
1

Instruction-Level Parallelism and
Its Dynamic Exploitation

陈文智

chenwz@zju.edu.cn

浙江大学计算机学院

2014年9月

mailto:chenwz@zju.edu.cn

2

内容提要及各节间的关系(1)

3.1 流水线技术基础

3.2 How Is Pipelining Implemented?

3.3 The Major Hurdle of Pipelining—Pipeline Hazards

3.4 Extending the MIPS Pipeline to Handle Multicycle Operations

(本科回顾 Appendix A)

流水线技术就是指令重叠执行技术，达到加快
运算速度的目的

由于存在三种流水线竞争：结构竞争、数据竞
争、控制竞争，导致流水线性能降低，不能运
作在理想的重叠状态，需要插入停顿周期，从
而使流水线性能降低。

3

内容提要及各节间的关系(2)

3.5 Instruction-Level Parallelism: Concepts and Challenges

(CPI=1)

指令之间可重叠执行性称为指令级并行性
（Instruction Parallelism-ILP)。因此
进一步研究和开发指令之间的并行性，等
于拓宽指令重叠执行的可能性，从而能进
一步提高流水线的性能。

4

内容提要及各节间的关系(３)

3.6 Overcoming Data Hazards with Dynamic Scheduling (2.4)

针对流水线数据竞争的动态调度

3.7 Reducing Branch Costs with Dynamic Hardware

Prediction (2.3)

针对流水线控制竞争的预测技术

5

内容提要及各节间的关系(4)

3.8 Hardware-Based Speculation (2.6)

进一步开发指令级并行性的动态技术

跨控制流的动态调度:数据竞争+控制竞争

3.9 Taking Advantage of More ILP with Multiple Issue(2.7)

进一步开发指令级并行性(CPI<1)

采用单位时钟发射多条指令

6

3.1流水线技术基础

本科回顾------- Appendix A.1

3.1.1 What is pipelining?

3.1.2 Why pipelining ?

3.1.3 Ideal Performance for Pipelining

7

3.1.1 What is pipelining?

 Pipelining:

“A technique designed into some computers to
increase speed by starting the execution of
one instruction before completing the previous
one.”

 ----Modern English-Chinese Dictionary

 implementation technique whereby different

instructions are overlapped in execution at the same

time.

 implementation technique to make fast CPUs

8

Trucking gas from depot to gas station

 The steps:
 Get the barrels
 Load them into the
truck

 Drive to the gas
station

 Unload the gas
 Return for more oil

 Let’s do the math
 Each truck can carry 5

barrels
 Can load a truck with 5

barrels in 1 hour
 It takes each truck 1 day

to drive to and from gas
station

 How many barrels per
week are delivered?

9

Like a Multi-cycle Processor

 What are similar in the steps ?

 Fetch an instruction (Get the barrels)

 Decode the instruction (Load them into the truck)

 ALU OP (Drive to the gas station)

 Memory Access (Unload the gas)

 Write-back (Return for more oil)

10

A better way, but dangerous

Roll the barrels down the road
Big fire hazard

11

Big idea: Build a pipeline

 Now let’s do the math
 Pipeline can accept 1 barrel every hour

 How many barrels get delivered to the gas station
per day?

12

Trucking vs. Pipelines

 Trucks
 Truck with 5 barrels takes 1

day to drive to and from gas
station, while need 2 hours
for loading and unloading

 LOTS of TIME when loading
area,gas station, and pieces
of the road are unused

 Pipelines
 Pipeline can accept 1

barrel every hour

 Resources (loading
area, gas
station,pipelines) are
always in use

13

14

15

16

What is Pipelining

 A pipeline is like an auto assemble line

 A pipeline has many stages

 Each stage carries out a different part of
instruction or operation

 The stages, which cooperates at a synchronized
clock, are connected to form a pipe

 An instruction or operation enters through one
end and progresses through the stages and exit
through the other end

 Pipelining is an implementation technique that
exploits parallelism among the instructions in a
sequential instruction stream

17

3.1.2 Why pipelining :
 save time and high utilization factor

 Latches, called
pipeline registers’
break up
computation into 5
stages

 Deal 5 tasks at the
same time.

 Only deal one task
each time.

 This task takes

 “ such a long time”

18

Why pipelining: How faster

 Can “launch” a new
computation every 100ns
in this structure

 Can finish 107
computations per second

 Can launch a new
computation every
20ns in pipelined
structure

 Can finish 5×107
computations per
second

19

Conclusion

 The key implementation technique used to

Make fast CPU: decrease CPUtime.

 Improving of Throughput (rather than

individual execution time)

 Improving of efficiency for resources

(functional unit)

20

3.1.3 Ideal Performance for Pipelining

Speedup

Assume: stages: k tasks: n

Tk＝(k+(n-1))τp

 T1＝ n kτup

τ
T

T

k

1
τ 1) p (n τ k p

nk up

- +
= =

peedup S

 ＝
Time tasks on unpipelined machine

Time same tasks on pipelined machine

n—→∞ Speedup—→K

21

Ideal Performance for Pipelining

 If the stages are perfectly balanced, The time
per instruction on the pipelined processor equal
to:

 Time per instruction on unpipelined machine

 Number of pipe stages

So, Ideal speedup equal to

 Number of pipe stages.

22

Why not just make a 50-stage pipeline ?

 Some computations just won’t divide into
any finer (shorter in time) logical
implementation.
 5 stages OK

50 stages NO. Sorry!

23

Why not just make a 50-stage pipeline ?

 Those latches are NOT free, they take up area, and
there is a real delay to go THRU the latch itself.

 Machine cycle > latch latency + clock skew
 In modern, deep pipeline (10-20 stages), this is a real

effect
 Typically see logic “depths” in one pipe stage of 10-20

“gates”.

At these speeds, and
with this few levels
of logic, latch
delay is important

24

How Many Pipeline Stages?

 E.g., Intel
 Pentium III, Pentium 4: 20+

stages
 More than 20 instructions in

flight
 High clock frequency (>1GHz)
 High IPC

 Too many stages:
 Lots of complications
 Should take care of possible

dependencies among in-flight
instructions

 Control logic is huge

25

3.2 How Is Pipelining Implemented?

本科回顾------- Appendix A.3

3.2.1 How does instruction Work in the MIPS 5 stage

pipeline?

3.2.2 5-stage Version of MIPS Datapath

3.2.3 The MIPS pipelining and some Problems

26

Basic of RISC Instruction Set

27

MIPS Instruction Format

28

MIPS Instruction Format

29

Addressing in Jumps and Branches

30

3.2.1 MIPS 5 stage pipeline (1)

The first two stages of MIPS pipeline
 IF (Instruction fetch cycle)

 IRMem[PC];

 NPC PC=PC+4;

 ID (Instruction decode/register fetch cycle)

 A Regs[rs];

 B Regs[rt];

 Imm sign-extended immediate field of IR;

– Note: The first two stages of MIPS pipeline do the
same functions for all kinds of instructions.

31

MIPS 5 stage pipeline (2)

 EX (Execution/effective address cycle)
 Memory reference:

 ALUoutput A+Imm

 Register-Register ALU instruction:
 ALUoutput A func B;

 Register-Immediate ALU instruction:
 ALUoutput A op Imm;

 Branch:
 ALUoutput NPC+(Imm <<2);

 Cond (A==0)

32

MIPS 5 stage pipeline (2)

 MEM(Memory acces/branch completion cycle)
 Memory reference:

 LMD Mem[ALUoutput] or
 Mem[ALUoutput] B

 Branch:
 If (cond) PC ALUoutput

 WB (Write back cycle)
 Register-Register ALU instruction

 Regs[rd]  ALUoutput;

 Register-Immediate ALU instruction
 Regs[rt] ALUoutput;

 Load Instruction:
 Regs[rt] LMD;

33

34

3.2.3 The MIPS pipelining

数
据
存
储
器

M
U

X

 S
ig

n

ex
te

nd

M
U

X

M
U

X

0 ?

A
L

U

寄
存
器

32 16

 P

C

数
据
存
储
器

A
D

D

M
U

X

IF/ID

转移

发生

ID/EX EX/MEM MEM/WB

IR6..10

IR11..15

MEM/

WB .IR

4

IR

35

Table: Events on every stage
Stage Any instruction

IF IF/ID.IRMem[PC];

IF/ID.NPC, PC (if ((EX/MEM.opcode==branch)&EX/MEM.cond)

{ EX/MEM.ALUoutput} else {PC+4});

ID ID/EX.A Regs[IF/ID.IR[rs]]; ID/EX.B Regs[IF/ID.IR[rt]];

ID/EX.NPC IF/ID.NPC; ID/EX.IR IF/ID.IR;

ID/EX.Imm sign-extend(IF/ID.IR[immediate field]);

ALU instruction Ld/st instruction Branch instruction

EX EX/MEM.IR ID/EX.IR;

EX/MEM.ALUoutput ID/EX.A func ID/EX.B;

or

EX/MEM.ALUoutput ID/EX.A op ID/EX.Imm;

EX/MEM.IR ID/EX.IR;

EX/MEM.ALUoutput ID/EX.A + ID/EX.Imm;

EX/MEM.B ID/EX.B;

EX/MEM.ALUoutput

ID/EX.NPC +

(ID/EX.Imm<<2);

EX/MEM.cond

(ID/EX.A==0);

MEM MEM/WB.IR  EX/MEM.IR;

MEM/WB.ALUoutput EX/MEM.ALUoutput;

MEM/WB.IR  EX/MEM.IR;

MEM/WB.LMD Mem[EX/MEM.ALUoutput];

Or MEM/WB.LMD Mem[EX/MEM.ALUoutput];

WB Regs[MEM/WB.IR[rd]] MEM/WB.ALUoutput; or

Regs[MEM/WB.IR[rt]] MEM/WB.ALUoutput;

For Load only;

Regs[MEM/WB.IR[rt]] MEM/WB.LMD

36

store

load

Advanced pipeline

pipeline

registers or

latches
Why need to add this line?

37

Problems that pipelining introduces

一、There is conflict about the memory !

Mem

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Ld/St

Instr 1

Instr 2

Instr 3
A

L
U

Mem Reg Mem Reg

A
L

U

Mem Reg Mem Reg
A

L
U

Mem Reg Mem Reg

A
L

U

Reg Mem Reg

38

Separate instruction and data memories

 use split instruction and data cache

 the memory system must deliver 5 times the bandwidth
over the unpipelined version.

IM

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Ld/St

Instr 1

Instr 2

Instr 3
A

L
U

IM Reg DM Reg

A
L

U

IM Reg DM Reg
A

L
U

IM Reg DM Reg

A
L

U

Reg DM Reg

39

二、The conflict about the registers !

40

Sometimes we can redesign the resource

 Allow WRITE-then-READ in one clock cycle (double
pump)

 Two reads and one write required per clock.
 Need to provide two read port and one write port.

41

三、The conflict about the datas !

42

四、Conflict occurs when PC update

43

五、Must latches be engaged ? Yeah !

 Ensure the instructions in different stages do not
interfere with one another .

 Through the latches, can the stages be combined
one by one to form a pipeline.

 The latches are the pipeline registers , which are
much more than those in multi-cycle version
 IR: IF/ID.IR; ID/EX.IR; EX/DM.IR;

DM/WB.IR
 B: ID/EX.B; EX/DM.B
 ALUoutput: EX/DM.ALUoutput,

DM/WB.ALUoutput

44

3.3 The Major Hurdle of Pipelining—Pipeline Hazards

本科回顾------- Appendix A.2

3.3.1 Taxonomy of hazard

3.3.2 Performance of pipeline with Hazard

3.3.3 Structural hazard

3.3.4 Data Hazards

3.3.5 Control Hazards

