
2014/11/9 1 

第三章 Instruction-Level 
Parallelism and Its Dynamic 
Exploitation 
 浙大计算机 陈文智 

chenwz@zju.edu.cn 



2014/11/9 2 

有几种竞争？ 

结构竞争有几种情况？如何解决 

数据竞争有几种情况？如何解决 

控制竞争如何解决？如何解决？ 

多周期以后引进何种新竞争？ 

 



2014/11/9 3 

3.5 Instruction-Level Parallelism:  

 Concepts and Challenges  

3.5.1 提高流水线性能的思路 

 直观思路: 缩小流水线的CPI 

                               CPIunpipelined 
因为Speedup= ----------------------------- 
                                CPIpipelined 

CPIpipelined  
= Ideal pipeline CPI+ pipelined stall cycles per 

instruction 

=1+ Structual stalls + RAW stalls + WAR stalls  
      + WAW stalls + Control stalls 



2014/11/9 4 

所以: 

   缩小CPIpipelined的途径就是: 

  减少各种竞争造成的停顿周期数 

  或者减少理想CPI 



2014/11/9 5 

各种高级流水线技术及其作用对象: 
4TH 

A.2 

A.2 

A.7 

2.4 

2.3 

2.7,2.8 

2.6 

2.4,2.6 

2.2 

A.2,2.2 

G.2, 

G.3 

G.4,G.5 



2014/11/9 6 

3.5.2 Instruction-Level Parallelism 

 Basic Block ILP is quite small 
 程序基本块： 指不包括转入（除程序入口）和转出

（除程序出口）指令的连续代码序列，通常由6-7条

指令组成。 

 根据统计,在整数程序中动态转移的概率为15%~25%，

即程序中一对转移指令之间仅含4~7条指令） 

 考虑到基本块内指令之间存在各种相关性，所以程序

基本块内可重叠执行的指令数远少于6条。 



2014/11/9 7 

必须研究多个基本块代码之间的可重叠执
行性，即ILP。最常见，也是最简单的一
种多个基本块之间的并行行为： 

  循环多次迭代之间的并行性，称为循环级
并行性（loop-level parallelrism--LLP)。 

[例]  for (i=1; I<=1000; i=i+1;) 

               x[i] = x[i] + y[i]; 

 loop内指令无重叠执行可能性， 

 loop的每一次迭代可重叠执行。 



2014/11/9 8 

如何将此类LLP转化为ILP? 

 

 首先把loop按每次迭代代码序列展开， 

 再根据代码指令指令之间相关性进行调度。 



2014/11/9 9 

一、True Data Dependence: 
 InstrJ is data dependent on InstrI  

InstrJ tries to read operand before InstrI writes it 
 
   
 
 

 or InstrJ is data dependent on InstrK which is dependent on 
InstrI 

 Caused by a “True Dependence” (compiler term)   
 If true dependence caused a hazard in the pipeline, 

called a Read After Write (RAW) hazard  

3.5.3 Data Dependence and Hazards 

I: add r1,r2,r3 

J: sub r4,r1,r3 



2014/11/9 10 

 when 2 instructions use same register or memory location, 
called a name, but no flow of data between the instructions 
associated with that name;  

 Anti-dependence 
 InstrJ writes operand before InstrI reads it 

 
 
 
 
 
 

 called an “anti-dependence” by compiler writers. 
This results from reuse of the name “r1” 
 

 If anti-dependence caused a hazard in the pipeline, called a Write 
After Read (WAR) hazard 

I: sub r4,r1,r3  

J: add r1,r2,r3 

K: mul r6,r1,r7 

二、Name dependence 



2014/11/9 11 

Output dependence 

 InstrJ writes operand before InstrI writes it. 
 
 
 

 

 

 Called an “output dependence” by compiler writers 
This also results from the reuse of name “r1” 

 If out-dependence caused a hazard in the pipeline, 
called a Write After Write (WAW) hazard 

I: sub r1,r4,r3  

J: add r1,r2,r3 

K: mul r6,r1,r7 



2014/11/9 12 

三、 Types of data hazards  
 

 Consider two instructions, A and B. A occurs before B. 

 

 

 
 

 RAW( Read after write)  true dependence 
 Instruction A writes Rx，instruction B reads Rx 

 WAW(Write after write) output dependence，NAME DEP 
 Instruction A writes Rx，instruction B writes Rx 

 WAR( Write after read) anti-denpendence,NAME DEP 
 Instruction A reads Rx，instruction B writes  Rx 

 



2014/11/9 13 

3.6 Overcoming Data Hazards with Dynamic 
Scheduling( 4TH:2.4) 

 3.6.1 Key idea:  
     Allow instructions behind stall to proceed 

 

      DIVD F0,F2,F4 
 ADDD F10,F0,F8 
 SUBD F12,F8,F14 
 

 Enables out-of-order execution  
and allows out-of-order completion 

 Will distinguish when an instruction begins execution 
and when it completes execution; between 2 times, the 
instruction is in execution 

 In a dynamically scheduled pipeline, all instructions 
pass through issue stage in order (in-order issue) 



2014/11/9 14 

Advantages of Dynamic Scheduling 

 Handles cases when dependences unknown 
at compile time  
 (e.g., because they may involve a memory 

reference) 

 It simplifies the compiler  
 Allows code that compiled for one pipeline 

to run efficiently on a different pipeline  
 Hardware speculation, a technique with 

significant performance advantages, that 
builds on dynamic scheduling 
 



2014/11/9 15 

Dynamic Scheduling Step  

 Simple pipeline has 1 stage to check both 
structural and data hazards:  Instruction 
Decode (ID), also called Instruction Issue 

 Split the ID pipe stage of simple 5-stage 
pipeline into 2 stages:  

 Issue—Decode instructions, check for 
structural hazards  

 Read operands—Wait until no data hazards, 
then read operands  

 



2014/11/9 16 

3.6.2 Dynamic Scheduling with a 

Scoreboard 

 Scoreboarding 
 Named after CDC6600 scoreboard 

 Allowing instructions to execute out of order 
when there are sufficient resources and no 
data dependences. 

 In-order issue 

 Out-of order completion 

 Executing an instruction as early as possible 



2014/11/9 17 

Basic structure of a pipelined processor with a 

scoreboard 



2014/11/9 18 

The pipeline stages with scoreboard  

 The Five stages: IF, ID, EX, MEM, WB 
 IF: the same for all instructions 
 ID: split into two stages: issue and read 

operands 
 EX: no change 
 MEM: omitted for only concentrating on the FP 

operations 
 WB: no change 

 So, the stages are:  
 (IF), IS, RO, EX,(MEM),WB. 



2014/11/9 19 

Pipeline stage description 

 Issue: a instruction is issued when 
 The functional unit is available and  
 No other active instruction has the same destination register. 
 Avoid strutural hazard and WAW hazard 

 Read Operands (RO)  
 The read operation is delayed until the operands are available.  
 This means that no previously issued but ncompleted instruction has 

the operand as its destination.  
 This resolves RAW hazards dynamically  

 Execution (EX)  
 Notify the scoreboard when completed so the functional unit can be 

reused. 

 Write result (WB)  
 The scoreboard checks for WAR hazards and stalls the completing 

instruction if necessary. 



2014/11/9 20 

The scoreboard algorithm 

 Scoreboard-takes full responsibility for instruction 
issue and execution 
 Create the dependence records 
 Decide when to fetch the operand 
 Decide when to enter execution 
 Decide when the result can be written into the register file 

 Three data structure 
 Instruction status:  

 which of the four steps the instruction is in 

 Functional unit status: buzy,op,Fi, Fj,Fk,Qj,Qk ,Rj,Rk 
 Register result status: 

 which functional unit will write that register 



2014/11/9 21 



2014/11/9 22 



2014/11/9 23 



2014/11/9 24 

Fj(f)  =  Fi(FU) 

Rj(f)  = NO 

Fj(f)  = Fi(FU) 

Rj(f) ≠ NO 

Fj(f) ≠ Fi(FU) 

Rj(f) = NO 

Fj(f) ≠ Fi(FU) 

Rj(f) ≠ NO 

 

Fk(f)  =  Fi(FU) 

Rk(f)  = NO 

Fk(f)  = Fi(FU) 

Rk(f) ≠ NO 

Fk(f) ≠ Fi(FU) 

Rk(f) = NO 

Fk(f) ≠ Fi(FU) 

Rk(f) ≠ NO 

 

Vf(( Fj(f) ≠Fi(FU) or Rj(f) = No ) & (Fk(f) ≠ Fi(FU) or Rk(f) = No)) 



2014/11/9 25 

Example: Instruction status 

LD         F6, 34(R2) 

LD         F2, 45(R3) 

MULTD F0, F2, F4 

SUBD   F8, F6, F2 

DIVD     F10, F0, F6 

ADDD   F6, F8, F2 

 

Instruction status 

Instruction IS RO EX WB 

LD     

LD     

MULTD     

SUBD     

DIVD     

ADDD     

 
 

MULTD           : 10CC 

DIVD               : 40CC 

ADDD/SUBD  : 2CC 



2014/11/9 26 



2014/11/9 27 

IMM34 Yes 



2014/11/9 28 

IMM34 Yes 



2014/11/9 29 

IMM34 Yes 



2014/11/9 30 



2014/11/9 31 



2014/11/9 32 



2014/11/9 33 



2014/11/9 34 



2014/11/9 35 



2014/11/9 36 



2014/11/9 37 



2014/11/9 38 



2014/11/9 39 



2014/11/9 40 



2014/11/9 41 



2014/11/9 42 



2014/11/9 43 



2014/11/9 44 



2014/11/9 45 



2014/11/9 46 



2014/11/9 47 



2014/11/9 48 



2014/11/9 49 



2014/11/9 50 



2014/11/9 51 

Limitations of Scoreboard-1 

 ILP 
 If we can't find independent instructions to 

execute, scoreboard (or any dynamic scheduling 
scheme for that matter) helps very little.  

 Size of the "issued" queue  
 This determines how far ahead the CPU can look 

for instructions to execute in parallel.  
 It's called the window.  
 For now, we assume that a window can not span a 

branch.  
 In other words, the window includes instructions 

only within basic blocks. 



2014/11/9 52 

Limitations of Scoreboard-2 

 Number, types, and speed of the functional 
units  
 This determines how often a structural hazard 

results in stall.  

 The presence of anti-dependences and 
output dependences  
 WAR and WAW hazards limit the scoreboard 

more than RAW hazards, lead to WAR and WAW 
stalls.  

  RAW hazards are problems for any technique.  
 But WAR and WAW hazards can be solved in 

ways other than scoreboards. 


