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内容提要及各节间的关系(1) 

3.1 流水线技术基础 

3.2 How Is Pipelining Implemented?  

3.3 The Major Hurdle of Pipelining—Pipeline Hazards  

3.4 Extending the MIPS Pipeline to Handle Multicycle Operations 

(本科回顾 Appendix A) 

流水线技术就是指令重叠执行技术，达到加快
运算速度的目的 

由于存在三种流水线竞争：结构竞争、数据竞
争、控制竞争，导致流水线性能降低，不能运
作在理想的重叠状态，需要插入停顿周期，从
而使流水线性能降低。 
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内容提要及各节间的关系(2) 

3.5 Instruction-Level Parallelism: Concepts and Challenges 

(CPI=1) 

指令之间可重叠执行性称为指令级并行性
（Instruction Parallelism-ILP)。因此
进一步研究和开发指令之间的并行性，等
于拓宽指令重叠执行的可能性，从而能进
一步提高流水线的性能。 
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内容提要及各节间的关系(３) 

3.6 Overcoming Data Hazards with Dynamic Scheduling (2.4) 

 

针对流水线数据竞争的动态调度 

 
3.7 Reducing Branch Costs with Dynamic Hardware 

Prediction (2.3) 

 

针对流水线控制竞争的预测技术 
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内容提要及各节间的关系(4) 

3.8 Hardware-Based Speculation (2.6) 

 

进一步开发指令级并行性的动态技术 

跨控制流的动态调度:数据竞争+控制竞争 

 
3.9 Taking Advantage of More ILP with Multiple Issue(2.7)  

进一步开发指令级并行性(CPI<1) 

采用单位时钟发射多条指令 
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3.1流水线技术基础 

 

本科回顾------- Appendix A.1 

3.1.1 What is pipelining? 

3.1.2 Why pipelining ? 

3.1.3 Ideal Performance for Pipelining 
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3.1.1 What is pipelining? 

 Pipelining: 

“A technique designed into some computers to 
increase speed by starting the execution of 
one instruction before completing the previous 
one.” 

      ----Modern English-Chinese Dictionary 

 implementation technique whereby different 

instructions are overlapped in execution at the same 

time. 

 implementation technique to make fast CPUs 
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Trucking gas from depot to gas station 

 The steps: 
 Get the barrels 
 Load them into the 
truck 

 Drive to the gas 
station 

 Unload the gas 
 Return for more oil 

 Let’s do the math 
 Each truck can carry 5 

barrels 
 Can load a truck with 5 

barrels in 1 hour 
 It takes each truck 1 day 

to drive to and from gas 
station 

 How many barrels per 
week are delivered?       
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Like a Multi-cycle Processor 

 What are similar in the steps ? 

 
 Fetch an instruction    (Get the barrels) 

 Decode the instruction (Load them into the truck) 

 ALU OP    (Drive to the gas station) 

 Memory Access   (Unload the gas) 

 Write-back   (Return for more oil) 



10 

A better way, but dangerous 

Roll the barrels down the road 
Big fire hazard 
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Big idea: Build a pipeline 

 Now let’s do the math 
 Pipeline can accept 1 barrel every hour 

 How many barrels get delivered to the gas station 
per day? 
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Trucking vs. Pipelines 

 Trucks 
 Truck with 5 barrels takes 1 

day to drive to and from gas 
station, while need 2 hours 
for loading and unloading 

 LOTS of TIME when loading 
area,gas station, and pieces 
of the road are unused 

 Pipelines 
 Pipeline can accept 1 

barrel every hour 

 Resources (loading 
area, gas 
station,pipelines) are 
always in use 
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What is Pipelining 

 A pipeline is like an auto assemble line 

 A pipeline has many stages 

 Each stage carries out a different part of 
instruction or operation 

 The stages, which  cooperates at a synchronized 
clock,  are connected to form a pipe 

 An instruction or operation enters through one 
end and progresses through the stages and exit 
through the other end 

 Pipelining is an implementation technique that 
exploits parallelism among the instructions in a 
sequential instruction stream  
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3.1.2 Why pipelining :  
 save time and high utilization factor 

 Latches, called 
pipeline registers’ 
break up 
computation into 5 
stages 

 Deal 5 tasks at the 
same time. 

 Only deal one task 
each time. 

 This  task takes  

   “ such a long time” 
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Why pipelining: How faster 

 Can “launch” a new 
computation every 100ns 
in this structure 

 Can finish 107 
computations  per second 

 Can launch a new 
computation every 
20ns in pipelined 
structure 

 Can finish 5×107 
computations per 
second 
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Conclusion 

 The key implementation technique used to 

Make fast CPU:  decrease CPUtime. 

 

 Improving of Throughput ( rather than 

individual execution time) 

 

 Improving of efficiency for resources  

(functional unit)  
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3.1.3 Ideal Performance for Pipelining 

Speedup  

 
Assume: stages: k tasks: n 

Tk＝(k+(n-1))τp 

  T1＝ n kτup 
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      ＝ 
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Ideal Performance for Pipelining 

 If the stages are perfectly balanced, The time 
per instruction on the pipelined processor equal 
to: 

 

 Time per instruction on unpipelined machine 

     Number of pipe stages 

 

So, Ideal speedup equal to  

          Number of pipe stages.  
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Why not just make a 50-stage pipeline ? 

 Some computations just won’t divide into 
any finer (shorter in time) logical 
implementation. 
 5 stages    OK 

 

 

 

50 stages  NO. Sorry! 
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Why not just make a 50-stage pipeline ? 

 Those latches are NOT free, they take up area, and 
there is a real delay to go THRU the latch itself.  

  Machine cycle > latch latency + clock skew 
 In modern, deep pipeline (10-20 stages), this is a real 

effect 
 Typically see logic “depths” in one pipe stage of 10-20 

“gates”.   

At these speeds, and 
with this few levels 
of logic, latch 
delay is important 
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How Many Pipeline Stages? 

 E.g., Intel 
 Pentium III, Pentium 4: 20+ 

stages 
 More than 20 instructions in 

flight 
 High clock frequency (>1GHz) 
 High IPC 

 Too many stages: 
 Lots of complications 
 Should take care of possible 

dependencies among in-flight 
instructions 

 Control logic is huge 



25 

3.2 How Is Pipelining Implemented? 

 

本科回顾------- Appendix A.3 

 

3.2.1 How does instruction Work in the MIPS 5 stage 

pipeline?  

3.2.2 5-stage Version of MIPS Datapath 

3.2.3 The MIPS pipelining and some Problems  
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Basic of RISC Instruction Set 
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MIPS Instruction Format 
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MIPS Instruction Format 
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Addressing in Jumps and Branches 
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3.2.1  MIPS 5 stage pipeline (1) 

The first two stages of MIPS pipeline 
 IF (Instruction fetch cycle) 

 IRMem[PC]; 

 NPC PC=PC+4; 

 ID (Instruction decode/register fetch cycle) 

 A Regs[rs]; 

 B Regs[rt]; 

 Imm sign-extended immediate field of IR; 

 

– Note: The first two stages of MIPS pipeline do  the 
same functions for all kinds of instructions. 
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MIPS 5 stage pipeline (2) 

 EX (Execution/effective address cycle) 
 Memory reference: 

 ALUoutput A+Imm 

 Register-Register ALU instruction: 
 ALUoutput A func B; 

 Register-Immediate ALU instruction: 
 ALUoutput A op Imm; 

 Branch: 
 ALUoutput NPC+(Imm <<2 ); 

  Cond (A==0) 
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MIPS 5 stage pipeline (2) 

 MEM(Memory acces/branch completion cycle) 
 Memory reference: 

 LMD Mem[ALUoutput] or  
 Mem[ALUoutput] B 

 Branch: 
 If (cond) PC ALUoutput 

 WB (Write back cycle) 
 Register-Register ALU instruction 

 Regs[rd]  ALUoutput; 

 Register-Immediate ALU instruction 
 Regs[rt] ALUoutput; 

 Load Instruction: 
 Regs[rt] LMD; 
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3.2.3 The MIPS pipelining 
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Table: Events on every stage 
Stage Any instruction 

IF IF/ID.IRMem[PC]; 

IF/ID.NPC, PC (if ((EX/MEM.opcode==branch)&EX/MEM.cond) 

{ EX/MEM.ALUoutput} else {PC+4}); 

ID ID/EX.A Regs[IF/ID.IR[rs]]; ID/EX.B Regs[IF/ID.IR[rt]]; 

ID/EX.NPC IF/ID.NPC; ID/EX.IR IF/ID.IR; 

ID/EX.Imm sign-extend(IF/ID.IR[immediate field]); 

ALU instruction Ld/st instruction Branch instruction 

EX EX/MEM.IR ID/EX.IR; 

EX/MEM.ALUoutput ID/EX.A func ID/EX.B; 

or  

EX/MEM.ALUoutput ID/EX.A op ID/EX.Imm; 

EX/MEM.IR ID/EX.IR; 

EX/MEM.ALUoutput ID/EX.A + ID/EX.Imm; 

EX/MEM.B ID/EX.B; 

EX/MEM.ALUoutput 

ID/EX.NPC + 

(ID/EX.Imm<<2); 

EX/MEM.cond 

(ID/EX.A==0); 

MEM MEM/WB.IR  EX/MEM.IR;  

MEM/WB.ALUoutput EX/MEM.ALUoutput; 

 

MEM/WB.IR  EX/MEM.IR; 

MEM/WB.LMD Mem[EX/MEM.ALUoutput]; 

Or MEM/WB.LMD Mem[EX/MEM.ALUoutput]; 

WB Regs[MEM/WB.IR[rd]] MEM/WB.ALUoutput; or 

Regs[MEM/WB.IR[rt]] MEM/WB.ALUoutput;  

For Load only; 

Regs[MEM/WB.IR[rt]] MEM/WB.LMD 
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store 

load 

Advanced pipeline 

pipeline  

registers or  

latches   
Why need to add this line? 
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Problems that pipelining introduces 

一、There is conflict  about the memory ! 

Mem 
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Separate instruction and data memories 

 use split instruction and data cache 
 
 
 
 
 
 

 

 the memory system must deliver 5 times the bandwidth 
over the unpipelined version. 
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二、The conflict about the registers ! 
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Sometimes we can redesign the resource 

 Allow WRITE-then-READ in one clock cycle (double 
pump) 
 
 
 
 
 
 

 
 Two reads and one write required per clock. 
 Need to provide two read port and one write port. 



41 

三、The conflict about the datas ! 
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四、Conflict occurs when PC update 
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五、Must latches be engaged ? Yeah ! 

 Ensure the instructions in different stages do not 
interfere with one another .  

 Through the latches, can the stages be combined 
one by one to form a pipeline. 

 The latches are the pipeline registers , which are 
much more than those in multi-cycle version 
 IR:  IF/ID.IR; ID/EX.IR; EX/DM.IR;  

DM/WB.IR 
 B:    ID/EX.B;  EX/DM.B 
 ALUoutput:  EX/DM.ALUoutput, 

DM/WB.ALUoutput 
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3.3 The Major Hurdle of Pipelining—Pipeline Hazards  

 

本科回顾------- Appendix A.2 

 

3.3.1 Taxonomy of hazard 

3.3.2 Performance of pipeline with Hazard 

3.3.3 Structural hazard 

3.3.4 Data Hazards 

3.3.5 Control Hazards 


