Instruction—-Level Parallelism and
Its Dynamic Exploitation

RO

chenwz@?zju.edu.cn
WL Kt AL B
201449 H

mailto:chenwz@zju.edu.cn

NARERATRIRIR A (1)

3.1 Wil ZKE AR TR

3.2 How Is Pipelining Implemented?

3.3 The Major Hurdle of Pipelining—Pipeline Hazards
3.4 Extending the MIPS Pipeline to Handle Multicycle Operations

(AFL[E7 Appendix A)
o MKLBEARMAIELSEBPATHAR, ERMK
EEEE R E /Y
o HTHFAE=MMKEGRSF: GHRF. HiE
G, BHIRS, FEAKEERREK, FRE
EBENESRS, BEFANEGEN, A
T Ik £ 14 B G -

NARERATIRIRIR A& (2)

3.5 Instruction-Level Parallelism: Concepts and Challenges

(CPI=1)
o 54 2 B B BRATHRR NI S BIFATE

(Instructlon Parallelism—ILP)

?%
—

RN K182 Z [B FF

K

Elé\ EH %ﬁ%ﬂ‘ B,J_J‘ﬁlﬁ I.,...’ Mr

R KZEHITERE o

E |

NARERLTIRIFIRE(3)

3.6 Overcoming Data Hazards with Dynamic Scheduling (2.4)

o B XK ZRBHE T F ISR E

3.7 Reducing Branch Costs with Dynamic Hardware
Prediction (2.3)

o B XK ZE 2 M 3T F R B R

NBRE RS

3.8 Hardware-Based Speculation (2.6)

..!:
4

3

TR 382 HHA

B KBS

[E IR A (4)

ATERIBIEBOR
B R

G Rt 4

RE

3.9 Taking Advantage of More ILP with Multiple Issue(2.7)

..!

ﬁ"é

*/F;

T RIGREIAT

NI BH R T2 R IR R

M (CPI<1)

3. 1M/K & BIAR S

Appendix A.1
3.1.1 What is pipelining?
3.1.2 Why pipelining ?
3.1.3 Ideal Performance for Pipelining

3.1.1 What is pipelining?

e Pipelining:
“A technique designed into some computers to
increase speed by starting the execution of

one instruction before completing the previous
2
one.

———Modern English—-Chinese Dictionary

Implementation technique whereby different
Instructions are overlapped in execution at the same
time.

Implementation technigue to make fast CPUs

Trucking gas from depot to gas station

e The steps: e Let's do the math

Get the barrels Each truck can carry 5
Load them into the barrels
T::Ck Can load a truck with 5

: barrels in 1 hour
Drive to the gas It takes each truck 1 day
station to drive to and from gas
Unload the gas station

Return for more oil How many barrels per

WeekK d O of

Like a Multi-cycle Processor

e What are similar in the steps ?

Fetch an instruction (Get the barrels)

Decode the instruction (Load them into the truck)
ALU OP (Drive to the gas station)
Memory Access (Unload the gas)
Write-back (Return for more oil)

A better way, but dangerous

e Roll the barrels down the road
Big fire hazard

10

Big idea: Build a pipeline

e Now let's do the math

Pipeline can accept 1 barrel every hour

How many barrels get delivered to the gas station
per day?

11

Trucking vs. Pipelines

(GAS STATION

e Pipelines

Truck with 5 barrels takes 1 Pipeline can accept 1
day to drive to and from gas barrel every hour
station, while need 2 hours Resources (loading
for loading and unloading

area, gas

LOTS of TIME when loading station pipelines) are
area,gas station, and pieces lwavs in us
of the road are unused diways ih tse

12

Sequential Laundry
6PM 7 8 9 10 11 Midnight

| Time
| |20| 30| 40 |20| 30 | 40 |20| 30| 40 |20|
| & ek
| B NS A
.| @© Topéy
; D Sk

J Washer takes 30 min, Dryer takes 40 min, folding takes 20 min
J Sequential laundry takes 6 hours for 4 loads
d If they learned pipelining, how long would laundry take?

13

X0 0 —

= 0 O = O

Pipelined Laundry

| Time

30 40 | 40 | 40 | 40 |20|

® TPy

B =
© ﬁ.:.;

(D o7

- Pipelining means start work as soon as possible
J Pipelined laundry takes 3.5 hours for 4 loads

6PM 7 8 9 10 11 Midnight

14

=0 0 -

= © o = O

6 PM

Pipelining Lessons

7

8

9

T
b

Time

30 40 40 40 40 20

® o

©
D

=5

7.'

n

(=]

(-

7.'
-

- Pipelining doesn’t help latency
of single task, it helps throughput
of entire workload

| - Pipeline rate limited by slowest
pipeline stage
d Multiple tasks operating

simultaneously using different
resources

- Potential speedup = Number
pipe stages

d Unbalanced lengths of pipe
stages reduces speedup

? d Time to “fill” pipeline and time to

“drain” it reduce speedup
- Stall for Dependencies

15

What is Pipelining

e A pipeline is like an auto assemble line
e A pipeline has many stages

e Each stage carries out a different part of
Instruction or operation

e The stages, which cooperates at a synchronized
clock, are connected to form a pipe

e An instruction or operation enters through one
end and progresses through the stages and exit
through the other end

e Pipelining is an implementation technique that
exploits parallelism among the instructions in a
sequential instruction stream

16

3.1.2 Why pipelining :

L > I! I I I j
100 ns ~20 ns

¢ Only deal one task e Latches, called
each time. pipeline registers’

e This task takes breakup
* such a long time" computation into

stages

e Deal b tasks at the
same time.

17

Why pipelining:

-« >

100 ns

e Can "launch” a new
computation every 100ns
in this structure

e Can finish 107
computations per second

~20 ns

e Can launch a new
computation every
20ns in pipelined
structure

e Can finish 5X107
computations per
second

18

Conclusion

e The key implementation technique used to
Make fast CPU: decrease CPUtIme.

e Improving of Throughput (rather than
iIndividual execution time)

e Improving of efficiency for resources
(functional unit)

19

3.1.3 Ideal Performance for Pipelining

Time tasks on unpipelined machine

Speedup =

Time same tasks on pipelined machine

Assume: stages: k tasks: n
Tk — (k+(n' 1))Tp

le n kTup
T nke up

S d = —3 =
= T, e (-

N——>°° Speedup——>K

20

ldeal Performance for Pipelining

e If the stages are perfectly balanced, The time
per instruction on the pipelined processor equal
To:

Time per instruction on unpipelined machine

Number of pipe stages

e S0, Ideal speedup equal to
Number of pipe stages.

21

Why not just make a 50-stage pipeline ?

e Some computations just won't divide into
any finer (shorter in time) logical
implementation.

~20 ns

50 stages NO. Sorpy!
000

~2 NS

22

Why not just make a 50-stage pipeline ?

Those latches are NOT free, they take up area, and
there is a real delay to go THRU the latch itself.

Machine cycle > latch latency + clock skew

In modern, deep pipeline (10-20 stages), this is a real
effect

Typically see logic "depths” in one pipe stage of 10-20
"gates”.

At these speeds, and
with this few levels

of logic, latch
. . . ' .".. | delay is important

~20

23

How Many Pipeline Stages?

e E.g., Intel
Pentium III, Pentium 4: 20+

stages
More than 20 instructions in " becope
flight

High clock frequency (>1GHz) Sisicic
High IPC LOGIC SUPPORT

BRANCH
PREDICTION
LOGIC

" SUPERSCALER

e Too many stages: : oaTA | " \recEn

e EXECUTION

Lots of complications s ¥
. PIPELINED

Should take care of possible | _ FLOATING
dependencies among in-flight A —

nstruction

Control logic is huge

24

3.2 How Is Pipelining Implemented?

AL [- Appendix A.3

3.2.1 How does instruction Work in the MIPS 5 stage
pipeline?
3.2.2 5-stage Version of MIPS Datapath

3.2.3 The MIPS pipelining and some Problems

25

Basic of RISC Instruction Set

1 RISC architectures are characterized by the following features
that dramatically simplifies the implementation:

1. All ALU operations apply only on data in registers

2. Memory is affected only by load and store operations

3. Instructions follow very few formats and typically are of the same size

 All MIPS instructions are 32 bits, following one of three

formats: 31 26 21 16 11 6 0
op rs rt rd shamt funct
R—type at G bitSZB 5 bitsﬂ o bits-na o bits 5 bits 6 bits o
op rs rt immediate
|—‘type 6 bits 5 bits 5 bits 16 bits
31 26 0
op target address
J-type 6 bits 26 bits

26

MIPS Instruction Format

O Register-format instructions:

op rs rt rd shamt funct
G hits 5 bits 5 bits 5 bits 5 bits G bits
op: Basic operation of the instruction, traditionally called opcode
Is: The first register source operand
rt: The second register source operand
rd- The register destination operand, it gets the result of the operation

shmat. Shift amount (explained in future lectures)
funct. This field selects the specific variant of the operation of the op field

ad MIPS assembly language includes two conditional branching instructions
using PC -relative addressing:
beq register1, register2, L1 # go to L1 if (register1) = (register2)
bne register1, register2, L1 # go to L1 if (register1) = (register2)
d Examples: add $t2, 311, $t1 # Temp reg $t2 = 2 $t1
sub $t1, $s3, $s4 # Temp reg $t1 = $s3 - $s4

and $t1, 312, $t3 # Temp reg $t1 = $t2 . $t
A\ bne $s3. $s4. Else # if $s3 = $s4 iumbp to Else

27

MIPS Instruction Format

A Immediate-type instructions:

op rs rt address
G bits 5 bits 5 bits 15 hits

Jd The 16-bit address means a load word instruction can load a word within a
region of + 2> bytes of the address in the base register

O Examples: |w $t0, 32($s3) : SW 3t1, 128(%$s3)

d MIPS handle 16-bit constant efficiently by including the constant value in the
address field of an I-type instruction (Immediate-type)
addi Isp, 3sp, 4 #Psp = %sp + 4

3 For large constants that need more than 16 bits, a load upper-immediate (/ui)
instruction is used to concatenate the second part

lui $t0, 255 oo1111 00000 01000 Qooo 0000 1111 1111
Contents /

of 5t0 after Qo000 0000 1111 1111 Qo000 Q000 0000 Q000
ezie-:uticm

28

Addressing in Jumps and Branches

4 I-type instructions leaves only 16 bits for address reference limiting the size
of the jump
d MIPS branch instructions use the address as an increment to the PC
allowing
the program to be as large as 2% (called PC-relative addressing)

4 Since the program counter gets incremented prior to instruction execution,
the branch address is actually relative to (PC + 4)

d MIPS also supports an J-type instruction format for large jump instructions

op address
g bits 28 bits
d The 26-bit address in a J-type instruct. is concatenated to upper 8 bits of PC
Loop: add S$t1, §s3, $s3 80000 0 19 19 9 0 32
add St1, $t1, $t1 80004 0 9 9 9 0 az
add $t1, $t1, $s6 80008 0 9 22 9 0 3z
I $t0, 0($t1) 80012 a5 9 8 0
bne $t0, $s5, Exit 80016 5 a 21 B
add $s3, $s3, $s4 80020 0 19 20 19 0 3z
i Loop 80024 2 80000
Exit: 80028 -
AN 80012 35 9 8 0 |

29

3.2.1 MIPS 5 stage pipeline (1)

The first two stages of MIPS pipeline
e IF (Instruction fetch cycle)
IR<Mem[PC];
NPC «PC=PC+4;
e ID (Instruction decode/register fetch cycle)
A «Regs[rs];
B «Regs[rt]:
Imm <«sign-extended immediate field of IR;

- Note: The first two stages of MIPS pipeline do the
same functions for all kinds of instructions.

30

MIPS 5 stage pipeline (2)

e EX (Execution/effective address cycle)

Memory reference:
o ALUoutput <~ A+Imm

Register-Register ALU instruction:
o ALUoutput <A func B;

Register-Immediate ALU instruction:
o ALUoutput <A op Imm;

Branch:
o ALUoutput «<—NPC+(Imm <«2);
o Cond «(A==0)

31

MIPS 5 stage pipeline (2)

e MEM(Memory acces/branch completion cycle)

Memory reference:
o LMD «Mem[ALUoutput]or
e Mem[ALUoutput] «B
Branch:
o If (cond) PC «ALUoutput

e WB (Write back cycle)

Register-Register ALU instruction
e Regs[rd] « ALUoutput;
Register-Immediate ALU instruction
e Regs[rt] «ALUoutput;
Load Instruction:
o Regs[rt] «LMD;

32

Multi-cycle Instructi

on Execution

33

! I o decodal Executal Wit
. : nstruction decode address Memory rite
Instruction fatch register fetch caleutation acCess back
M
u
i K
NPC |-
: Branch ;
y 5 e @sadl:
Instruction , '
Eomsy = ; Registers |
: utpui:
: : Cata | | (vD M
: - : mamaory u
: X
E 16 32 i
E . Sign | =
axtend | i
- AN AN AN I\
YT YT hd hd A
/N 0 12 © 4 e

3.2.3 The MIPS pipelining

EX/MEM

etz
KA

MEM/WB

34

Table: Events on every stage

Stage | Any instruction
IF IF/ID.IR<Mem[PC];
IF/ID.NPC, PC «(if ((EX/MEM.opcode==branch)&EX/MEM.cond)
{ EX/MEM.ALUoutput} else {PC+4});
ID ID/EX.A <—Regs[IF/ID.IR[rs]]; ID/EX.B <—Regs[IF/ID.IR[rt]];
ID/EX.NPC «-IF/ID.NPC; ID/EX.IR «<-IF/ID.IR;
ID/EX.Imm «sign-extend(IF/ID.IR[immediate field]);
ALU instruction Ld/st instruction Branch instruction
EX EX/MEM.IR «ID/EX.IR; EX/MEM.IR < ID/EX.IR; EX/MEM.ALUoutput
EX/MEM.ALUoutput <—ID/EX.A func ID/EX.B; EX/MEM.ALUoutput < ID/EX.A + ID/EX.Imm; | <ID/EXNPC+
or EX/MEM.B < ID/EX.B; (E'E’(j;gﬂmmf)i
. .con
EX/MEM.ALUoutput «<—ID/EX.A op ID/EX.Imm; (IDIEX.A==0);
MEM MEM/WB.IR « EX/MEM.IR; MEM/WB.IR « EX/MEM.IR;
MEM/WB.ALUoutput «—EX/MEM.ALUoutput; MEM/WB.LMD «Mem[EX/MEM.ALUoutput];
Or MEM/WB.LMD «—Mem[EX/MEM.ALUoutput];
WB Regs[MEM/WB.IR[rd]] «~MEM/WB.ALUoutput; or For Load only;

Regs[MEM/WB.IR[r]] «-MEM/WB.ALUoutput;

Regs[MEM/WB.IR[rt]] «MEM/WB.LMD

Advanced pipeline

MEf/WB
—
=
-
PCH
Data S
w Menp =
Instr
Mem
-
pipeline .."
registers or-"" =
latches n

Why need to add this line? Ioad36

Problems that pipelining introduces

—. There is conflict about the memory |

Time (clock cycles)

Ld/St
Instr 1

Instr 2

| Instr 3

37

Separate instruction and data memories

e use split instruction and data cache
Time (clock cycles)

Ld/st ™ FReol 2 ryiomy

Instr 1

Instr 2

e the memory system must deliver 5 fimes the bandwidth
over the unpipelined version.

38

—+ The conflict about the registers !

Time >
Program Clock Clock Clock Clock Clock | Clock (Clock |, Clock
Execution Cycle 1] Cycle 2|Cycle | ycle 4I Cycle 5: Cycle 8Cycle ?: Cycle 8
I I
20D R10,R11, R12| [1 1L me 1Ly | ' |
M | RE(:_L%j—I— D : :
| | |
el L
ADD R17, R0, RO | | M | RrEd :
' | Pt A
| | I | |
| | » : |
ADD R15, RO, RO | : M |-HREG HREQ
| j | : :
sUB RZ0, R21, RZ22 : I : M — DM -|—-HEE
I I ! ! I FELTES —

39

Sometimes we can redesign the resource

e Allow WRITE-then-READ in one clock cycle (double
pump)

tw RIH op [HTPH

£ No conflict now,

£ 1st instruction writes

£ in 1st half of clock cycle,

later instruction reads in 2nd half

Two reads and one write required per clock.
Need to provide two read port and one write port.

40

The conflict about the datas |

Time (clock cycles)
IF {ID/RFi

add r1,r2,r3 | m fRecf

Im

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

41

JU. Conflict occurs when PC update

Time (clock cycles)

42

e Ensure the instructions in different stages do not
interfere with one another .

e Through the latches, can the stages be combined
one by one to form a pipeline.

e The latches are the pipeline registers , which are

much more than those in multi-cycle version

IR: IF/ID.IR; ID/EX.IR; EX/DM.IR;
DM/WB.IR

B: ID/EX.B. EX/DM.B

ALUoutput: EX/DM.ALUoutput,
DM/WB.ALUoutput

43

3.3 The Major Hurdle of Pipelining—Pipeline Hazards

AL [- Appendix A.2

3.3.1 Taxonomy of hazard

3.3.2 Performance of pipeline with Hazard
3.3.3 Structural hazard

3.3.4 Data Hazards

3.3.5 Control Hazards

44

