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Abstract—Live migration of virtual machine has attracted
significant attention in recent years. It facilitates system on-
line maintenance, load balancing, fault tolerance and power
management. Existing pre-copy live migration approach has
to iteratively copy redundant memory pages, which causes
high network overhead and slow migration. Another post-copy
live migration approach can provide quick migration with low
network overhead but would lead to a lot of remote page faults
which greatly degrade application performance. In this paper,
we improve the post-copy approach by eliminating unnecessary
remote page faults. In our improved post-copy approach, page
faults caused by guest’s overwriting operations on remote
memory pages are intercepted and handled by allocating new
local memory pages, instead of fetching memory pages from
the source host across the network. We have implemented
our approach into the KVM/QEMU hypervisor and ran a
series of experiments with Linux guests. The experimental
results demonstrate that our improved approach performs
much better than traditional post-copy approach.
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I. INTRODUCTION

In recent years, Live migration has become a key selling
point for state-of-the-art virtualization [1, 2] technologies. It
refers to techniques in which a VM is moved from one
host to another with almost zero downtime and without
interrupting services running in VM. Live migration is a
powerful tool for online system maintenance, fault tolerance,
workload balancing, testing and consolidation of VMs, etc.

Existing migration schemes can be broadly classified as
either pre-copy schemes [3, 4] or post-copy schemes [5],
based on when the VM context and its memory image are
transferred. In pre-copy live migration, all states of a VM are
completely copied to a destination host before the execution
host is switched to the destination. Updated memory pages
during memory copy are iteratively copied to the destination.
It takes a long time to switch the execution host of an
actively running VM, and it is hard to estimate when
migration is completed. If a transmitted page is subsequently
dirtied, it is resent in the next round. When encountered
with write-intensive workloads, this strategy will cause a lot
of repeated transmissions, which waste network bandwidth
resources and can not improve the downtime.

On the contrary, the post-copy migration schemes transfer
the VM context to the destination node immediately, resume
the VM execution with the memory state still present at the

source node, and then initiate a background memory copy
process so that the VM context at the destination node finds
requested memory pages in its local memory. If the VM
context does not find a requested memory page in its local
memory, it triggers a remote page fault handler to obtain the
page from the source node. Therefore, if a workload is not
memory intensive or the background copy delivers requested
pages in time, the post-copy scheme does not expose the
machine downtime to the user. The main problem of the
post-copy scheme is that many remote page faults incur
a significant performance loss. If a workload is memory
intensive and its memory access patterns do not exhibit
spatial and temporal localities, the background memory copy
process becomes ineffective even though it consumes all the
network bandwidth available.

In this work, the goal is to improve the performance
of write-intensive workloads in post-copy live migration
by reducing the number of remote page faults. According
to our observation, memory management performed by
OS includes activities like zeroing pages before they are
(re)allocated [6], copying memory pages on write (COW)
[7], and migrating pages from one DRAM location to
another due to memory compaction [8], e.g., for super
paging [9, 10]. Whether by copying memory or zeroing it,
OS often overwrite full pages without regard to their old
content. Such activity has no undesirable side effects in local
machines. But during post-copy migration, the target page
being overwritten might be required and triggering a remote
page fault. Therefore, we have designed a filter to eliminate
such remote page faults. In our work, the filter intercept and
emulate the guests write instruction to identify overwriting
operations on remote memory pages, then the filter redirects
such operations to new allocated local pages so that the
remote page fault is eliminated.

The contribution of this paper is that this is the first
work to reduce remote page faults caused by guest’s page-
overwrite operations in post-copy migration. We have im-
plemented our approach into the KVM/QEMU hypervisor
[11] and ran a series of experiments with Linux guests. The
experimental results demonstrate that our improved approach
performs much better than traditional post-copy approach.

The remainder of this paper is organized as follows: Sec-
tion II gives an overview of related work on live migration
of virtual machines. Section III contains the design and



implementation of the remote page-fault filter. Section IV
evaluates our approach with a variety of workloads. Finally,
we summarize our contributions and outline our future work
in section V.

II. RELATED WORK

Many techniques for live virtual machine migration were
introduced in recent years. Pre-copy is the most common
and predominant approach for live VM migration. It is
employed by many popular hypervisors such as VMware
[12], KVM , Xen, and VirtualBox [13]. which first transfers
all memory pages and then copies pages just modified during
the last round iteratively. VM service downtime is expected
to be minimal by iterative copy operations.To reduce the
downtime of the VM, the state of the VM is copied in
several iterations [3]. While transferring the state of the last
iteration, the VM continues to run on the source machine.
When applications writable working set becomes small, the
virtual machine is suspended and only CPU state and dirty
pages in the last round are sent out to the destination.
The pre-copy approach achieves a very short downtime in
the best case, but for memory-write-intensive workloads
the stop-and-copy phase may increase to several seconds.
Remote Direct Memory Access on top of modern high-speed
interconnects can significantly reduce memory replication
during migration [14].

Another novel strategy post-copy is also introduced into
live migration of virtual machine [5]. It takes the opposite
approach: first, the VM is stopped on the source host and
the state of the VCPU and devices is transferred to the
target host. The VM is immediately restarted on the target
host. Memory pages are fetched on-demand from the source
machine as the VM incurs page-faults when accessing them
on the target machine. This approach consumes a shorter
downtime but produces a longer total migration time, and the
performance during the migration is likely to be considerably
degraded when a large number of memory pages have been
demand-paged across the network. Hines et al. [5] combine
post-copying with dynamic self-ballooning and adaptive pre-
paging to reduce both the amount of memory transferred and
the number of page faults. Hirofuchi et al. [15] employ a
post-copy-based approach to quickly relocate VMs when the
load of a physical host becomes too high.

Other techniques include live migration based on trace
and replay [16], memory compression [17, 18], simultaneous
migration of several VMs from one host to another [19], or
partial VM migration [20]. Liu et al. [16] propose a live
migration algorithm called CR/TR-Motion that is based on
checkpointing/recovery and trace/replay technology. Their
algorithm sends the logs of execution trace instead of
memory pages to achieve good migration efficiency for
both LAN and WAN environments. Jin et al. [17] propose
using adaptive compression of migrated data: different com-
pression algorithms are chosen depending on characteristics

of memory pages. They first use memory compression to
provide fast VM migration, and they also design a zero-
aware characteristics-based compression (CBC) algorithm
for live migration. Svard et al. [18] extend this idea by
delta-compressing changes in memory pages. Jo et al. [21]
propose a technique to reduce the migration time while
keeping the downtime to a minimum. They track the I/O
operations between the VM and the NAS to maintain a map
of the pages that reside on the storage device. For these
pages, the memory-to-disk map is transmitted instead of the
data itself. So these pages can be directly obtained from the
NAS after the map is transmitted.

The work most closely related to our technique was
presented by Nadav et al. [22]. They propose the false reads
preventer to improve the I/O performance of the hosts when
they fall back on uncooperative swapping and/or operate
under changing load conditions. We use the same technique
as Nadav to transparently intercept and emulate memory
write requests from guest OS to identify page-overwriting
operations in post-copy live migration and obviously reduce
the number of remote page faults.

III. DESIGN AND IMPLEMENTATION

In this work ,we propose RPFF, a remote page-fault filter
for post-copy based live VM migration. The filter eliminates
unnecessary remote page faults by redirecting guest’s page
requests of overwriting operations to new allocated local
memory. In post-copy live migration with RPFF, the number
of remote page faults is definitely reduced and the overall
performance for memory write-intensive workloads during
migration are greatly improved. This section introduces the
motivation and describes the design and implementation of
RPFF .

A. Motivation

Memory page overwriting events routinely happen in
modern operating systems which cache data from permanent
storage in unused volatile memory to hide the long access
latency. The longer the system is running, the bigger an
amount of otherwise unused memory is dedicated to this
cache. At this time, once a new process launched, the OS
is likely to allocate pages to the new process from the
cache. And the allocated pages may be overwritten by the
new process regardless of the old content. Moreover, while
running write-intensive workloads such as kernel compiling
and data compression, a number of overwriting operations
on memory pages are executed to store temporary generated
data. We conduct an experiment to run the popular write-
intensive applications in virtual machines, and achieved
the average number of page-overwrite operations in every
minute. Figure 1 shows the results of our experiments with
Linux guests running four write-intensive workloads on a
VM with 2 GB of RAM. Page-overwrite is very common in
memory write-intensive applications. Furthermore, memory
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Figure 1: The average number of page-overwrite operations
for applications

management performed by OS includes activities like zero-
ing pages before they are (re)allocated [6], copying memory
pages on write (COW) [7], and migrating pages from one
DRAM location to another due to memory compaction [8],
e.g., for super paging [9, 10]. Whether by copying memory
or zeroing it, OS often overwrite full pages without regard
to their old content.

During post-copy live migration, When the migrated con-
text does not find the requested memory page for overwriting
activities in its local memory due to either inaccurate or slow
page deliveries, it triggers a remote page fault to bring up
the page from the source node through the network. But it is
no sense to handle such remote page faults due to that those
memory pages would be immediately overwritten on the
target without regard to their old content. As is known to all,
a number of remote page faults may consume much network
bandwidth and significantly degrade the performance of live
migration because of the network latency. To address this
problem, we propose a filter to eliminate such unnecessary
remote page faults to improve the overall performance of
post-copy live migration.

B. Architecture

Figure 2 shows the overview architecture of post-copy live
migration with RPFF implemented on top of KVM hyper-
visor. In post-copy live migration, the first step is to stop
the VM at the source host. Then processor states are sent
to destination VM, and the content of virtual CPU registers
and the states of devices are copied to the destination. Next
to resume the VM at the destination without any memory
content. If the VM tries to access pages that have not yet
been transferred, the VM is temporarily stopped and the fault
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Figure 2: The architecture of post-copy live migration with
RPFF

pages are demand paged over the network from source. Then
The VM is resumed. With RPFF, if the guest OS requests to
overwrite a memory page which happens to reside in remote
source node, the filter will intercept the request and redirect
it to its local memory. Then the new allocated local memory
page is returned to the guest OS for overwriting operation.
Therefore, the network latency due to the remote page faults
are significantly reduced and the performance of the guest’s
applications is improved.

RPFF does not utilize any knowledge about guest OS
internals, nor does it resort to para-virtual guest/host col-
laboration that others deem necessary [23]. Instead, it op-
timistically intercepts and emulates guest write instructions
directed missing pages, hoping that all bytes comprising the
page will soon be overwritten, obviating the need to read
the old content from the remote source node. When that
happens, the filter stops emulating and repurposes its write
buffer to be the guests page.

C. Implementation

We have implemented the proposed technique RPFF in a
existing open-source project [24] which disclose post-copy
enhancement of QEMU/KVM using a character device and
page faulting transport via user mode. RPFF is implemented
in QEMU/KVM via kernel mode to intercept and emulate
overwriting operations generated by guest’s applications.

In RPFF, when the guest access memory pages which
are not in the local memory, it triggers a EPT Fault, in
handling the fault, RPFF first analysises the instruction to
distinguish write and read instructions. For write instruction,
RPFF would emulate them and storing their result in page-
sized, page-aligned buffers. If a buffer fills up, RPFF maps it



to the guest, thereby eliminating the extraneous remote page
fault. If not, RPFF still trigger a remote page fault to get the
required page. To improve performance, the guest is allowed
to continue to execute so long as it does not read unavailable
data; if it does, then RPFF suspends it. When the required
page content finally arrives, RPFF merges the buffered and
read information, and it resumes regular execution.

Guest on the target may trigger two type of EPT Faults.
One is resulted from memory pages reside in source node.
Such faults should be handled as the above method. But
another fault which is caused by local memory request
should be handled as the same as in the local since such
faults do not trigger remote page faults. Therefore, during
the migration, the source node also transfer the EPT content
of the guest to the target so that RPFF can identify that if
the EPT Fault is caused by remote memory or local memory
pages.

IV. EXPERIMENTAL EVALUATION

We have implemented the proposed technique RPFF in
a existing post-copy project based on QEMU/KVM. To
demonstrate the effectiveness of RPFF, we measure and
compare the performance of post-copy migration with and
without RPFF in terms of following metrics: (1) Total
migration time; (2) Downtime; (3) The number of remote
page faults; (4) Performance of running applications.

A. Experimental Setup

We run our experiments on a pair of PCs with Intel(R)
Core(TM) i3-2120 CPU @ 3.30GHz with 8GB RAM, an
RTL8168 Ethernet NIC, and a single 1TB 7200 RPM SATA
disk.The machines were connected through 100Mbps LAN
using separate network adapters for the host and the VM
networks. The VM images were stored on a NFS share on
the source machine. Hosts and guests run Ubuntu 12.04,
Linux 3.7. In all the evaluations, there was only one VM
running on the source machine and there were no VMs
running on the destination machine. We use the following
applications to measure the performance of RPFF:
Kernbench: a standard benchmark measuring the time it
takes to build the Linux Kernel.
Pbzip2: a parallel implementation of the bzip2 block-sorting
file compressor.
Netperf : a benchmark that can be used to measure various
aspects of networking performance.
BitTorrent: a simple representative of a multi-peer distribut-
ed application.

B. Remote Page Faults

RPFF is proposed to reduce remote page faults which
greatly degrade the performance of post-copy live migration.
Our first experiment is to measure and compare the remote
page-faults in post-copy live migration with and without
RPFF. As shown in Figure 3, RPFF reduce the remote
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Figure 3: Number of remote page-fault during live Migration
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Figure 4: Total migration time for applications

page faults in post-copy live migration for all the tested
applications. It performs the best while running Pbzip2
application, the remote page faults is reduced by 31%. The
others are 15.8%, 10% and 13.2%, respectively. The results
demonstrate that RPFF performs well for memory-intensive
applications in terms of reducing remote page faults in post-
copy live migration.

C. Total Migration Time

Figure 4 shows the total migration time for the four
application scenarios described in the above. RPFF reduces
the total migration time for all the applications. This is not
surprising, in post-copy live migration, remote page faults
will suspend the application and cause remote page requests
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Figure 5: Downtime for different applications during live
migration

which bring a non-trivial network delay. As a result, the less
remote page faults, the shorter total migration time.

D. Downtime

Downtime is the period during which the service is un-
available due to there being no currently executing instance
of the VM; this period will be directly visible to clients of the
VM as service interruption. It is a significant performance
metric for live migration. As shown in Figure 5, downtime
for applications in original post-copy is almost the same as
in post-copy with RPFF. This is because that RPFF starts to
work after the VM resumed in the destination host, it does
not affect downtime at all.

E. Application Performance

The last important measure is performance degradation of
the VM caused by live migration. For write-intensive appli-
cations in post-copy live migration, remote page faults ob-
viously degrade the application performance due to network
latency. We measure the overall performance for the tested
applications in post-copy with and without RPFF, as shown
in Figure 6, RPFF improve the application performance by
13%,15%, 5% and 7%, respectively.

V. CONCLUSION AND FUTURE WORK

In this work , we have proposed RPFF, a remote page-
fault filter for post-copy live migration. In post-copy live
migration With RPFF, remote page requests caused by
page overwriting operations are redirected to local memory
instead of fetching the pages from the source host over the
network. The experimental results demonstrate that RPFF
effectively improve the performance of post-copy live mi-
gration.
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Figure 6: Overall performance for applications during live
migration

In the future work, we plan to test more prevalent write-
intensive applications to validate the effectiveness of RPFF.
To further improve the post-copy live migration, we are
going to design a prediction system on the source host
to predict memory pages which will be overwritten in the
future. Such memory pages can be avoided transferring to
the target host and further improve the performance of live
migration.
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