domain with a disk
image to save its data. The disk image is implemented as a
file in the main domain’s file system and any data content
saved/read from that file is sealed/unsealed by Cerberus
transparently.

The virtualization of TPM is implemented in VMM, i.e.
Cerberus. It catches the i/o ports and memory mapped i/o
(MMIO) memory region accesses in main domain and the
secure domain and emulates the hardware TPM operations.

The display sharing is implemented by mapping the
VESA mode video memory to different domains to
demarcate display regions of main domain and the secure
domain.

IV. DESIGN AND IMPLEMENTATION

A. Cerberus Memory Management
Cerberus leverages the nested paging mechanism to

manage system memory in an efficient way.
Cerberus resides in the top 16MB memory of the system

physical memory space. When the platform starts, Cerberus
set the nested page table of main domain to map to the whole
machine memory space but the memory region that Cerberus
itself resides and the MMIO space of the hardware TPM.
The layout of the system physical memory is shown in Fig.
2.

The nested page table[12, 13] is set as that the entry’s
value is equal to the physical address of main domain with
4K size aligned; only the addresses from 0 to top address
minus 16MB have nested page table entries. The P bit of the
nested page table entry is set to 0, if the address is in the
MMIO region of the hardware TPM. Thus if these addresses
are accessed, a nested page fault exception will occur.
Cerberus could catch this exception and handle it. The nested
page fault handler will check whether the address is in the
MMIO region of the hardware TPM. If the exception is
caused in this situation, Cerberus will invoke the virtual

Figure 2. Layout of the system physical memory before secure domain

starts

TPM routine to emulate the TPM operations.
When Cerberus starts a secure domain, it allocates

memory space from main domain with the main domain side
driver and set the P bit of the corresponding nested pagetable
entry to 0. After this, Cerberus builds the nested pagetables
of the secure domain and its root filesystem respectively to
map to the memory space ripped from the main domain. It
does not map all ripped memory. It reserves some memory
for access violation pool. In the view of the main domain, the
ripped memory space is allocated to the main domain side
driver and shouldn’t access it in normal situation. If the main
domain tries to access such a memory space, owing to the P
bit of the nested pagetable entry being set to 0, a nested page
fault exception will occur and Cerberus could catch it. In this
situation, Cerberus will map the nested pagetable entry to a
page from the access violation pool if the pool isn’t empty.

When secure domain is shut down, Cerberus erases the
memory the secure domain and its root filesystem have used.
After the erasure, the main domain side driver releases the
memory it has allocated and Cerberus will return the
memory to the main domain.

B. Secure Display Sharing
If the secure domain is displayed in a normal way, e.g.

through the vncviewer in the main domain, a malicious
program running on the main domain could retrieve the
sensitive information as easy as falling a log. All it has to do
to grab the secrets displayed on secure domain is just to print
the whole screen and send it back to the intruder. To avoid
the information leaking when displayed, Cerberus provides a
secure display sharing approach.

When a secure domain is created, Cerberus sets the video
card work in VESA mode with the function number 0118h,
which is 1024*768 resolution and 32bit per pixel. Thus each
row on the display is mapped to the video memory as 4KB
size, which equal to one page size. Meanwhile the main
domain side driver registers a dialog window with 1024
pixels width on the main domain and sends its location to
Cerberus. Cerberus maps the corresponding video memory
of the dialog to the secure domain and other video memory
to the main domain by modifying their nested pagetables.
Beyond and above that, Cerberus also maps some system
memory from its pool to the nested pagetables to complete
the domain video MMIO region. For example, if the dialog
occupies row number 300-500 on the display, Cerberus maps
the corresponding video pages of these rows and other 567 (
equals to 768 minus 201) pages from its pool to the secure

331

domain video card MMIO region. The mapping to the main
domain is similar.

Only the pages that mapped to the machine video card
MMIO will be presented on the display. Hence, both main
domain and secure domain could only display parts of their
graphic contents. They could change the displayed graphic
region dynamically. Cerberus provides two approaches to
change the displayed region of the domains. One way is to
change the dialog’s location in main domain. And the other
way is to modify the display_startrow variable, which
defines the first row to be shown of the secure domain.

The screenshot of display sharing is presented as Fig.3.
After the video mode is set to VESA function number

0118h, Cerberus modify the main domain’s VMCS to
prevent it from subverting the machine video settings.

C. Virtualization of TPM
We implemented the virtualization of TPM in Cerberus

for performance and security concerns. Both main domain
and the secure domain have a vTPM structure, which
contains the TPM emulation variables, such as the virtual
Platform Configuration Register (PCR) and key pairs. These
structures are sealed with the PCR state of the machine.

Cerberus exploits both the hardware and virtual TPM to
seal data when store the data of secure domain to the
nonvolatile storage device, as Fig. 4 shows.

The virtual TPM generates seal key for the secure
domain and seals the data using this key pair. Cerberus will
unseal the data only for the secure domain that seals it. The
key pair itself is sealed by the hardware TPM with the
platform state when Cerberus is running. Hence, the data will
be unsealed only for the right secure domain running on
Cerberus.

Figure 3. Screenshot of display sharing.

Figure 4. Sealing protocol when storing Data of secure domain.

The remote attestation procedure is similar to the data
sealing, both Cerberus and the secure domain will be
attested. Cerberus is attested by the hardware PCRs signed
by the AIK of the hardware TPM, while the secure domain is
attested by the virtual PCRs signed by the AIK of the virtual
TPM.

V. PERFORMANCE EVALUATION
These experiments were conducted on an assembly

computer configured with a MSI 785GTM-E45 main board,
an AMD Phenom X4 9100e CPU, two Apacer DDR2
667MHZ memory chips and a Seagate 250GB 5400RPM
disk running CentOS 5.2 as the main domain, Puppy 4.3.1 as
the secure domain and CentOS 5.2 without Cerberus as
native.

Tab .1 presents the results of process related operations.
Null call is a simple system call operation that retrieves

the current process ID; null IO is a simple I/O read/write
operation; stat is the operation to get a file stat; Fork proc is
the operation that forks a new process and exits immediately;
exec proc forks a new process and executes “execve” before
exit; sh proc forks a new process and executes the shell
program before exit.

The overhead is mainly caused by the nested paging
mechanism which makes the address translation drag on.
This experiment shows that the overhead introduced by
Cerberus is less than 5%. The performance of main domain
is competitive to the native OS. The overhead in secure
domain is more than the main domain but still acceptable.

Tab .2 presents the result of context switching test.
2p/16K means that the workload is 2 processes handling

16K data concurrently; 8p/64K means that the workload is 8
processes handling 64K data concurrently and etc.

The overhead is mainly caused by the vm-exit and vm-
enter events when schedule domains. This experiment
presents that the overhead introduced by Cerberus in context
switching is slight. It is also less than 5%. Both the
performances of main domain and the secure domain are
competitive to the native OS, which runs on a nonvirtualized
environment.

TABLE I. PROCESSES OPERATIONS COST TIME (MICROSECONDS)

Test
environment

NULL
CALL

NULL
IO STAT Fork

proc
Exec
proc Sh proc

Native 0.37 0.74 4.65 172 499 2253

Main Domain 0.42 0.75 4.93 195 531 2495
Secure
Domain 0.45 0.81 5.02 229 554 2608

TABLE II. CONTEXT SWITCHING COST TIME (MICROSECONDS)

Test
environment 2p/0K 2p/16K 2p/64K 8p/16K 8p/64K

Native 1.86 2.03 9.27 4.26 11

Main Domain 2.02 2.15 9.66 4.31 11.6

Secure Domain 2.14 2.13 9.54 4.5 12.4

332

VI. CONCLUSION AND FUTRURE WORK
In this paper, we present Cerberus, a tiny hypervisor

designed to provide trusted and isolated code execution
based on hardware virtualization technologies.

Cerberus protects the secure sensitive codes against the
malicious codes in the main domain by executing it in a
trusted and isolated environment. By leveraging the latest
hardware virtualization support, using the hardware TPM
and virtualized TPM to attest the integrity of Cerberus itself
and the secure domain respectively to a remote party and
employing the display sharing technique, Cerberus has many
advantages over previous works, such as easily adoptable,
remote attestation and high assurance. Our performance
experiments show that the overhead introduced by Cerberus
is less than 5%. Both the main domain and the secure
domain running on Cerberus have a performance competitive
to the native operating systems executing on a nonvirtualized
environment.

We fixed the display resolution to 1024 X 768 in
Cerberus for performance concerns. It may be inconvenient
for some situations. We are investigating some way to
efficiently share the display in a wide range of resolutions.

ACKNOWLEDGMENT
This work is supported by the National Natural Science

Foundation of China (60970125) and the Major State Basic
Research Development Program of China (2007CB310900)

REFERENCES
[1] Criswell, J., Lenharth, A., Dhurjati, D., and Adve, V.: ‘Secure virtual

architecture: A safe execution environment for commodity operating
systems’. Proc. SOSP'07: 21st ACM Symposium on Operating
Systems Principles, Stevenson, WA, United states, October 14-17
2007, pp. 351-366, DOI:10.1145/1294261.1294295

[2] Seshadri, A., Luk, M., Qu, N., and Perrig, A.: ‘SecVisor: A tiny
hypervisor to provide lifetime kernel code integrity for commodity
OSes’. Proc. SOSP'07: 21st ACM Symposium on Operating Systems
Principles, Stevenson, WA, United states, October 14-17 2007, pp.
335-350, DOI:10.1145/1294261.1294294

[3] Chen, X., Garfinkel, T., Lewis, E.C., Subrahmanyam, P.,
Waldspurger, C.A., Boneh, D., Dwoskin, J., and Ports, D.R.K.:
‘Overshadow: a virtualization-based approach to retrofitting
protection in commodity operating systems’. Proc. Proceedings of the
13th international conference on Architectural support for
programming languages and operating systems, Seattle, WA, USA,
March 2008, pp. 2-13, DOI:10.1145/1346281.1346284

[4] Singaravelu, L., Pu, C., Hartig, H., and Helmuth, C.: ‘Reducing TCB
complexity for security-sensitive applications: three case studies’.
Proc. Proceedings of the 1st ACM SIGOPS/EuroSys European
Conference on Computer Systems 2006, Leuven, Belgium, 2006, pp.
161-174, DOI:10.1145/1217935.1217951

[5] Wojtczuk, A.T.a.R.: ‘Introducing Ring -3 Rootkits ’. Proc. Blach Hat
USA, Las Vegas, NV , USA, 2009

[6] Rutkowska, R.W.a.J.: ‘Attacking Intel® Trusted Execution
Technology’. Proc. Black Hat DC, Washington, DC , USA, 2009

[7] J Rutkowska, R.W.: ‘Detecting & Preventing the Xen Hypervisor
Subversions’. Proc. Black Hat USA, Las Vegas, NV, USA, 2008

[8] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A.,
Neugebauer, R., Pratt, I., and Warfield, A.: ‘Xen and the art of
virtualization’. Proc. SOSP'03: Proceedings of the 19th ACM
Symposium on Operating Systems Principles, Lake George, NY,
United states, October 19-23 2003, pp. 164-177, DOI:
10.1145/1165389.945462

[9] TCG Group, ‘TCG Architecture Overview, Version 1.4’
[10] TCG Group, ‘TCG Design, Implementation, and Usage Principles

(Best Practices)’
[11] Waldspurger, C.A.: ‘Memory resource management in VMware ESX

server’, SIGOPS Oper. Syst. Rev., 2002, 36, (SI), pp. 181-194, DOI:
10.1145/844128.844146

[12] AMD Corp., ‘AMD-V™ Nested Paging White Paper’
[13] Intel Corp., ‘Intel® 64 and IA-32 Architectures Software Developer's

Manual Volume 3B: System Programming Guide’

333

