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Abstract— The biggest advantage of employing virtualization is 
the ability to flexibly remap physical resources to virtual serv-
ers in order to handle the resource redistribution. So virtual 
machine is the fundamental unit in cloud data center. However, 
the load of virtual machine constantly changes owing to the 
needs of applications. In order to improve the resource utiliza-
tion and reduce power energy, data center needs an automatic, 
quick and dynamic resource scheduling strategy which treats 
virtual machine as a scheduling unit to balance load and conso-
lidate servers. 

In this paper, we present a two-steps dynamic resource 
scheduling strategy, named Smart-DRS, which fits cloud data 
center well and strikes a balance between efficiency, cost and 
instantaneity. Firstly, we employ a prediction technique based 
on Single Exponential Smoothing algorithm. Then a novel and 
efficient migration algorithm based on Vector Projection was 
applied. 

For evaluating the performance of Smart-DRS, we develop a 
complete resource management prototype system in which 
resource scheduling is just only a module. Then we build a 
cluster with 32 physical machines running with 3200 virtual 
machines to simulate datacenter environment. Experiment 
results tell us that Smart-DRS has a high forecast accuracy and 
also can deal well with load balancing and load consolidation. 

Keywords- Dynamic Resource Scheduling, Load Balancing, 
Load Consolidation 

I.  INTRODUCTION  
The ability of virtualization technology which is an im-

portant enabler for cloud computing brings immense benefits 
in terms of reliability, efficiency and scalability. Virtualiza-
tion, coupled with migration capability, enables the cloud 
datacenters to balance load and consolidate servers. As we 
know, cloud computing has a high requirement about QoS, 
so we should well manage cluster resource to automatically 
balance load. Moreover, the energy consumption of data 
center is also an increasingly sharp problem. We need to 
release some physical machines (PM) by consolidating vir-
tual machines (VM) together to other PMs while the load of 
cluster system is low. For achieving these goals, there should 
be an automatic management approach that could dynamical-
ly adjust VMs allocation to the right PMs. This approach is 
named dynamic resource scheduling (DRS) strategy which is 
directly related with the efficiency and performance of the 
cloud data center.  

 DRS strategy consists of two distinct parts. The first part 
is how to correctly estimate the VM resource requirements. 
This is a crucial and difficult step since VMs keep changing 
their resource requirements dynamically. After the resource 

requirements of VMs are properly estimated is the second 
part. It is how to apply a VM migration strategy to achieve 
efficient resource utilization of PMs. In this paper, we 
present a novel DRS strategy, named Smart-DRS, which 
could address the problem of when to initiate a migration and 
where to migrate the virtual machines. It employs prediction 
techniques based on Single Exponential Smoothing (SES) 
algorithm which is a kind of weighted moving average se-
quence data process method to judge whether PMs will over-
load. Upon prediction, it then employs a novel methodology 
based on Vector Projection (VP) arithmetic which is a good 
way to solve VM placement problem. 

The major contributions of this paper can be summarized 
as follows: 

• In the first step of Smart-DRS, we apply a more ac-
curate prediction method to avoid a tiny and tempo-
rary load peak value triggering unnecessary migra-
tion. 

• In the second step of Smart-DRS, we apply a novel 
vector projection method to decide how to place a 
VM with low cost and quick execution. 

• We implement a prototype system to demonstrate 
that our strategy achieves better performance of 
load balancing and load consolidation. 

The rest of this paper is organized as follows. Section 2 
describes related work. In Section 3, we describe the frame-
work of Smart-DRS, and Section 4 details the algorithms 
using in Smart-DRS. Finally, in Section 5, we implement a 
prototype system to evaluate the performance of Smart-DRS. 
A summary and plan of our future work are described in 
Section 6. 

II. RELATED WORKS 
Dynamic resource scheduling is a primary problem in 

virtual environment management. VMs, the minimal sche-
duling unit, are ceaselessly customized, produced and dep-
loyed. Meanwhile, the cluster resource utilization is chang-
ing accordingly. In order to achieve a high QoS, many me-
thodologies have been researched in previous literatures. 

Hermanier [1] discusses respectively about scheduling 
scheme making and executing. They treat VM deployment as 
a two-dimensional Bin Packing problem and use the two-
dimensional Bin Packing dynamic programming algorithm 
to solve. This method traverses different number of back-
packs to find the least number of backpacks that can accom-
modate all items. In addition, it employs pruning strategy to 
optimize the solution process. For example, it limits the 
scope of solution space and only explores the solution that 
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decrease in the number of backpacks. However, in fact, VM 
scheduling problem is more complicated than the two-
dimensional Bin Packing problem. That means deploying 
this method on cloud datacenter has several limitations. 

Hyser et al. [2] propose that the problem of VM deploy-
ment is different with Bin Packing problem. Bin Packing 
starts with a clear state while VM deployment starts with an 
existing mapping state. Besides, this paper uses simulated 
annealing method to achieve optimal but the author doesn’t 
give a detailed description of the algorithm. 

Grit et al. [3] consider some VMs replacement issues for 
resource management policies in the context of Shirako [4], a 
system for on-demand leasing of shared networked resources 
in federated clusters. When a migration is not directly feasi-
ble, due to sequence issues, the VM is paused using suspend-
to-disk. Once the destination node is available for migration, 
the VM is resumed on it. This paper presents a good ap-
proach to migrate VMs in federated clusters, but this method 
is only applied in the Shirako and can’t work well in a com-
mon datacenter. 

Verma et al. [5] propose an algorithm that dynamically 
packs the VMs running HPC applications. It uses dynamic 
consolidation and dynamic voltage scaling policies to reduce 
the power consumption of clusters. The placement is made to 
satisfy the CPU and memory requirements of each VM while 
reducing the number of migrations. The algorithm is an ex-
tension of the FFD heuristic and it migrates VMs located on 
overloaded nodes to under-exploited nodes. Nevertheless, 
this implies that the approach may fail to compute a new 
viable con�guration or miss opportunities for savings when 
rearranging the VMs within the under-loaded nodes is essen-
tial to reach a viable con�guration or enable more bene�cial 
migrations. 

Wood et al. [6] develop a VM scheduling system named 
Sandpiper which is a XEN based automated provisioning 
system for monitoring and detecting hotspots. Thus, it de-
tects when a VM is under-provisioned and either allots more 
resources locally or migrates the VM to a new PM which is 
capable of supporting the VM. However, Sandpiper is easy 
to choose a wrong target PM, because Sandpiper takes VM 
migration decision based on a metric, which it refers to as 
volume. That means it converts the three dimensional re-
source information of PMs into a single dimension metric 
(which is volume) and then uses this single dimension metric 
for worst �t in a three dimensional scenario. In this process, 
the information about the shape of the resource utilization is 
lost.  

There are several other literatures introduced how to se-
lect migration targets in virtual cluster environment. Random 
algorithm [7] is the most simple and widely used method. It 
does not take any system information into account, randomly 
select migration target node. Dinda [8] proposed cyclic algo-
rithm which based on preset order of nodes to be selected as 
migration targets, we noticed cyclic algorithm is an im-
proved version of random method. However these two me-
thods are short of consideration of ef�ciency as well as sta-
bility. Central algorithm [9], which proposed by Zhou, de-
sign a special load information center LIC. The LIC centra-
lized collecting and managing system load information. Cen-

tralized algorithm can effectively avoid the occurrence of 
nodes con�ict, but it brings the problems of single node fail-
ure phenomena. It suffers from scalability and is not suitable 
for dynamic systems. 

In addition to these various types of scheduling strategies, 
some companies and research institutions have developed 
several DRS products and projects, like: Vmware DRS [10], 
OpenNebula [11], Ganglia [12], Entropy [13] and so on. 

III. SYSTEM ARCHITECHTURE 
In virtual computing environment, it is inevitable to go 

through the process of dynamic VM migration from creating 
a VM to hibernate a VM. A complete migration process con-
sists of four parts as shown in Figure 1: data monitoring, load 
predicting, migration scheme making and scheme executing. 

 
Figure 1. A complete scheduling process. 

The major goal of our design is to evaluate the perfor-
mance of Smart-DRS strategy while applied in data center 
environment. In order to avoid time-consuming and compli-
cated implementation in code without knowing potential 
effects of the modification, we choose some mature open 
source projects in our system, such as Ganglia in monitor 
module and Xen Motion [14] in execution module. So in this 
paper, we just introduce our work about the parts with a gray 
logo in Figure 1. That is our Smart-DRS, an integrated sche-
duling algorithms, the detailed system architecture is de-
scribed in Figure 2.  

 
Figure 2. System architecture. 

Firstly, our system needs to get the historical monitoring 
data of resource utilization, and then reasonably predict the 
upcoming time slots to load based on SES algorithm. Ac-
cording to the prediction value, system should be aware that 
whether system is overheating or overcool. We set upper 
threshold and lower threshold for each kind of resource, in 
order to determine the need for a migration. If a migration is 
triggered, we should make an optimized migration scheme 
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based on VP algorithm, a novel and efficient scheduling al-
gorithm. Then a mapping list about the VMs to be migrated 
to the potential target PMs would be generated. At last, ex-
ecuting module carries out the online migration based on the 
mapping list. 

IV. SCHEDULING ALGORITHM 

In this section, we concentrate on the methodologies of 
Smart-DRS. In terms of dynamic resource scheduling, 
Smart-DRS proposes an integrated solution that determines 
when and where to migrate VMs. 

A. SES Algorithm for Predicting 
SES algorithm is a widely used forecasting method and 

it’s an efficient technique that can be applied to time series 
data, either to produce smooth data for presentation. SES 
algorithm is very suitable for our model, because in our sys-
tem, the time series data are a sequence of historical monitor-
ing data of resource utilization. And the observed phenome-
non may be an essentially random process, or it may be an 
orderly, but noisy, process. Whereas in the SES the past ob-
servations are weighted equally, exponential smoothing as-
signs exponentially decreasing weights over time. 

SES removes random perturbations of time series data, 
then the form of SES is given by the formulas (1), while the 
sequence of observations begins at time t = 0. 

 ������������� � ������ 	 
��� � ������  (1) 

Where ������������� is the prediction value at time t+1, ������ is the 
prediction value at time t, while ��  is the real value at time t, � is the smoothing factor, and 0< � <1. Formulas (1) can 
change further to formulas (2). 

 �������������=��� 	 �� � 
������ (2) 

Through the observation, the above equation is kind of a 
recursion equation, which can be expanded to formulas (3). 

 �������������� � 
�� � 
����������� 	 �� � 
�������  (3) 

As we can see from formulas (3), exponential smoothing 
forecast value is a weighted sum of all the previous real ob-
servational values. That means SES makes use of all the his-
torical data, so it has more stability and regularity. 

1) The Value of � : The value of � determine the degree 
of smoothing and how responsive the model is to fluctuation 
in the time series data. The value of � is arbitrary and is de-
termined both by the nature of the data and the feeling by the 
forecaster as to what constitutes a good response rate. A 
smoothing constant close to zero leads to a stable model 
while a constant close to one is highly reactive. To our 
knowledge, it is good to set a small value of � in order to 
increase the weight of historical data when the time series 
data doesn’t have fluctuations. On the contrary, it’s good to 
set a big value of � to increase the weight of recent 
prediction value when the time series data has obvious 
fluctuations. 

2) The Value of ������� : In fact, the smaller value of �, the 
more sensitive our prediction value will be on the selection 
of this initial smoother value �������. In our method, we define ������� to be initialized to ��when the number of series data is 
more than an experiential value 15 [15]. While the number 
is less than 15, we define ������� to be the average value of the 
series data. As shown in formulas (4). 

 ������ � �� �������� � � � ���� � � � �� (4) 

After the process mentioned above, we could calculate 
the prediction value which is a major basis of resource sche-
duling. Several notations are described in table 1. 

TABLE I.  NOTATION DESCRIPTION 

Variable Meaning �� !�"� the predicted value of Cpu utilization of #�$ PM �� % &� the predicted value of Mem utilization of #�$ PM �� '(� the predicted value of IO utilization of #�$ PM 
UC upper threshold of CPU 
UM upper threshold of Mem 
UIO upper threshold of IO 
LC lower threshold of CPU 
LM lower threshold of Mem 
LIO lower threshold of IO 

As long as one of the followed three formulas is true, 
which means there will be several load-imbalanced PMs. 
Then next step of Smart-DRS strategy should be carried out. 

) �� !�"� � *! +� �� !�"� , -!���� % &� � *% +� �� % &� , -%�� '(� � *'( +� �� '(� , -'(  (5) 

B. VP Algorithm for Scheduling 
VP algorithm, to the best of our knowledge, addresses 

many drawbacks existing in other methodologies [16]. In this 
algorithm, firstly, we choose three major resources available 
with the PM, namely CPU, Mem and IO. These resources 
form the three dimensions of an abstract object. We normal-
ize the resources along each axis. Thus, the total available 
resource can be represented as a unit cube which is called 
Normalized Resource Cube (NRC). Secondly, we should 
express the resource related information of potential VMs 
and potential target PMs as a vector within the NRC, as 
shown in Figure 3. 

The total capacity of PM is expressed as a vector from 
the origin of the cube (0, 0, 0) to point (1, 1, 1). This vector 
is identi�ed as Total Capacity Vector (TCV). Resource Utili-
zation Vector (RUV) represents the current utilization of 
resources of a PM The vector difference between TCV and 
RUV represents the Remaining Capacity Vector (RCV), 
which essentially captures how much capacity is left in the 
PM. The resource requirement of a VM is represented by 
Resource Requirement Vector (RRV) which is the vector 
addition of normalized resource requirement vectors of each  
resource type. So, to measure the degree of imbalance of 
resource utilization of a PM, we de�ne the Resource Imbal- 
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Figure 3. Normalized Resource C

ance Vector (RIV) of PM, which is the v
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Number Name Resource 
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When there is a VM whose resource requirements are not 
being fulfilled by the PM, on which it is hosted, thus leading 
to overload of the PM. Then a load balancing strategy as 
presented in Algorithm 1 is needed.  

Algorithm 1 Load Balancing 
1: init_PotentialVMlist(); 
2: init_PotentialPMlist(); 
3: for all PMs will overload do 
4: do 
5: add_PotentialVM (); /*VM in this PM which has the 

most utilization*/ 
6: delete the utilization of this VM and calculate the 

new_load of this PM 
7: while ( new_load is not overloaded); 
8: end for 
9: order_PotentialPMlist(); /* according to the remaining ca-

pacity of every PM in ascending order. In the beginning, 
every PM is in the PotentialPMlist*/ 

10: named the triangle T which contains the PM in the top of 
PotentialPMlist  

11: if no VM of PotentialVMlist locates T  then 
12:     T = T + left triangle of T + right triangle of T 
13: end if 
14: while  PotentialVMlist !=NULL & PotentialPMl-

ist !=NULL do 
15: choose the most complementary VM whose RIV is of 

the most closest magnitude ( is the most slightly 
less )as the PM’s RIV and is in the opposite direction 

16: add_MigrationScheme(); /* add a record in migration 
scheme*/ 

17: delete_PotentialVM();     /* current VM gets a target 
PM and pop it from the PotentialVMlist*/ 

18: add the utilization of this VM and calculate the 
new_load of this PM 

19: if new_load is overloaded then 
20: add_PotentialVM();    /* current PM can’t hold this 

VM and push it in the PotentialVMlist again*/ 
21: delete_PotentialPM(); 
22: end if 
23: end while 
24: if PotentialPMlist ==NULL & PotentialVMlist !=Null then 
25:     Introduce a new PM; continue; 
26: end if 
27: if PotentialPMlist !=NULL & PotentialVMlist==NULL 

then 
28:     return MigrationScheme; // end Algorithm 
29: end if 

When a PM runs in low utilization level, the VMs on it 
can be migrated to other PMs so that this PM can be taken 
offline. For achieve this goal, we present our algorithm 
shown in Algorithm 2. 

Algorithm 2 Load Consolidation 
1: init_PotentialVMlist(); 
2: init_PotentialPMlist(); 
3: for all PMs will under lower_threshold do 
4: add_PotentialVM (); /* all VMs on this PM*/ 
5: end for 
6: order_PotentialPMlist(); /* according to the remaining ca-

pacity of every PM in descending order. In the beginning, 

every PM is in the PotentialPMlist*/ 
7: named the triangle T which contains the PM in the top of 

PotentialPMlist  
8: if no VM of PotentialVMlist locates T  then 
9: T = T + left triangle of T + right triangle of T 

10: end if 
11: while  PotentialVMlist !=NULL & PotentialPMl-

ist !=NULL do 
12: choose the most complementary VM whose RIV is of the 

most closest magnitude ( is the most slightly less )as the 
PM’s RIV and is in the opposite direction 

13: add_MigrationScheme(); /* add a record in migration 
scheme*/ 

14: delete_PotentialVM();     /* current VM gets a target PM 
and pop it from the PotentialVMlist*/ 

15: add the utilization of this VM and calculate the new_load 
of this PM 

16: if new_load is overloaded then 
17: add_PotentialVM();    /* current PM can’t hold this 

VM and push it in the PotentialVMlist again*/ 
18: delete_PotentialPM(); 
19: end if 
20: end while 
21: if PotentialPMlist ==NULL & PotentialVMlist !=NULL 

then 
22: Introduce a new PM; continue; 
23: end if 
24: if PotentialPMlist !=NULL & PotentialVMlist==NULL 

then 
25: return MigrationScheme; // end Algorithm 
26: end if

V. PERFORMANCE EVALUATION 
For evaluating the performance of Smart-DRS, we have 

implemented a prototype system as discussed in Section 3. 
Besides, we build a small-scale cluster whose detail informa-
tion is listed as follows:  

TABLE III.  EXPERIMENTS ENVIRONMENT 

PM 
Numbers 

VM 
Numbers 

CPU 
Frequency 

Memory Network VMM 
Version 

32 3200 3.3GHz 4GB 100Mb/s Xen 3.0.3 

A. Predicting Evaluation 
In order to evaluate the performance of predicting algo-

rithm, we need some of convictive host load samples. Fortu-
nately, Dinda and O’Halloran from Carnegie Mellon Univer-
sity [17] offered us plenty of load samples by long-term trac-
ing with many kinds of machines in a cluster system. We 
choose the day’s collection of load time series on August 18, 
2010 as our test samples. 

In the first experiment, we continuously monitor 32 PMs 
for 21 minutes and record the real load value. After that, we 
respectively calculate the forecasting value for average when �= 0.1, 0.3, 0.5. As shown in Figure 6, the Mean Relative 
Error (MRE) is correspondingly 13.6%, 9.7% and 7.3%. 
That means SES algorithm has an acceptable predicting ac-
curacy while applied in a small-scale datacenter and �= 0.5 
is a better situation in our experiment environment. 
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Figure 6. Real value and forecasting value. 

In the second experiment, we compare Smart-DRS with 
other classic forecasting algorithms. Such as Autoregressive 
(AR), Moving Average (MA), Autoregressive Moving Aver-
age (ARMA), Autoregressive Integrated Moving Average 
(ARIMA) and Back Propagation (BP) neural network. To 
our knowledge, the prediction time interval has a certain 
influence on the forecasting value. In order to fully observe 
the predictive ability of various prediction models, we re-
spectively set the prediction time interval as 1s and 15s to 
make a comparison. Figure 7 shows our experiment result. 

 
(a) The time interval is 1 second. 

 
(b) The time interval is 15 second 

Figure 7. Mean relative error of various predicting models. 

From the aforementioned experiments, we can know that: 
(1) some models work well with small interval, like MA and 
ARMA. Some other models work well with long interval, 
like ARIMA. However, some other models are not sensitive 
with the interval, like BP and Smart-DRS. (2) Even Smart-
DRS is a relatively simple model, it has a relatively good 
performance, and the MRE of it is acceptable. 

B. Scheduling Evaluation 
In the third experiment, we try to evaluate the perfor-

mance of scheduling. First of all, we should claim that we 
have defined ./0/12 � to represent the degree of load ba-
lancing of each machine and  343567689: to represent the 
degree of load balancing of the whole system ( a higher val-
ue is better). 

 ./0/12 � � ;<=9>?@ 	 =A:A@ 	 =�B@C DE    (6) 

 =9>? � 2�"� � 2�"6FG (7) 

 =A:A � & &� �& &6FG (8) 

 =�B � #+� � #+6FG (9) 

 343567689: � � ./0/12 �8��� 1E  (10) 

This experiment compares the performance of Smart-
DRS with two classical Bin Packing algorithms used in dy-
namic resource scheduling, Best Fit Decreasing (BFD) and 
First Fit Decreasing (FFD). We measure the execution time 
and 343567689: of each algorithm. As shown in Figure 8, the 
BFD and FFD consume much more execution time but 
achieve no better performance in343567689: than Smart-DRS. 
The reason is that they have to sort all of the potential VMs 
and target PMs firstly according to their resource utilization. 

 
 Figure 8. Performance comparison of various scheduling algorithms
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(a) Before scheduling (load balancing)                                                                (b) After scheduling (load balancing) 

  
(c) Before scheduling (load consolidation)                                                               (d) After scheduling (load consolidation) 

Figure 9. The contrast between before scheduling and after scheduling. 

In our forth experiment, we assess the performance of 
Smart-DRS in load balancing and load consolidation. By 
continuously monitoring the resource utilization of cpu, mem, 
diskio of 32 PMs, we could observe the difference between 
before scheduling and after scheduling. In order to carry out 
this experiment, we have set 0.8 as the upper threshold and 
0.2 as the lower threshold.  

Figure 9 shows that our scheduling algorithm really 
works. It is clear that the load of system is imbalanced and 
the resource utilization of several machines exceeds 0.8 be-
fore scheduling as shown in Figure 9 (a). While in Figure 9 
(b), after scheduling, the load of system is more balanced 
than before and none of resource utilization exceeds the up-
per threshold. Similarly, in Figure 9 (c) we can see the re-
source utilization of several machines is under 0.2 while in 
Figure 9 (d), these low utilization machines are taken offline 
and the others are load balancing. 

VI. CONCLUSIONS 
In this paper, we studied the server load balancing and 

power consumption problems in cloud datacenter environ-
ment and we have presented an integrated dynamic resource 
scheduling strategy named Smart-DRS. It employs SES algo-
rithm to predict the resource utilization of PMs in order to 
avoid tiny and temporary load peak value triggering unne-
cessary migration. The experiment result shows that predic-
tion value is pretty close with the real value. Then Smart-
DRS employs VP algorithm to make the migration scheme. 
The reason why we choose VP algorithm is that it’s a novel 
theory which can be used to make the process of choosing 
PMs easier and more appropriate. The experiment result tells 

us that it really works and it’s a kind of low cost and efficient 
method. 

 Nevertheless, our strategy has some limitations that we 
plan to address in the future. We now don’t consider the 
spending of migration, sometimes, the best match may bring 
much more spending while a common match is our best 
choice. In addition, various other measurements and optimi-
zation strategies will need to be explored in the future. 
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