
1

Chapter 8

Storage, Networks and
Other Peripherals

Qingsong Shi

Email: zjsqs@zju.edu
Website: http://zjsqs.hzs.cn Zhejiang University’2006

2

Contents of Chapter 8
8.1 Introduction
8.2 Disk Storage and Dependability
8.3 Networks (Skim)

8.4 Buses and Other Connections between
Processors Memory, and I/O Devices

8.5 Interfacing I/O Devices to the Memory,
Processor, and Operating System

8.6 I/O Performance Measures:
Examples from Disk and File Systems

8.7 Designing an I/O system
8.8 Real Stuff: A Typical Desktop I/O System

3

I/O Designers must consider many factors
such as expandability and resilience(resume),as
well as performance.

Assessing I/O system performance is very
difficult.

In different situations, needs use different
measurements.

Performance of I/O system depends on:
connection between devices and the system
the memory hierarchy
the operating system

8.1 Introduction

4

Typical collection of I/O devices

5

Three characteristics
Behavior

Input (read once), output (write only, cannot read) ,or
storage (can be reread and usually rewritten)

Partner
Either a human or a machine is at the other end of
the I/O device, either feeding data on input or reading
data on output.

Data rate
The peak rate at which data can be transferred
between the I/O device and the main memory or
processor.

6

I/O performance depends on the application:
throughput:
In theses cases,I/O bandwidth will be most important.

Even I/O bandwidth can be measured in two different
ways according to different situations:

1.How much data can we move through the system
in a certain time?
For examples, in many supercomputer
applications, most I/O requires are for long
streams of data, and transfer bandwidth is the
important characteristic.

7

2.How many I/O operations can we do per
unit of time?

For example, National Income Tax
Service mainly processes large number of
small files.

response time (e.g., workstation and PC)
both throughput and response time (e.g., ATM)

8

The diversity of I/O devices

9

Important but neglected
“The difficulties in assessing and designing I/O
systems have often relegated I/O to second
class status”
“courses in every aspect of computing, from
programming to computer architecture often
ignore I/O or give it scanty coverage”
“textbooks leave the subject to near the end,
making it easier for students and instructors to
skip it!”

10

Amdahl’s law remind us that ignoring I/O is
dangerous

Assume:
a bench mark executes in 100 seconds of
elapsed time , where 90 seconds is CPU time
and the rest is I/O time.
CPU time improves by 50% per year, but I/O time
doesn’t improve.
After five years, the improvement in CPU
performance is 7.5 times.

The elapsed time is reduced to
90/7.5+10=12+10=22 seconds.

So, the improvement in elapsed time is only
4.5 times.

11

8.2 Disk Storage and Dependability

Two major types of magnetic disks
floppy disks
hard disks

larger
higher density
higher data rate
more than one platter

12

The organization of hard disk
platters: disk consists of a collection of platters, each

of which has two recordable disk surfaces
tracks: each disk surface is divided into concentric
circles
sectors: each track is in turn divided into sectors, which
is the smallest unit that can be read or written

13

Disks are organized into
platters, tracks, and sectors

14

What’s Inside A Disk Drive?

15

To access data of disk:
Seek: position read/write head over the proper track

minimum seek time
maximum seek time
average seek time (3 to 14 ms)

Rotational latency: wait for desired sector
average latency is the half-way round the disk.

Average rotational latency =
0.5 rotation

5400RPM
=

5400RPM

= 0.0056 seconds = 5.6 ms

0.5 rotation

/ 60
seconds
minute

Average rotational latency =
0.5 rotation

15000RPM
=

15000RPM

= 0.0020 seconds = 2.0 ms

0.5 rotation

/ 60
seconds
minute

16

Transfer: time to transfer a sector (1 KB/sector) function of rotation

speed, Transfer rate today’s drives - 30 to 80 MBytes/second

Disk controller, which control the transfer between
the disk and the memory

＝6ms ＋
0.5

10,000PRM
＋

0.5KB

50MB/sec
＋ 0.2ms

＝6ms ＋ 3.0 ＋ 0.01 ＋ 0.2 ＝9.2ms

Access Time = Seek time + Rotational Latency + Transfer time + Controller Time
Disk Read Time

Assuming the measured seek time is 25% of the calculated average

Access Time ＝25%×6ms ＋ 3.0 ms＋ 0.01ms ＋ 0.2ms ＝4.7ms

17

Computer system dependability is the quality of delivered
service such that reliance can justifiably be placed on this
service. The service delivered by a system is its observed
actual behavior as perceived by other system (s) interacting
with this system’s users. Each module also has an ideal
specified behavior, where a service specification is an
agreed description of the expected behavior. A system
failure occurs when the actual behavior deviates from the
specified behavior.

Service accomplishment, where the service is delivered as specified

Service interruption, where the delivered service is different from the
specified service

Dependability, Reliability, Availability

18

MTTF mean tine to failure
MTTR mean time to repair
MTBF = MTTF+ MTTR mean time between failures

Availability

MTTF
MTTF+MTTR

Measure

Availability=

19

Fault avoidance:
preventing fault occurrence by construction

Fault tolerance:
using redundancy to allow the service to comply with the
service specification despite faults occurring, which applies
primarily to hardware faults

Fault forecasting:
predicting the presence and creation of faults, which
applies to hardware and software faults

Three way to improve MTTF

6.20

RAID:
Redundant Arrays of Inexpensive Disks

A disk arrays replace larger disk

Error Checking and Correcting

6.21

Use Arrays of Small Disks?

Low End High End

3.5”

Disk Array:
1 disk design

14”
10”5.25”3.5”

Conventional:
4 disk
designs

•Katz and Patterson asked in 1987:
•Can smaller disks be used to close gap in
performance between disks and CPUs?

6.22

Array Reliability

• Reliability of N disks = Reliability of 1 Disk ÷ N

50,000 Hours ÷ 70 disks = 700 hours

Disk system MTTF: Drops from 6 years to 1 month!

• Arrays (without redundancy) too unreliable to be useful!

Hot spares support reconstruction in parallel with access:
very high media availability can be achieved
Hot spares support reconstruction in parallel with access:
very high media availability can be achieved

6.23

Redundant Arrays of (Inexpensive) Disks
• Files are "striped" across multiple disks
• Redundancy yields high data availability

– Availability: service still provided to user, even if some components
failed

• Disks will still fail
• Contents reconstructed from data redundantly

stored in the array
⇒ Capacity penalty to store redundant info
⇒ Bandwidth penalty to update redundant info

6.24

RAID 0: No Redundancy

• Data is striped across a disk array but there is no
redundancy to tolerate disk failure.
It also improves performance for large accesses,

since many disks can operate at once.

RAID 0 something of a misnomer as there is no Redundancy,

6.25

RAID 1: Disk Mirroring/Shadowing

• Each disk is fully duplicated onto its “mirror”
Very high availability can be achieved

• Bandwidth sacrifice on write:
Logical write = two physical writes

• Reads may be optimized
• Most expensive solution: 100% capacity overhead

• (RAID 2 not interesting, so skip)

recovery
group

6.26

RAID 3: Bit-Interleaved Parity Disk

P
10010011
11001101
10010011

. . .
logical record 1

0
1
0
0
0
1
1

1
1
0
0
1
1
0
1

1
0
1
0
0
0
1
1

1
1
0
0
1
1
0
1

P contains sum of
other disks per stripe
mod 2 (“parity”)
If disk fails, subtract
P from sum of other
disks to find missing information

Striped physical
records

6.27

RAID 3
• Sum computed across recovery group to protect against hard disk

failures, stored in P disk
• Logically, a single high capacity, high transfer rate disk: good

for large transfers
• Wider arrays reduce capacity costs, but decreases availability
• 33% capacity cost for parity in this configuration

6.28

Inspiration for RAID 4
• RAID 3 relies on parity disk to discover errors

on Read
• But every sector has an error detection field
• Rely on error detection field to catch errors on read, not on the

parity disk
• Allows independent reads to different disks simultaneously

6.29

RAID 4: High I/O Rate Parity

D0 D1 D2 D3 P

D4 D5 D6 PD7

D8 D9 PD10 D11

D12 PD13 D14 D15

PD16 D17 D18 D19

D20 D21 D22 D23 P
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.Disk Columns

Increasing
Logical

Disk
Address

Stripe

Insides of
5 disks
Insides of
5 disks

Example:
small read
D0 & D5,
large write
D12-D15

Example:
small read
D0 & D5,
large write
D12-D15

6.30

Inspiration for RAID 5
• RAID 4 works well for small reads
• Small writes (write to one disk):

– Option 1: read other data disks, create new sum and write to Parity
Disk

– Option 2: since P has old sum, compare old data to new data, add
the difference to P

• Small writes are limited by Parity Disk: Write to D0,
D5 both also write to P disk

D0 D1 D2 D3 P

D4 D5 D6 PD7

6.31

RAID 5: High I/O Rate Interleaved Parity

Independent
writes
possible
because of
interleaved
parity

Independent
writes
possible
because of
interleaved
parity

D0 D1 D2 D3 P

D4 D5 D6 P D7

D8 D9 P D10 D11

D12 P D13 D14 D15

P D16 D17 D18 D19

D20 D21 D22 D23 P
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
Disk Columns

Increasing
Logical
Disk

Addresses

Example:
write to
D0, D5
uses disks
0, 1, 3, 4

6.32

Problems of Disk Arrays:
Small Writes

D0 D1 D2 D3 PD0'

+

+

D0' D1 D2 D3 P'

new
data

old
data

old
parity

XOR

XOR

(1. Read) (2. Read)

(3. Write) (4. Write)

RAID-5: Small Write Algorithm
1 Logical Write = 2 Physical Reads + 2 Physical Writes

6.33

RAID 6: P+Q Redundancy

• When a single failure correction is not sufficient,
Parity can be generalized to have a second
calculation over data and anther check disk of
information.

6.34

Summary: RAID Techniques: Goal
was performance, popularity due to

reliability of storage
• Disk Mirroring, Shadowing (RAID 1)

Each disk is fully duplicated onto its "shadow"

Logical write = two physical writes

100% capacity overhead

• Parity Data Bandwidth Array (RAID 3)

Parity computed horizontally

Logically a single high data bw disk

• High I/O Rate Parity Array (RAID 5)
Interleaved parity blocks

Independent reads and writes

Logical write = 2 reads + 2 writes

1
0
0
1
0
0
1
1

1
1
0
0
1
1
0
1

1
0
0
1
0
0
1
1

0
0
1
1
0
0
1
0

1
0
0
1
0
0
1
1

1
0
0
1
0
0
1
1

35

8.3 Networks (skim)

Key characteristics of typical networks include
the following

Distance: 0.01 to 10,000 kilometers
Speed: 0.001MB/sec to 100MB/sec
Topology: Bus, ring, star, tree
Shared lines: None (point-to-point) or shared
(multidrop)

36

Local area network (LAN) e.g., Ethernet

Packet-switched network ,which are common in
long-haul networks
e.g., ARPANET
TCP/IP is the key to interconnecting different
networks
The bandwidths of networks are probably growing
faster than the bandwidth of any other type of
device at present.

37

8.4 Buses and Other Connections between
Processors Memory, and I/O Devices

Shared communication link (one or more wires)
Difficult design:

may be bottleneck
length of the bus
number of devices
tradeoffs (fast bus accesses and high bandwidth)
support for many different devices
cost

38

A bus contains two types of lines
Control lines, which are used to signal requests and
acknowledgments, and to indicate what types of
information is on the data lines.
Data lines, which carry information (e.g., data, addresses, and

complex commands) between the source and the destination.
Bus transaction

include two parts: sending the address and receiving or
sending the data
two operations

input: inputting data from the device to memory
output: outputting data to a device from memory

39

The steps of an output operation.

Initial a read from memory. Control lines
signal a read request to memory, while
the data lines contain the address

Memory access
the data.

Memory transfers data and signal data
is available. The device stores data as it
appears on the bus.

40

The steps of an input operation.

Control lines indicate a write request for memory, while the data lines
contain the address

When the memory is ready, it signals the device, which then transfers the
data. The memory will store the data as it receives it . The device need not
wait for the store to be completed.

41

Types of buses:
processor-memory (short high speed, custom design)
backplane (high speed, often standardized, e.g., PCI)
I/O (lengthy, different devices, standardized, e.g., SCSI)

Older PCs often use a single bus for processor-to-memory
communication, as well as communication between I/O devices
and memory.

42

A separate bus is used for
processor-memory traffic. The I/O
bus use a bus adapter to interface
to the processor-memory bus.

A separate bus is used for
processor-memory traffic. A small
number of backplane buses tap into
the processor-memory bus.

43

Synchronous vs. Asynchronous
Synchronous bus use a clock and a synchronous protocol,
fast and small but every device must operate at same rate
and clock skew requires the bus to be short
Asynchronous bus don’t use a clock and instead use
handshaking

Handshaking protocol
Our example ,which illustrates how asynchronous buses
use handshaking, assumes there are three control lines.

ReadReq: Used to indicate a read request for memory. The address is
put on the data lines at the same time.
DataRdy: Used to indicate that data word is now ready on the data lines.
Ack: Used to acknowledge the ReadReq or the DataRdy signal of the
other party.

44

Example: The asynchronous handshaking consists of seven steps to
read a word from memory and receive it in an I/O device.

1. When memory sees the ReadReq line, it reads the address from the data
bus, begin the memory read operation,then raises Ack to tell the device
that the ReadReq signal has been seen.

2. I/O device sees the Ack line high and releases the ReadReq data lines.

3. Memory sees that ReadReq is low and drops the Ack line.

45

4. When the memory has the data ready, it places the data on the data lines
and raises DataRdy.

5. The I/O device sees DataRdy, reads the data from the bus , and signals that
it has the data by raising ACK.

6. The memory sees Ack signals, drops DataRdy, and releases the data lines.

7. Finally, the I/O device, seeing DataRdy go low, drops the ACK line, which
indicates that the transmission is completed.

Example: The asynchronous handshaking consists of seven steps to
read a word from memory and receive it in an I/O device.

46

These finite
state
machines
implement
the control
for
handshaking
protocol
illustrated in
former
example.

47

Obtaining Access to the Bus
“Without any control, multiple device desiring to
communicate could each try to assert the control and
data lines for different transfers!”
So,a bus master is needed. Bus masters initiate and
control all bus requests.

e.g., processor is always a bus master.
Example: the initial steps in a bus transaction with a

single master (the processor).
First, the device
generates a bus
request to indicate
to the processor
that it wants to use
the bus.

48

The processor responds and generates appropriate bus control signals. For
example, if the devices wants to perform output from memory, the processor
asserts the read request lines to memory.

The processor also notifies the device that its bus request is being processed;
as a result, the device knows it can use the bus and places the address for the
request on the bus.

49

Bus Arbitration
Deciding which bus master gets to use the bus next
In a bus arbitration scheme, a device wanting to use the
bus signals a bus request and is later granted the bus.
four bus arbitration schemes:

daisy chain arbitration (not very fair)(p670)
centralized, parallel arbitration (requires an arbiter), e.g., PCI
self selection, e.g., NuBus used in Macintosh
collision detection, e.g., Ethernet

Two factors in choosing which device to grant
the bus:

bus priority
fairness

50

Bus Standards
SCSI (small computer system interface)
PCI (peripheral component interconnect)
IPI (intelligent peripheral interface)

IBMPC-AT IBMPC-XT
ISA EISA

51

The Buses and Networks of Pentium
Processor

FSB

(G)MCH

Analog
DisplayVGA

AGP or
PCI Exp.Graphics

Card

System
Memory

ICH

DMI/Hub Interface

IDE (& SATA))

USB

GPIO

Power Management

Clock Generation

LAN

System Management

SMBus/I2C

Other ASIC
(Optional)

Super IO

BIOS Support
/ Firmware Hub

Low Pin Count
(LPC) Interfaces

Key Board

Mouse

…

PCI Bus

G_Ethernet

PCI Exp.

AC’97 Codecs

52

8.5 Interfacing I/O Devices to the
Memory, Processor, and Operating System

Three characteristics of I/O systems
shared by multiple programs using the processor.
often use interrupts to communicate information
about I/O operations.
The low-level control of an I/O devices is complex

Three types of communication are required:
The OS must be able to give commands to the I/O devices.
The device must be able to notify the OS, when I/O device

completed an operation or has encountered an error.
Data must be transferred between memory and an I/O

device

53

Giving Commands to I/O Devices
Two methods used to address the device

memory-mapped I/O:
portions of the memory address space are assigned
to I/O devices,and lw and sw instructions can be used
to access the I/O port.

special I/O instructions
exp: in al,port out port,al

command port ,data port
The Status register (a done bit,an error bit……)
The Data register, The command register

54

Communication with the Processor
I/O SYTEM DATA TRANSFER CONTROL MODE

Polling: The processor periodically checks status
bit to see if it is time for the next I/O operation.
Interrupt: When an I/O device wants to notify

processor that it has completed some operation or
needs attentions, it causes processor to be
interrupted.
DMA (direct memory access): the device

controller transfer data directly to or from memory
without involving processor.

55

Compare polling, interrupts, DMA
The disadvantage of polling is that it wastes a lot of
processor time.When the CPU polls the I/O devices

periodically,the I/O devices maybe have no request or
have not get ready.
If the I/O operations is interrupt driven, the OS can work
on other tasks while data is being read from or written to
the device.
Because DMA doesn’t need the control of processor, it
will not consume much of processor time.

56

Interrupt-Driven I/O mode

t

t

CPU

Printer

Idle

Ready

start 发中断
请求

接收
数据

打印

发中断
请求

接收
数据

打印

start
I/O

Response
interrupt Transfer

Data

响应
中断

传送
数据

Interrup
t return

返回

中断服
务程序

中断服
务程序执行主程序

继续执行
主程序 主程序

Advantage: concurrent operation

57

DMA transfer mode
CPU

memory

I/O DEVICE
DMA

CPU INITIATION DMA

NO DMA I/O-CPU--M

DMA-- I/O---M I/O DIRECT ACCESS MEMORY

58

A DMA transfer need three steps:
The processor sets up the DMA by supplying some
information, including the identity of the device, the
operation, the memory address that is the source or
destination of the data to be transferred, and the number
of bytes to transfer.
The DMA starts the operation on the device and arbitrates
for the bus. If the request requires more than one transfer
on the bus, the DMA unit generates the next memory
address and initiates the next transfer.
Once the DMA transfer is complete, the controller
interrupts the processor, which then examines whether
errors occur.

59

8.6 I/O Performance Measures: Examples
from Disk and File Systems

Supercomputer I/O Benchmarks
Transaction Processing I/O Benchmarks

I/O rate: the number of disk access per second,
as opposed to data rate.

File System I/O Benchmarks
MakeDir, Copy, ScanDir, ReadAll, Make

60

Performance analysis of Synchronous versus
Asynchronous buses

Assume: The synchronous bus has a clock cycle time of 50 ns, and each
bus transmission takes 1 clock cycle .

The asynchronous bus requires 40 ns per handshake.
The data portion of both buses is 32 bits wide.

Question: Find the bandwidth for each bus when reading one word from a
200-ns memory.

synchronous bus:
the bus cycles is 50 ns. The steps and times required for the
synchronous bus are follows:

1. Send the address to memory : 50ns
2. Read the memory : 200ns
3. Send the data to the device : 50ns

Thus, the total time is 300 ns. So,
the bandwidth = 4bytes/300ns = 4MB/0.3seconds

= 13.3MB/second

Answer:

61

asynchronous bus:
If we look carefully at Figure 8.10 in the text, we realize that
several of the steps can be overlapped with the memory
access time.
In particular, the memory receives the address at the end of
step 1 and does not need to put the data on the bus until the
beginning of step 5; steps 2, 3, and 4 can overlap with the
memory access time.
This leads to the following timing:

step1: 40ns
step2,3,4: maximum(2×40ns+40ns,200ns)=200ns
step5,6,7: 3×40ns=120ns

Thus, the total time is 360ns, so
the maximum bandwidth = 4bytes/360ns = 4MB/0.36seconds

=11.1MB/second
Accordingly, the synchronous bus is only about 20% faster.
(Why?)

62

Suppose we have a system with the following characteristic:
1. A memory and bus system supporting block access of 4 to 16

32-bit words
2. A 64-bit synchronous bus clocked at 200 MHz, with each 64-

bit transfer taking 1 clock cycle, and 1 clock cycle required to send
an address to memory.

3. Two clock cycles needed between each bus operation.
4. A memory access time for the first four words of 200ns;

each additional set of four words can be read in 20 ns. Assume that
a bus transfer of the most recently read data and a read of the
next four words can be overlapped.

Increasing the Bus Bandwidth
Increasing data bus width
Use separate address and data lines
transfer multiple words

Performance Analysis of Two Synchronous Bus Schemes.

63

Find the sustained bandwidth and the latency for a read
of 256 words for transfers that use 4-word blocks and
for transfers that use 16-word blocks. Also compute
effective number of bus transactions per second for
each case.

64

the 4-word block transfers:
each block takes
1. 1 clock cycle to send the address to memory
2. 200ns/(5ns/cycle) = 40 clock cycles to read memory
3. 2 clock cycles to send the data from the memory
4. Two clock cycles needed between each bus operation.

This is a total of 45cycles.
There are 256/4 = 64 blocks.

So the transfer of 256 words takes
45×64=2880 clock cycles

The latency for the transfer of 256 words is:
2880 cycles× 5ns/cycle = 14,400ns.

Answer:

65

The bus bandwidth is:

(256×4)bytes×
1second

14,400 ns
＝ 71.11 MB/sec

so the number of bus transactions per second is:

66

the 16-word block transfers:
the first block requires
1. 1 clock cycle to send an address to memory
2. 200ns or 40 cycles to read the first four words in
memory.
3. 2 cycles to transfer the data of the set, during which
time the read of the next 4-word set is started.
4. It only takes 20ns or 4 cycles to read the next set.
After the read is completed, the set will be transferred.
Each of the three remaining sets requires repeating only
the last two steps.
5. Two clock cycles needed between each bus operation.

67

Thus, the total number of cycles for each 16- word
block is:

1+40+4×3+2+2=57 cycles.
There are 256/16=16 blocks.
so the transfer of 256 words takes 57×16=912 cycles.
Thus the latency is:
912cycles× 5ns/cycles = 4560ns.

68

The number of bus transactions per second with 16-word
blocks is:

The bus bandwidth with 16-word blocks is:

Now,let’s put two bus bandwidth together:

4-word blocks: 71.11 MB/sec

16-word blocks:224.56 MB/sec

The bandwidth for the 16-word blocks is 3.16 times
higher than for the 4-word blocks.

(256 × 4)bytes ×
1second
4560 ns ＝ 224.56 MB/sec

69

Overhead of Polling in an I/O System
Assume: that the number of clock cycles for a polling

operation is 400 and that processor executes
with a 500-Mhz clock.

Determine the fraction of CPU time consumed for the mouse,
floppy disk, and hard disk.

We assuming that you poll often enough so that no data is
ever lost and that those devices are potentially always busy.

We assume again that:
1. The mouse must be polled 30 times per second to ensure that we

do not miss any movement made by the user.
2. The floppy disk transfers data to the processor in 16-bit units

and has a data rate of 50 KB/sec. No data transfer can be
missed.

3. The hard disk transfers data in four-word chunks and can
transfer at 4 MB/sec. Again, no transfer can be missed.

70

the mouse:
clock cycles per second for polling :
30×400=12,000 cycles

Fraction of the processor clock cycles consumed is

Answer:

the floppy disk:
the number of polling access per second:

50KB/2B = 25K
clock cycles per second for polling: 25K×400cycles
Fraction of the processor clock cycles consumed:

71

the hard disk:
The number of polling access per second :

4MB/16B = 250K
Clock cycles per second for polling = 250K×400
Fraction of the processor clock cycles consumed:

Clearly, polling can be used for the mouse without much
performance impact on the processor, but it is unacceptable
for a hard disk on this machine.

Now,let’s put three fractions together:

Mouse: 0.002%

Floppy disk: 2%

Hard disk: 20%

72

Overhead of Interrupt-Driven I/O
Suppose we have the same hard disk and processor

we used in the former example, but we used interrupt-
driven I/O. The overhead for each transfer, including the
interrupt, is 500 clock cycles. Find the fraction of the
processor consumed if the hard disk is only transferring
data 5% of the time.

Answer: First, we assume the disk is transferring data 100%
of the time. So, the interrupt rate is the same as the polling rate.

Cycles per second for disk is:
250K×500=125×106cycles per secondFraction of

the processor consumed during a transfer is:

73

Now,we assume that the disk is only transferring
data 5% of the time.The fraction of the processor time
consumed on average is:

25%×5%=1.25%
As we can see, no CPU time is needed when an

interrupt-driven I/O device is not actually transferring.
This is the major advantage of an interrupt-driven
interface versus polling.

74

Overhead of I/O Using DMA
Suppose we have the same hard disk and

processor we used in the former example.
Assume that the initial setup of a DMA transfer

takes 1000 clock cycles for the processor, and
assume the handling of the interrupt at DMA
completion requires 500 clock cycles for the
processor.

The hard disk has a transfer rate of 4MB/sec
and uses DMA. The average transfer from disk is 8
KB. Assume the disk is actively transferring 100%
of the time.

Please find what fraction of the processor time
is consumed.

75

Answer:
Time for each 8KB transfer is:

8KB/(4MB/second)=2×10-3seconds.
It requires the following cycles per second:

Fraction of processor time:
Unlike either polling or interrupt-driven I/O, DMA can
be used to interface a hard disk without consuming
all the processor cycles for a single I/O.

76

The general approaches to designing I/O system

Find the weakest link in the I/O system, which is
the component in the I/O path that will constrain
the design. Both the workload and configuration
limits may dictate where the weakest link is located.
Configure this component to sustain the required
bandwidth.
Determine the requirements for the rest of the
system and configure them to support this
bandwidth.

8.7 Designing an I/O system

77

I/O System Design
Examples:
Consider the following computer system:

1. A CPU sustains 3 billion instructions per second and it
takes average 100,000 instructions in the operating
system per I/O operation.

2. A memory backplane bus is capable of sustaining a
transfer rate of 1000 MB/sec.

3. SCSI-Ultra320 controllers with a transfer rate of 320
MB/sec and accommodating up to 7 disks.

4. Disk drives with a read/write bandwidth of 75 MB/sec
and an average seek plus rotational latency of 6 ms.

78

If the workload consists of 64-KB reads (assuming
the the data block is sequential on a track), and the
user program need 200,000 instructions per I/O
operation, please find the maximum sustainable I/O
rate and the number of disks and SCSI controllers
required.

The two fixed component of the system are the
memory bus and the CPU. Let’s first find the I/O rate
that these two components can sustain and determine
which of these is the bottleneck.

Answer:

79

The bus is the bottleneck, so we can now configure
the rest of the system to perform at the level dictated by
the bus, 15625 I/Os per second.

Maximum I/O rate of CPU =
Instruction execution rate

Instruction per I/O

= 3× 10 9

(200＋ 100)×103
＝ 10000

I/Os
seconds

Maximum I/O rate of bus =
Bus bandwidth

Bytes per I/O
=

1000×106

64×103
= 15625

I/Os
seconds

80

Now, let’s determine how many disks we need to be
able to Accommodate 15625 I/Os per second. To find the
number of disks, we first find the time per I/O operation
at the disk:

This means each disk can complete 1000ms/6.9ms,
or 146 I/Os per second. To saturate the bus,the system
need 10000/146≈69 disks.

Time per I/O at disk = Seek/rotational time + Transfer time

= 6 ms＋
64KB

75MB/sec
= 6.9 ms

81

To compute the number of SCSI buses, we need to
know the average transfer rate per disk, which is given
by:

Transfer rate =

Assuming the disk accesses are not clustered so that
we can use all the bus bandwidth, we can place 7 disks
per bus and controller. This means we will need 69/7, or 10
SCSI buses and controllers.

Transfer size

Transfer time
=

64KB

6.9ms
≈ 9.56MB/sec

	Chapter 8
	Contents of Chapter 8
	8.2 Disk Storage and Dependability
	What’s Inside A Disk Drive?
	Dependability, Reliability, Availability
	Measure
	Three way to improve MTTF
	RAID: �	Redundant Arrays of Inexpensive Disks
	Use Arrays of Small Disks?
	Array Reliability
	Redundant Arrays of (Inexpensive) Disks
	RAID 0: No Redundancy
	RAID 1: Disk Mirroring/Shadowing
	RAID 3: Bit-Interleaved Parity Disk
	RAID 3
	Inspiration for RAID 4
	RAID 4: High I/O Rate Parity
	Inspiration for RAID 5
	RAID 5: High I/O Rate Interleaved Parity
	Problems of Disk Arrays: �Small Writes
	RAID 6: P+Q Redundancy
	Summary: RAID Techniques: Goal was performance, popularity due to reliability of storage
	8.4 Buses and Other Connections between Processors Memory, and I/O Devices
	The Buses and Networks of Pentium
	8.5 Interfacing I/O Devices to the Memory, Processor, and Operating System
	Interrupt-Driven I/O mode
	DMA transfer mode
	8.6 I/O Performance Measures: Examples 					from Disk and File Systems
	Answer: � Time for each 8KB transfer is:� 8KB/(4MB/second)=2×10-3seconds.� It requires the following cycles p
	8.7 Designing an I/O system

