
Evaluation of virtual machine performance on NUMA multicore systems

Yuxia Cheng

College of Computer Science and Technology
Zhejiang University
Hangzhou, China

Email: rainytech@zju.edu.cn

Wenzhi Chen

College of Computer Science and Technology
Zhejiang University
Hangzhou, China

Email: chenwz@zju.edu.cn

Abstract—An increasing number of new multicore server
systems use the Non-uniform Memory Access (NUMA) ar-
chitecture due to its scalable memory performance. However,
the multicore NUMA systems introduce complex interplay
among data locality, contention on shared resources, and inter-
socket data sharing overhead, which makes the achievement
of an optimal and predictable system performance difficult.
Virtualization technology further complicates the scheduling
problem. In this paper, we first investigate the impact of virtual
machine (VM) scheduling on multicore NUMA systems. Then,
we analyze different VM mapping combinations and find that
the best VM scheduling strategy does not only depend on the
data sharing and memory characteristics of the VM itself, it is
also impacted by the dynamic behavior of co-running VMs.

Keywords-Multicore; Non-Uniform Memory Access;
Scheduling; Virtualization;

I. INTRODUCTION

Multicore architectures are the fundamental platforms

for today’s real-world systems, including high performance

computing clusters, modern data centers, and cloud comput-

ing infrastructures. Multicore systems provide the advantage

of simultaneous thread execution and parallel performance.

However, unpredictable application performance due to con-

tention on shared on-chip resources remains a challenging

task [3] as it severely reduces the efficiency, fairness, and

QoS that the platform is capable to provide.

The emerging Non-Uniform Memory Access (NUMA) ar-

chitecture in new multicore systems further complicates the

problem. The NUMA system links several small and cost-

effective nodes via a high speed interconnect, where each

node contains both processors and memory. Data locality

[6] is another performance factor that should be considered

when scheduling threads to different NUMA nodes. The

complex interplay among contention on shared resources,

data locality, and inter-node data sharing overhead makes

the determination of the optimal thread-to-core scheduling

difficult.

Virtualization poses additional challenges on performance

optimization of the NUMA multicore systems. The guest

operating system (OS) running in a virtual machine (VM)

have little knowledge about the underlying NUMA multicore

topology, which prevents application and OS level NUMA

optimizations working effectively. Existing virtual machine

monitors (VMM), such as Xen [5] and KVM [12], are

unaware of the NUMA multicore topology when scheduling

VMs. This NUMA-agnostic property makes it difficult to

achieve efficiency, fairness, and priorities among VMs.

In this paper, we investigate the impact of virtual machine

scheduling on NUMA multicore systems. Currently there

is little understanding about the interaction between virtual

machines and the underlying NUMA multicore systems. The

contributions of our work can be summarized as follows:

(1) We analyze the existing virtual machine scheduler, the

CFS scheduler used in KVM. We find that the VM scheduler

cannot work effectively in NUMA multicore systems due to

its NUMA-agnostic property, and find that the CFS incurs

significant performance degradation as the number of threads

increases in the virtualized systems.

(2) We study different VM mapping combinations through

our systematic evaluation. We find that the best VM schedul-

ing strategy does not only depend on the data sharing and

memory characteristics of the VM itself, it is also impacted

by the dynamic behavior of co-running VMs.

The rest of this paper is structured as follows: the new

NUMA multicore architecture is described in section 2; An

analysis of the KVM scheduler is presented in section 3; In

section 4, we evaluate the impact of VM mapping combina-

tions and analyze the experimental results. In section 5, we

describe the related work. Finally, we conclude and discuss

the future work in section 6.

II. THE NUMA MULTICORE ARCHITECTURE

Multicore processors are commonly seen in today’s com-

puter architectures. However, a high frequency (typically 2-

4 GHz) core often needs an enormous amount of memory

bandwidth to effectively use its processing power. Even a

single core running a memory-intensive application will find

itself constrained by memory bandwidth. As the number of

cores becomes larger, this problem becomes more severe on

Symmetric Multi-Processing (SMP) systems, where many

cores must compete for memory controller and bandwidth

in a Uniform Memory Access (UMA) manner. The Non-

Uniform Memory Access (NUMA) architecture is then

proposed to alleviate the constrained memory bandwidth

problem as well as to increase the overall system throughput.

2013 Eighth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing

978-0-7695-5094-7/13 $31.00 © 2013 IEEE

DOI 10.1109/3PGCIC.2013.27

145

2013 Eighth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing

978-0-7695-5094-7/13 $31.00 © 2013 IEEE

DOI 10.1109/3PGCIC.2013.27

136

2013 Eighth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing

978-0-7695-5094-7/13 $31.00 © 2013 IEEE

DOI 10.1109/3PGCIC.2013.27

136

core
0

core
2

core
4

core
6

L3 cache

IMC QPI QPI

core
1

core
3

core
5

core
7

L3 cache

IMCQPI QPIQPI Link

IOH/PCHDDR3 DDR3

(a) 2-NUMA-node Westmere-EP System

L3 Cache

I
M
C

QPI

Mem
Node

0

core
0

core
1

core
2

core
3

I
M
C

L3 Cache

I
M
C

QPI
Mem
Node

2
core

8
core

9
core
10

core
11

I
M
C

L3 Cache

I
M
C

QPI
Mem
Node

3
core
12

core
13

core
14

core
15

I
M
C

L3 Cache

I
M
C

QPI

Mem
Node

1

core
4

core
5

core
6

core
7

I
M
C

QPI Link QPI Link

(b) 4-NUMA-node Westmere-EX System

Figure 1. The Non-Uniform Memory Access (NUMA) multicore System Architecture

The NUMA system links several small and cost-effective

nodes via a high speed interconnect, where each node

contains both processors and memory. Each node has an

advanced memory controller that allows a node to access

memory on all other nodes. When a processor accesses

memory data that is not in its own node, the data must be

transferred through the NUMA interconnect from the remote

memory node. Processors accessing local node memory is

faster than accessing remote node memory, thus the system

has Non-Uniform Memory Access latency. Currently most

commodity servers are using the NUMA architecture due to

its high scalability and cost-effective properties.

The 2-NUMA-node Intel Xeon Westmere-EP topology

is shown in Fig.1(a). In the Westmere-EP architecture,

there are usually four or six cores sharing the Last Level

Cache (LLC, or L3 cache) in a socket, while each core

has its own private L1 and L2 cache. Each socket has

the Integrated Memory Controller (IMC) connected to the

local three channels of DDR3 memory. Accessing to the

physical memory connected to a remote IMC is called the

remote memory access. The Intel QuickPath Interconnect

(QPI) interfaces are responsible for transferring data between

two sockets. And the two sockets communicate with I/O

devices in the system through IOH/PCH (IO Hub / Platform

Controller Hub) chips. Fig.1(b) shows a 4-NUMA-node Intel

Xeon Westmere-EX topology, there are four NUMA nodes

interconnected by the QPI links in the system, and each node

has four cores sharing one LLC with two IMCs integrated

in the socket. Although other NUMA multicore processors

(e.g., AMD Opteron) may differ in the configuration of on-

chip caches and the cross-chip interconnect techniques, they

have similar architectural designs.

Recent studies [6], [17], have shown performance degra-

dations on NUMA multicore systems due to placing ap-

plications onto improper NUMA nodes. We summarize the

performance degradation factors into three aspects:

(1) Remote data access. If a thread is running on a core

belonging to one NUMA node and the thread’s memory is

located in another NUMA node, it will cause the thread ac-

cessing remote data, thus increasing memory access latency.

(2) Contention on shared on-chip resources. If two mem-

ory intensive threads are scheduled into two cores that shares

the same LLC, memory controller, and other hardware

prefetching units etc., it will cause severe contention on these

shared on-chip resources, thus resulting the performance

degradation of both threads.

(3) Inter-socket data sharing overhead. If two threads that

frequently access shared data are scheduled into two cores

that resides in different sockets (also different NUMA nodes

in the Westmere architecture), it will cause inter-socket

data sharing overhead. Because the shared data consistency

messages need to be transferred by the QPI link between

two sockets.

The complex interplay of these three performance factors

on NUMA multicore systems makes the achievement of

optimal and predictable system performance difficult. There-

fore, it is important to study the multicore NUMA effect on

modern servers, especially when these servers are deployed

of virtualized systems with various VMs running on them.

In the following sections, we will discuss the performance

impact of virtual machine scheduling on NUMA multicore

systems.

III. ANALYSIS OF EXISTING VM SCHEDULERS

In this section, we analyze the existing VM schedulers and

evaluate the performance impact of scheduling VMs in the

NUMA multicore system. We compare the native benchmark

performance with the virtual performance where benchmarks

are running inside the VM. We find that the performance of

benchmarks running in the virtual machine degrades slightly

146137137

bt cg ep ft is lu mg sp
0

0.2

0.4

0.6

0.8

1

1.2

1.4

NPB3.3�MPI benchmarks running alone

N
or

m
al

iz
ed

 R
un

tim
e

Native
Virtual

(a) Single-thread Case

bt cg ep ft is lu mg sp
0

0.5

1

1.5

2

2.5

3

3.5

NPB3.3�MPI benchmarks running together

N
or

m
al

iz
ed

 R
un

tim
e

Native
Virtual

(b) 4-thread Case

Figure 2. Performance Comparison of Scheduling Impact on Virtual vs. Native Machines

compared with running in native machines when the number

of running threads is equal or less than the number of

physical cores in the system. However, when the number

of running threads is much greater than the number of cores

in the system, the performance of benchmarks running in

the virtual machine decreases significantly compared with

running in the native machine. This observation indicates

the virtual machine scheduling has great impact on the

performance of virtualized NUMA multicore systems.

To evaluate the effects of virtual machine scheduling,

we use the KVM (Kernel-based Virtual Machine) as the

virtualization environment. In section 3.1, we analyze the

Linux CFS (Completely Fair Scheduler) that used in the

KVM monitor as the VCPU scheduler. In section 3.2, we

compare the scheduling impact on the virtual performance

and native performance in NUMA multicore system, and

present our experimental results.

A. The CFS Scheduler

The scheduling module of the KVM virtual machine

monitor depends on the CFS scheduler of the Linux kernel.

The CFS scheduler treats a VM instance as a normal process

in the Linux system, and treats each VCPU in the VM as

a thread of the VM process. It is the CFS’s responsibil-

ity to schedule virtual machines (more precisely VCPUs)

in the system. CFS is a virtual runtime based multicore

task scheduler with the distributed run-queue structures. A

thread’s virtual runtime is defined as the thread’s cumulative

runtime inversely scaled by its weight. Each core maintains

a run-queue of runnable threads, and a CFS instance runs

periodically to make scheduling decisions according to the

virtual runtime of threads in each core. CFS attempts to give

each thread CPU time proportional to its weight, and uses a

weight-based load balancing mechanism to fairly distribute

system load among run-queues. Threads will migrate among

different cores, which may incur extra overhead when thread

migration occurs frequently in the system, especially in a

NUMA multicore system.

Current CFS scheduler is unaware of the underlying

NUMA multicore topology. Thus, NUMA-agnostic thread

scheduling, particularly when this thread is a VCPU thread

of a virtual machine, causes ineffective use of shared on-chip

resources, remote data access, and inter-socket data sharing

overhead. In the next section, we present an experimental

analysis of scheduling impact on virtual machine perfor-

mance in the NUMA multicore system.

B. Scheduling Impact on Virtual Performance

We conduct an experiment to study the scheduling impact

on virtual machine performance in the NUMA multicore

system. The experimental results were gathered on Dell

R710 server with two 2.40 GHz Intel (R) Xeon (R) CPU

E5620 processors based on the Westmere-EP architecture.

Each E5620 processor has four cores sharing a 12MB L3

cache. The R710 server has a total of 8 physical cores and

16GB memory, with each NUMA node having 4 physical

cores and 8 GB memory. The virtual machine used in this

experiment is configured with 8 VCPUs and 16GB memory

that is the same as the physical machine. We use the NAS

Parallel Benchmarks (NPB) [1] to run on the R710 server.

The host and guest operating systems are the SUSE 11 SP2

(the Linux kernel 3.0.24).

First, we simultaneously run 8 single-threaded NPB-MPI

benchmarks in the native Linux machine. We run the 8

benchmarks together for 5 times and calculate the average

runtime of each single-threaded benchmark. Then, we put

the same 8 benchmarks into the 8-VCPU virtual machine,

and the guest OS in the VM is the same with the host OS.

We also run the 8 benchmarks simultaneously for 5 times

and calculate the average runtime. The experimental result is

shown in Fig.2(a), we use each native benchmark’s runtime

as the base time and normalize the virtual benchmark’s

147138138

runtime using the base time. We find that 5 benchmarks

(bt, ep, ft, mg, sp) running in the VM have almost the

same performance as running in the native machine. And

3 benchmarks (cg, is, lu) running in the VM have some

performance degradation compared with that running in the

native machine, the degradation ratios are 31%, 16%, and

17% respectively.

Second, we simultaneously run 8 four-threaded NPB-

MPI benchmarks in the native Linux machine and calculate

their average runtime. Then, we run the same 8 benchmarks

simultaneously in the VM and also calculate their average

runtime. Therefore, both in the native machine and in the

virtual machine, the number of running threads is 4 times

larger than the number of available physical CPUs (PCPUs)

and virtual CPUs (VCPUs) respectively. In this case, both

the native and virtual system must schedule the running

threads frequently to let all threads have corresponding CPU

time slices and to balance CPU load. The experimental

result is shown in Fig.2(b). This time, we find that all the

benchmarks running in the VM have significantly longer

runtime than in the native case. An average of 2.5 times

performance degradation in the virtual machine than in the

native machine. Particularly, the runtime of cg and is running

in the VM have 3.08 and 3.18 times longer than in the native

machine respectively.

From the experiment, we observe that the scheduling over-

head in the virtual machine is significantly higher than in the

native machine. If the scheduling operation is less frequent

(running single-threaded benchmarks as shown in Fig.2(a)),

the virtual performance is close to the native performance.

However, when the number of running threads in the system

becomes larger, the benchmark performance in the VM

decreases significantly. This is because that the Virtual Ma-

chine Monitor (VMM, the KVM monitor in this experiment)

and VM is unaware of the underlying NUMA multicore

topology. This NUMA-agnostic property will cause the

VMM scheduling VCPU threads to inappropriate PCPUs

and the VM scheduling application threads to inappropriate

VCPUS, which incurs data locality, contention for shared on-

chip resources, and more inter-socket data sharing overhead.

Whats more, frequent scheduling operations incur much

more context switch (extra VM exit and VM entry context

switch) overhead than in the native machine. In the next

section, we will evaluate the performance impact factors of

virtual machine scheduling in the NUMA multicore systems.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the memory characteristics

of virtual machines that running different NPB benchmarks

and study different VM mapping combinations that impact

the system performance. Through our systematic evaluation

, we find that the best VM scheduling strategy does not only

depend on the data sharing and memory characteristics of

0 1 2 3 4 5 6
0.95

1

1.05

1.1

1.15

1.2

1.25

cg

bt

ep

ft is

lu
mg

sp

MPKI

N
U

M
A

 P
en

al
ty

Figure 3. The Memory Characteristics of NPB benchmarks

the VM itself, it is also impacted by the dynamic behavior

of co-running VMs.

A. Experimental Platforms

We use two experimental systems for evaluation. One

is the two-NUMA-node Dell R710 server used in section

2 and section 3. The other is a four-NUMA-node Dell

R910 server with four 1.87 GHz Intel (R) Xeon (R) CPU

E7520 processors based on the Nehalem-EX architecture.

Each E7520 processor has four cores sharing a 18MB L3

cache. The total memory is 64 GB with each NUMA node

having 16 GB memory. Both the host and guest operating

system used in the experiment are SUSE 11 SP2 (the Linux

kernel version 3.0.13). KVM module is used in the kernel as

the virtualization environment. We use NAS Parallel Bench-

mark (NPB3.3) to test virtual machine performance. NPB

benchmark suite is a set of benchmarks developed for the

performance evaluation of highly parallel supercomputers.

These benchmarks consist of five parallel kernels and three

simulated application benchmarks.

We use the perf [18] tool to measure the memory charac-

teristics of the NPB benchmarks. We use NUMA penalty and

MPKI (L3 cache misses per kilo instructions [6]) to indicate

a benchmark’s memory intensiveness. The NUMA penalty

of a program is the slowdown of a remote execution relative

to the program’s local execution. The NUMA penalty is

calculated as CPIremote/CPIlocal, where CPIremote denotes

the CPI (cycles per instruction) of a program executing

remotely, CPIlocal denotes the CPI of a program executing

locally. We use the perf tool to measure the benchmark’s

CPI online. The MPKI of a program is used to estimate

cache pressure of the program. We also use the perf tool

to measure the benchmarks MPKI online. As shown in

Fig.3, we plot the NUMA penalty of eight NPB benchmarks

against their MPKI, and also plot the linear model fitted

onto the data. The results show that the two parameters are

positively correlated, the NUMA penalty increases with the

148139139

bt cg ep ft is lu mg sp
0.4

0.6

0.8

1

1.2

1.4

NPB3.3�MPI Benchmarks Running in VM

In
tra

�V
M

 S
ha

rin
g

N
or

m
al

iz
ed

 R
un

tim
e

1�node
2�node
4�node

(a) Intra-VM MPI

bt cg ep ft is lu mg sp
0.4

0.6

0.8

1

1.2

1.4

NPB3.3�OMP Benchmarks Running in VM

In
tra

�V
M

 S
ha

rin
g

N
or

m
al

iz
ed

 R
un

tim
e

1�node
2�node
4�node

(b) Intra-VM OMP

Figure 4. Performance Variation of Intra-VM VCPU Mapping Strategies

MPKI. We can divide the eight NPB benchmarks into three

classes according to their memory intensity (the value of

their MPKI): Class A includes cg, is, and sp benchmarks,

which has high memory intensity (MPKI greater than 3);

Class B includes bt and ft, which has medium memory

intensity (MPKI between 1 and 3); Class C includes ep, lu,

and mg, which has relatively low memory intensity (MPKI

less than 1).

B. Intra-VM VCPU Mapping

Virtual machines are now typically configured with multi-

ple VCPUs. And the VCPUs inside a VM will be scheduled

into different NUMA nodes according to the online system

load. In order to analyze the performance impact of VCPU

scheduling within a VM, we conduct an experiment to

investigate the different VCPU mapping strategies that may

cause different performance variations due to data locality,

contention on shared resources, and inter-socket sharing

overhead.We use the four-NUMA-node R910 server as the

experimental platform, and the virtual machine is configured

with 4-VCPU and 16 GB memory.

In the first case, we bind all the 4 VCPUs on one NUMA

node and bind the memory of the VM on the same node.

We run the eight NPB-MPI and NPB-OMP benchmarks

respectively. Each time we run one of the eight 4-threaded

NPB benchmarks inside the VM and record their average

runtime (each benchmark running three times). In the second
case, we bind 2 VCPUs of the VM on NUMA node-0 and

the other 2 VCPUs of the VM on NUMA node-1. The VM’s

memory allocation strategy uses the default Linux NUMA

memory management that allocates a threads memory in

the local NUMA node where the thread is running. We

also run the MPI and OMP benchmarks and record their

average runtime. In the third case, we bind 4 VCPUs on

4 NUMA nodes respectively, that is each NUMA node

has one VCPU running on them. The memory allocation

strategy is the same as in the second case. We also run

the MPI and OMP benchmarks and record their average

runtime. The experimental result is shown in Fig.4. We plot

the normalized runtime of each benchmark using the 1-node

case (4 VCPUs all bind on one NUMA node) as the base

case. The 2-node and 4-node case represent the second and

the third case described above.

We find that different intra-VM VCPU mapping strate-

gies have significant performance impact on the virtualized

NUMA multicore system. As shown in Fig.4(a), the mg
benchmark’s runtime in 4-node case is 27% shorter than in

1-node case, and other benchmarks (cg, ft, lu, sp) also show

significant performance variation from 12% to 23%, the rest

of benchmarks (bt, ep, is) show minor performance variation

from 2% to 5%. In Fig.4(b), the performance variation is also

very significant. The benchmark cg, is, and sp have large

performance variation from 13% to 25%. And benchmark

bt, ep, ft, lu, and mg also have performance variation from

2% to 5%.

Benchmarks cg and is both in the MPI and OMP tests

show shorter runtime in 1-node case than in 2-node and 4-

node cases. This is because cg and is have larger MPKI

(see Fig.3) that will cause frequent main memory access

(serve cache misses from LLC), therefore both cg and is
favor data locality (accessing memory from local NUMA

node) to reduce main memory access latency. The runtime

variation of is in the OMP test is larger than in the MPI test,

because MPI and OMP have different parallel programming

model, MPI is the message-passing based model while OMP

is the shared-memory based model. Therefore, the OMP

benchmark test favors more data locality factor. However,

the benchmark lu, mg, and sp show longer runtime in 1-

node case than in 2-node and 4-node cases. This is because

lu, mg, and sp have large working set, and they favor large

cache size more than data locality factor to improve their

performance. Therefore, when distributing the 4 VCPUs into

149140140

VAVA

MA,MB

VBVB

VA

MA

VB

MB

VAVA

MB

VBVB

MA

VAVA VBVB

MA,MB

Case 0 (The base case)

VA, VBVA, VB

MA MB

VA, VBVA, VB

MB MA

VA,VBVA,VB

MA,MB

VA, VB

MA,MB

Case 7

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

Mem Node

Socket

(a) 8 Inter-VM Binding Cases

1 2 3 4 5 6 7
0

10

20

30

40

50

60

D
eg

ra
da

tio
n

of
 b

t�
V

M
 d

ue
 to

 c
on

te
nt

io
n

co�running with ep�VM
co�running with ft � VM
co�running with sp�VM

(b) Inter-VM Binding Cases

Figure 5. Performance Impact of Inter-VM Resource Contention

2 or 4 separate NUMA nodes (each node has separate large

18 MB L3 cache size), the lu, mg, and sp shows performance

improvement compared with putting all VCPUs into one

NUMA node.

In Fig.4(b), the benchmark ft and mg clearly show the

complex interplay of three performance factors: data locality,

contention on shared L3 cache, and inter-socket data sharing

overhead. Both ft and mg have shorter runtime in 2-node case

than in 1-node and 4-node cases. This shows the trade-off

among the three performance factors. The 1-node case has

strong data locality, little inter-socket data sharing overhead,

but has strong contention on shared on-chip resources.

However, the 4-node case has little contention on shared

on-chip resources, but has weak data locality, and large inter-

socket data sharing overhead. To a certain degree, the 2-node

case is a balance among the three performance factors.

From the experiment, we find that when the performance

factors have different contributions to the overall system

performance, it is the dominant factor that typically de-

termines the best mapping strategy. However, when the

performance factors have equal contributions to the overall

system performance, the best mapping strategy is usually

a trade-off among all the performance factors. This finding

helps the design of future NUMA-aware VCPU schedul-

ing algorithms to improve virtual machine performance in

NUMA multicore sytems.

V. INTER-VM RESOURCE CONTENTION

In this section, we analyze the performance impact of

inter-VM resource contention. Multiple virtual machines

are usually consolidated onto a physical NUMA multicore

server. These VMs will contend for underlying shared physi-

cal resources. The performance degradation caused by inter-

VM resource contention can be very significant and will be

changed due to different program behavior of various VMs.

We conduct an experiment to show the performance

impact of inter-VM shared resource contention. We use two

VMs to concurrently run on the multicore NUMA system

and compare the performance variation due to different

VM mapping strategies and different benchmarks running

inside VMs. The two VMs (VM-A and VM-B) have the

same configuration with 2 VCPUs and 8 GB memory. The

experimental results were gathered on the 2-NUMA-node

R710 server. We use numactl command to bind VM’s VCPU

threads to sockets and their memory to NUMA nodes, then

we enumerate eight VCPU-to-socket and memory-to-node

binding cases, and Fig.5(a) shows the eight different binding

cases. Case 0 is the base case that VM-A’s VCPUs (short for

VA) are bound to socket-0 and its memory (short for MA) is

bound to node-0, VM-B’s (short for VB) VCPUs are bound

to socket-1 and its memory (MB) is bound to node-1. The

rest of the seven cases are shown in Fig.5(a). We use the

VM-A as the target VM that the bt benchmark is running

inside it, and use the VM-B as the co-running VM that each

time one of three selected NPB benchmarks is running inside

it. The three benchmarks are ep, ft, and sp, and they are

selected according to the classification discussed in section

4.1, representing low, medium, and high memory intensity

of co-running VMs respectively.
The experimental results are shown in Fig.5(b). We plot

the performance degradation of the bt benchmark inside

VM-A in Case 1-7 relative to Case 0 when co-running

with VM-B. The results show that the performance degra-

dation can be as high as 51.4% in Case 7 that sp is the

benchmark co-running inside VM-B. Other cases also show

significant performance degradation of the bt benchmark due

to different resource contention, cases 1, 3, 6, and 7 have

memory controller contention; cases 4, 5, 6, and 7 have

LLC contention; cases 2, and 7 have interconnect contention;

cases 2, 3, 5, 7 have remote access latency. Fig.5(b) shows

the performance variations due to these inter-VM shared

150141141

resources contentions. From the result, we observe that

the performance degradation caused by inter-VM resource

contention can be very significant and different resource

contention cases show different performance reductions.

What’s more, the performance of the target VM is also

impacted by the dynamic behavior of co-running VMs.

VI. RELATED WORK

Much research has focused on NUMA-related system

performance in OS and architecture research field [3], [6],

[8], [13], [17], etc. Some research efforts [8] and [13]

try to address effective co-location of the computation

and the related memory on the same node. Some studies

[3], [6], [17] have shown significant performance impact

of shared resource contention in the context of multicore

NUMA systems. However, to our best knowledge, very few

efforts have been made to efficiently address the challenges

of NUMA multicore performance variation in virtualized

systems. Our work studies the impact of virtual machine

scheduling on new NUMA multicore systems and provide

meaningful observations for the future design of NUMA-

aware virtual machine scheduling algorithms in the VMMs.

The performance evaluations of virtualized systems have

been studied in recent years. There has been a lot of

research in assessing the performance of virtualized systems

in cloud computing environments [7], [11]. Compared to

this body of previous work, ours is different in granularity.

The granularity is VCPU/PCPU and the underlying shared

physical resources in our work compared to the black box

VM rent from cloud service provider. We conduct extensive

experiments on inter-VM VCPU mapping and intra-VM

resource contention effect on the multicore NUMA systems

using NPB benchmarks.

The HPC community has shown much interest for the use

of virtualization recently. Studies of [15] and [10] find that

virtualization overhead is negligible for compute intensive

HPC kernels and NPB benchmarks; In [10], W. Huang et

al. described a case for high performance computing with

virtual machines and showed that I/O virtualization overhead

is the major factor for performance degradation of NPB

benchmarks. Other studies [16] and [14] discuss challenges

and issues in system virtualization technologies with em-

phasis on their value in HPC environments. Researchers

in [4] and [9] evaluate the effect of HPC applications

in virtualized VMware ESXi and Xen systems, and they

present simple performance variation results due to different

VM configurations. In contrast to these, our work evaluates

the performance impact of virtual machine scheduling in

the KVM system on new NUMA multicore servers, and

we reveal three performance degradation factors and two

kinds of VM running scenarios (inter-VM and intra-VM)

that essentially impact on the system performance.

VII. CONCLUSION

We evaluated the performance impact of virtual machine

scheduling on the NUMA multicore systems. We found that

the CFS scheduler used in KVM cannot work effectively in

NUMA multicore systems due to its NUMA-agnostic prop-

erty. And we presented a detailed performance evaluation

of virtual machines running on the NUMA systems. We

discovered that the best VM scheduling strategy does not

only depend on the data sharing and memory characteristics

of the VM itself, but also impacted by the dynamic shared

physical resource contention of co-running VMs. These

observations will motivate the future design of new virtual

machine schedulers.

REFERENCES

[1] The NAS Parallel Benchmarks,
http://www.nas.nasa.gov/publications/npb.html

[2] J. Ahn, C. Kim, J. Han, Y. Choi, and J. Huh, “Dynamic
virtual machine scheduling in clouds for architectural shared
resources,” in HotCloud, 2012.

[3] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing
shared resource contention in multicore processors via schedul-
ing,” in ACM SIGARCH Computer Architecture News, vol. 38,
no. 1, pp. 129–142, 2010.

[4] Q. Ali, V. Kiriansky, J. Simons, and P. Zaroo, “Performance
evaluation of hpc benchmarks on vmware’s esxi server,” in
Euro-Par, 2012.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in ACM SIGOPS Operating Systems Review,
vol. 37, pp. 164–177, 2003.

[6] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fedorova,
“A case for numa-aware contention management on multicore
systems,” in USENIX ATC, 2011.

[7] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good,
“The cost of doing science on the cloud: the montage example,”
in ICS, 2008.

[8] M. Ghosh, R. Nathuji, M. Lee, K. Schwan, and H. Lee,
“Symbiotic scheduling for shared caches in multi-core systems
using memory footprint signature,” in ICPP, 2011.

[9] J. Han, J. Ahn, C. Kim, Y. Kwon, Y. Choi, and J. Huh,
“The effect of multi-core on HPC applications in virtualized
systems,” in Euro-Par , 2010.

[10] W. Huang, J. Liu, B. Abali, and D. Panda, “A case for high
performance computing with virtual machines,” in ICS, 2006.

[11] A. Iosup, S. Ostermann, M. Yigitbasi, R. Prodan, T. Fahringer,
and D. Epema, “Performance analysis of cloud computing
services for many-tasks scientific computing,” in IEEE Trans-
actions on Parallel and Distributed Systems, vol. 22, no. 6, pp.
931–945, 2011.

151142142

[12] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori,
“KVM: the Linux virtual machine monitor,” in Proceedings of
the Linux Symposium, 2007.

[13] Z. Majo and T. Gross, “Memory management in numa
multicore systems: Trapped between cache contention and
interconnect overhead,” in ACM SIGPLAN Notices, vol. 46,
no. 11, pp. 11–20, 2011.

[14] M. Mergen, V. Uhlig, O. Krieger, and J. Xenidis, “Virtu-
alization for high-performance computing,” in ACM SIGOPS
Operating Systems Review, vol. 40, no. 2, pp. 8–11, 2006.

[15] J. Moses, R. Iyer, R. Illikkal, S. Srinivasan, and K. Aisopos,
“Shared resource monitoring and throughput optimization in
cloud-computing datacenters,” in IPDPS, 2011.

[16] J. Simons and J. Buell, “Virtualizing high performance com-
puting,” ACM SIGOPS Operating Systems Review, vol. 44,
no. 4, pp. 136–145, 2010.

[17] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. Soffa,
“The impact of memory subsystem resource sharing on data-
center applications,” in ISCA, 2011.

[18] S.Eranian, “What can performance counters do for memory
subsystem analysis?” in MSPC, 2008.

152143143

