
Smart-DRS : A Strategy of Dynamic Resource Scheduling in Cloud Data Center

Lei Xu, Wenzhi Chen, Zonghui Wang, Shuangquan Yang
College of Computer Science and Technology

Zhejiang University, Hangzhou, China
Email: {leixu, chenwz, zjuzhwang, sqyang}@zju.edu.cn

Abstract— The biggest advantage of employing virtualization is
the ability to flexibly remap physical resources to virtual serv-
ers in order to handle the resource redistribution. So virtual
machine is the fundamental unit in cloud data center. However,
the load of virtual machine constantly changes owing to the
needs of applications. In order to improve the resource utiliza-
tion and reduce power energy, data center needs an automatic,
quick and dynamic resource scheduling strategy which treats
virtual machine as a scheduling unit to balance load and conso-
lidate servers.

In this paper, we present a two-steps dynamic resource
scheduling strategy, named Smart-DRS, which fits cloud data
center well and strikes a balance between efficiency, cost and
instantaneity. Firstly, we employ a prediction technique based
on Single Exponential Smoothing algorithm. Then a novel and
efficient migration algorithm based on Vector Projection was
applied.

For evaluating the performance of Smart-DRS, we develop a
complete resource management prototype system in which
resource scheduling is just only a module. Then we build a
cluster with 32 physical machines running with 3200 virtual
machines to simulate datacenter environment. Experiment
results tell us that Smart-DRS has a high forecast accuracy and
also can deal well with load balancing and load consolidation.

Keywords- Dynamic Resource Scheduling, Load Balancing,
Load Consolidation

I. INTRODUCTION
The ability of virtualization technology which is an im-

portant enabler for cloud computing brings immense benefits
in terms of reliability, efficiency and scalability. Virtualiza-
tion, coupled with migration capability, enables the cloud
datacenters to balance load and consolidate servers. As we
know, cloud computing has a high requirement about QoS,
so we should well manage cluster resource to automatically
balance load. Moreover, the energy consumption of data
center is also an increasingly sharp problem. We need to
release some physical machines (PM) by consolidating vir-
tual machines (VM) together to other PMs while the load of
cluster system is low. For achieving these goals, there should
be an automatic management approach that could dynamical-
ly adjust VMs allocation to the right PMs. This approach is
named dynamic resource scheduling (DRS) strategy which is
directly related with the efficiency and performance of the
cloud data center.

 DRS strategy consists of two distinct parts. The first part
is how to correctly estimate the VM resource requirements.
This is a crucial and difficult step since VMs keep changing
their resource requirements dynamically. After the resource

requirements of VMs are properly estimated is the second
part. It is how to apply a VM migration strategy to achieve
efficient resource utilization of PMs. In this paper, we
present a novel DRS strategy, named Smart-DRS, which
could address the problem of when to initiate a migration and
where to migrate the virtual machines. It employs prediction
techniques based on Single Exponential Smoothing (SES)
algorithm which is a kind of weighted moving average se-
quence data process method to judge whether PMs will over-
load. Upon prediction, it then employs a novel methodology
based on Vector Projection (VP) arithmetic which is a good
way to solve VM placement problem.

The major contributions of this paper can be summarized
as follows:

• In the first step of Smart-DRS, we apply a more ac-
curate prediction method to avoid a tiny and tempo-
rary load peak value triggering unnecessary migra-
tion.

• In the second step of Smart-DRS, we apply a novel
vector projection method to decide how to place a
VM with low cost and quick execution.

• We implement a prototype system to demonstrate
that our strategy achieves better performance of
load balancing and load consolidation.

The rest of this paper is organized as follows. Section 2
describes related work. In Section 3, we describe the frame-
work of Smart-DRS, and Section 4 details the algorithms
using in Smart-DRS. Finally, in Section 5, we implement a
prototype system to evaluate the performance of Smart-DRS.
A summary and plan of our future work are described in
Section 6.

II. RELATED WORKS
Dynamic resource scheduling is a primary problem in

virtual environment management. VMs, the minimal sche-
duling unit, are ceaselessly customized, produced and dep-
loyed. Meanwhile, the cluster resource utilization is chang-
ing accordingly. In order to achieve a high QoS, many me-
thodologies have been researched in previous literatures.

Hermanier [1] discusses respectively about scheduling
scheme making and executing. They treat VM deployment as
a two-dimensional Bin Packing problem and use the two-
dimensional Bin Packing dynamic programming algorithm
to solve. This method traverses different number of back-
packs to find the least number of backpacks that can accom-
modate all items. In addition, it employs pruning strategy to
optimize the solution process. For example, it limits the
scope of solution space and only explores the solution that

2012 IEEE International Conference on Cluster Computing Workshops

978-0-7695-4844-9/12 $26.00 © 2012 IEEE

DOI 10.1109/ClusterW.2012.14

120

decrease in the number of backpacks. However, in fact, VM
scheduling problem is more complicated than the two-
dimensional Bin Packing problem. That means deploying
this method on cloud datacenter has several limitations.

Hyser et al. [2] propose that the problem of VM deploy-
ment is different with Bin Packing problem. Bin Packing
starts with a clear state while VM deployment starts with an
existing mapping state. Besides, this paper uses simulated
annealing method to achieve optimal but the author doesn’t
give a detailed description of the algorithm.

Grit et al. [3] consider some VMs replacement issues for
resource management policies in the context of Shirako [4], a
system for on-demand leasing of shared networked resources
in federated clusters. When a migration is not directly feasi-
ble, due to sequence issues, the VM is paused using suspend-
to-disk. Once the destination node is available for migration,
the VM is resumed on it. This paper presents a good ap-
proach to migrate VMs in federated clusters, but this method
is only applied in the Shirako and can’t work well in a com-
mon datacenter.

Verma et al. [5] propose an algorithm that dynamically
packs the VMs running HPC applications. It uses dynamic
consolidation and dynamic voltage scaling policies to reduce
the power consumption of clusters. The placement is made to
satisfy the CPU and memory requirements of each VM while
reducing the number of migrations. The algorithm is an ex-
tension of the FFD heuristic and it migrates VMs located on
overloaded nodes to under-exploited nodes. Nevertheless,
this implies that the approach may fail to compute a new
viable con�guration or miss opportunities for savings when
rearranging the VMs within the under-loaded nodes is essen-
tial to reach a viable con�guration or enable more bene�cial
migrations.

Wood et al. [6] develop a VM scheduling system named
Sandpiper which is a XEN based automated provisioning
system for monitoring and detecting hotspots. Thus, it de-
tects when a VM is under-provisioned and either allots more
resources locally or migrates the VM to a new PM which is
capable of supporting the VM. However, Sandpiper is easy
to choose a wrong target PM, because Sandpiper takes VM
migration decision based on a metric, which it refers to as
volume. That means it converts the three dimensional re-
source information of PMs into a single dimension metric
(which is volume) and then uses this single dimension metric
for worst �t in a three dimensional scenario. In this process,
the information about the shape of the resource utilization is
lost.

There are several other literatures introduced how to se-
lect migration targets in virtual cluster environment. Random
algorithm [7] is the most simple and widely used method. It
does not take any system information into account, randomly
select migration target node. Dinda [8] proposed cyclic algo-
rithm which based on preset order of nodes to be selected as
migration targets, we noticed cyclic algorithm is an im-
proved version of random method. However these two me-
thods are short of consideration of ef�ciency as well as sta-
bility. Central algorithm [9], which proposed by Zhou, de-
sign a special load information center LIC. The LIC centra-
lized collecting and managing system load information. Cen-

tralized algorithm can effectively avoid the occurrence of
nodes con�ict, but it brings the problems of single node fail-
ure phenomena. It suffers from scalability and is not suitable
for dynamic systems.

In addition to these various types of scheduling strategies,
some companies and research institutions have developed
several DRS products and projects, like: Vmware DRS [10],
OpenNebula [11], Ganglia [12], Entropy [13] and so on.

III. SYSTEM ARCHITECHTURE
In virtual computing environment, it is inevitable to go

through the process of dynamic VM migration from creating
a VM to hibernate a VM. A complete migration process con-
sists of four parts as shown in Figure 1: data monitoring, load
predicting, migration scheme making and scheme executing.

Figure 1. A complete scheduling process.

The major goal of our design is to evaluate the perfor-
mance of Smart-DRS strategy while applied in data center
environment. In order to avoid time-consuming and compli-
cated implementation in code without knowing potential
effects of the modification, we choose some mature open
source projects in our system, such as Ganglia in monitor
module and Xen Motion [14] in execution module. So in this
paper, we just introduce our work about the parts with a gray
logo in Figure 1. That is our Smart-DRS, an integrated sche-
duling algorithms, the detailed system architecture is de-
scribed in Figure 2.

Figure 2. System architecture.

Firstly, our system needs to get the historical monitoring
data of resource utilization, and then reasonably predict the
upcoming time slots to load based on SES algorithm. Ac-
cording to the prediction value, system should be aware that
whether system is overheating or overcool. We set upper
threshold and lower threshold for each kind of resource, in
order to determine the need for a migration. If a migration is
triggered, we should make an optimized migration scheme

121

based on VP algorithm, a novel and efficient scheduling al-
gorithm. Then a mapping list about the VMs to be migrated
to the potential target PMs would be generated. At last, ex-
ecuting module carries out the online migration based on the
mapping list.

IV. SCHEDULING ALGORITHM

In this section, we concentrate on the methodologies of
Smart-DRS. In terms of dynamic resource scheduling,
Smart-DRS proposes an integrated solution that determines
when and where to migrate VMs.

A. SES Algorithm for Predicting
SES algorithm is a widely used forecasting method and

it’s an efficient technique that can be applied to time series
data, either to produce smooth data for presentation. SES
algorithm is very suitable for our model, because in our sys-
tem, the time series data are a sequence of historical monitor-
ing data of resource utilization. And the observed phenome-
non may be an essentially random process, or it may be an
orderly, but noisy, process. Whereas in the SES the past ob-
servations are weighted equally, exponential smoothing as-
signs exponentially decreasing weights over time.

SES removes random perturbations of time series data,
then the form of SES is given by the formulas (1), while the
sequence of observations begins at time t = 0.

 ������������� � ������ 	
��� � ������ (1)

Where ������������� is the prediction value at time t+1, ������ is the
prediction value at time t, while �� is the real value at time t, � is the smoothing factor, and 0< � <1. Formulas (1) can
change further to formulas (2).

 �������������=��� 	 �� �
������ (2)

Through the observation, the above equation is kind of a
recursion equation, which can be expanded to formulas (3).

 �������������� �
�� �
����������� 	 �� �
������� (3)

As we can see from formulas (3), exponential smoothing
forecast value is a weighted sum of all the previous real ob-
servational values. That means SES makes use of all the his-
torical data, so it has more stability and regularity.

1) The Value of � : The value of � determine the degree
of smoothing and how responsive the model is to fluctuation
in the time series data. The value of � is arbitrary and is de-
termined both by the nature of the data and the feeling by the
forecaster as to what constitutes a good response rate. A
smoothing constant close to zero leads to a stable model
while a constant close to one is highly reactive. To our
knowledge, it is good to set a small value of � in order to
increase the weight of historical data when the time series
data doesn’t have fluctuations. On the contrary, it’s good to
set a big value of � to increase the weight of recent
prediction value when the time series data has obvious
fluctuations.

2) The Value of ������� : In fact, the smaller value of �, the
more sensitive our prediction value will be on the selection
of this initial smoother value �������. In our method, we define ������� to be initialized to ��when the number of series data is
more than an experiential value 15 [15]. While the number
is less than 15, we define ������� to be the average value of the
series data. As shown in formulas (4).

 ������ � �� �������� � � � ���� � � � �� (4)

After the process mentioned above, we could calculate
the prediction value which is a major basis of resource sche-
duling. Several notations are described in table 1.

TABLE I. NOTATION DESCRIPTION

Variable Meaning �� !�"� the predicted value of Cpu utilization of #�$ PM �� % &� the predicted value of Mem utilization of #�$ PM �� '(� the predicted value of IO utilization of #�$ PM
UC upper threshold of CPU
UM upper threshold of Mem
UIO upper threshold of IO
LC lower threshold of CPU
LM lower threshold of Mem
LIO lower threshold of IO

As long as one of the followed three formulas is true,
which means there will be several load-imbalanced PMs.
Then next step of Smart-DRS strategy should be carried out.

) �� !�"� � *! +� �� !�"� , -!���� % &� � *% +� �� % &� , -%�� '(� � *'(+� �� '(� , -'((5)

B. VP Algorithm for Scheduling
VP algorithm, to the best of our knowledge, addresses

many drawbacks existing in other methodologies [16]. In this
algorithm, firstly, we choose three major resources available
with the PM, namely CPU, Mem and IO. These resources
form the three dimensions of an abstract object. We normal-
ize the resources along each axis. Thus, the total available
resource can be represented as a unit cube which is called
Normalized Resource Cube (NRC). Secondly, we should
express the resource related information of potential VMs
and potential target PMs as a vector within the NRC, as
shown in Figure 3.

The total capacity of PM is expressed as a vector from
the origin of the cube (0, 0, 0) to point (1, 1, 1). This vector
is identi�ed as Total Capacity Vector (TCV). Resource Utili-
zation Vector (RUV) represents the current utilization of
resources of a PM The vector difference between TCV and
RUV represents the Remaining Capacity Vector (RCV),
which essentially captures how much capacity is left in the
PM. The resource requirement of a VM is represented by
Resource Requirement Vector (RRV) which is the vector
addition of normalized resource requirement vectors of each
resource type. So, to measure the degree of imbalance of
resource utilization of a PM, we de�ne the Resource Imbal-

122

Figure 3. Normalized Resource C

ance Vector (RIV) of PM, which is the v
between RUV’s projection on TCV and RU
is de�ned in a similar way: it is the vecto
tween RRV’s projection on TCV and the RR

 Then, we project NRC on a plane perp
principal diagonal of the cube as shown in F
to see that this would result in a regular hex
projection plane. After that, we take the p
resource vectors onto the projection plane
source information of 3D space reduce to 2D

Figure 4. Resource Vector Projectio

By carefully analysis, we can know the
on the projection plane is divided into six
Shown in Figure 5, we named these triangl
defines the region where the projection of ti
CPU> Mem > IO. Likewise, �MC repre
where the projection of tip of RUV whose M
Other triangles can be identified by similar i

Further analysis shows that the VMs an
source vectors projected in the same triangl
affinity.

Now, we group all of the potential VM
target PMs based on the rules that the RR
RCV of a PM are in the same triangle or the
the opposite direction. That means they hav
tics of complementary resources.

Cube.

vector difference
UV. RIV of a VM
or difference be-
RV.
pendicular to the

Figure 4. It is easy
xagon on the said
projection of the
to make the re-

D plane.

on.

e regular hexagon
regular triangles.
les like that: �CI
ip of RUV whose
esents the region
Mem > CPU > IO.
nequalities.

nd PMs whose re-
e or axis have an

Ms and potential
RV of a VM and
e same axis and in
ve the characteris-

Figure 5. The Planar Resou

Our ultimate goal is to find a be
PM for a potential VM in a group
magnitude as the VM’s RIV and is
The groups are shown in table 2
found that the triangle is imbalance
the closest resource axis represents.

TABLE II. COMPLEMENTARY

Number Name Resource
0 CI imbalance
1 IC imbalance
2 IM imbalance
3 MI imbalance
4 MC imbalance
5 CM imbalance
6 CPU axis especially
7 Mem axis especially
8 IO axis especially
9 CI/IC axis imbalance
10 CM/MC axis imbalance
11 IM/MI axis imbalance
12 Origin point load balan

If a triangle has no projection o
make it with adjacent triangles int
adjacent triangles are with simila
sources. Loop this process until ev
vectors.

C. Algorithm Elaboration
This segment details dynamic r

rithm. Our VM placement algorithm
the two goals:

• Load Balancing: Placing t
manner that it helps in load
pose, the algorithm starts o
the least loaded and has
usage with respect to the VM
balancing is shown in Algor

• Load Consolidation: Placing
helps in load consolidation a
case, the algorithm starts o
highest load and has compl
with respect to the VM. Th
solidation is shown in Algor

urce Hexagon.

est complementary target
p, whose RIV is of same

in the opposite direction.
2. After comparison, we
ed in the resource which

Y RESOURCES GROUPS

Characteristics
d in CPU, CPU-intensive
d in IO, IO-intensive
d in IO, IO-intensive
d in Mem, Mem-intensive
d in Mem, Mem-intesive
d in CPU, CPU-intensive
imbalanced in CPU
imbalanced in Mem
imbalanced in IO
d in CPU & IO
d in CPU & Mem
d in IO & Mem
cing

of tip of vectors, we will
to a new group, because
ar characteristics of re-
very group has resource

resource scheduling algo-
m can be chosen by one of

the new VM in such a
d balancing. For this pur-
out with the PM which is
complementary resource

M. The algorithm for load
rithm 1.
g the new VM such that it
and energy saving. In this
ut with the PM with the
lementary resource usage
e algorithm for load con-
rithm 2.

123

When there is a VM whose resource requirements are not
being fulfilled by the PM, on which it is hosted, thus leading
to overload of the PM. Then a load balancing strategy as
presented in Algorithm 1 is needed.

Algorithm 1 Load Balancing
1: init_PotentialVMlist();
2: init_PotentialPMlist();
3: for all PMs will overload do
4: do
5: add_PotentialVM (); /*VM in this PM which has the

most utilization*/
6: delete the utilization of this VM and calculate the

new_load of this PM
7: while (new_load is not overloaded);
8: end for
9: order_PotentialPMlist(); /* according to the remaining ca-

pacity of every PM in ascending order. In the beginning,
every PM is in the PotentialPMlist*/

10: named the triangle T which contains the PM in the top of
PotentialPMlist

11: if no VM of PotentialVMlist locates T then
12: T = T + left triangle of T + right triangle of T
13: end if
14: while PotentialVMlist !=NULL & PotentialPMl-

ist !=NULL do
15: choose the most complementary VM whose RIV is of

the most closest magnitude (is the most slightly
less)as the PM’s RIV and is in the opposite direction

16: add_MigrationScheme(); /* add a record in migration
scheme*/

17: delete_PotentialVM(); /* current VM gets a target
PM and pop it from the PotentialVMlist*/

18: add the utilization of this VM and calculate the
new_load of this PM

19: if new_load is overloaded then
20: add_PotentialVM(); /* current PM can’t hold this

VM and push it in the PotentialVMlist again*/
21: delete_PotentialPM();
22: end if
23: end while
24: if PotentialPMlist ==NULL & PotentialVMlist !=Null then
25: Introduce a new PM; continue;
26: end if
27: if PotentialPMlist !=NULL & PotentialVMlist==NULL

then
28: return MigrationScheme; // end Algorithm
29: end if

When a PM runs in low utilization level, the VMs on it
can be migrated to other PMs so that this PM can be taken
offline. For achieve this goal, we present our algorithm
shown in Algorithm 2.

Algorithm 2 Load Consolidation
1: init_PotentialVMlist();
2: init_PotentialPMlist();
3: for all PMs will under lower_threshold do
4: add_PotentialVM (); /* all VMs on this PM*/
5: end for
6: order_PotentialPMlist(); /* according to the remaining ca-

pacity of every PM in descending order. In the beginning,

every PM is in the PotentialPMlist*/
7: named the triangle T which contains the PM in the top of

PotentialPMlist
8: if no VM of PotentialVMlist locates T then
9: T = T + left triangle of T + right triangle of T

10: end if
11: while PotentialVMlist !=NULL & PotentialPMl-

ist !=NULL do
12: choose the most complementary VM whose RIV is of the

most closest magnitude (is the most slightly less)as the
PM’s RIV and is in the opposite direction

13: add_MigrationScheme(); /* add a record in migration
scheme*/

14: delete_PotentialVM(); /* current VM gets a target PM
and pop it from the PotentialVMlist*/

15: add the utilization of this VM and calculate the new_load
of this PM

16: if new_load is overloaded then
17: add_PotentialVM(); /* current PM can’t hold this

VM and push it in the PotentialVMlist again*/
18: delete_PotentialPM();
19: end if
20: end while
21: if PotentialPMlist ==NULL & PotentialVMlist !=NULL

then
22: Introduce a new PM; continue;
23: end if
24: if PotentialPMlist !=NULL & PotentialVMlist==NULL

then
25: return MigrationScheme; // end Algorithm
26: end if

V. PERFORMANCE EVALUATION
For evaluating the performance of Smart-DRS, we have

implemented a prototype system as discussed in Section 3.
Besides, we build a small-scale cluster whose detail informa-
tion is listed as follows:

TABLE III. EXPERIMENTS ENVIRONMENT

PM
Numbers

VM
Numbers

CPU
Frequency

Memory Network VMM
Version

32 3200 3.3GHz 4GB 100Mb/s Xen 3.0.3

A. Predicting Evaluation
In order to evaluate the performance of predicting algo-

rithm, we need some of convictive host load samples. Fortu-
nately, Dinda and O’Halloran from Carnegie Mellon Univer-
sity [17] offered us plenty of load samples by long-term trac-
ing with many kinds of machines in a cluster system. We
choose the day’s collection of load time series on August 18,
2010 as our test samples.

In the first experiment, we continuously monitor 32 PMs
for 21 minutes and record the real load value. After that, we
respectively calculate the forecasting value for average when �= 0.1, 0.3, 0.5. As shown in Figure 6, the Mean Relative
Error (MRE) is correspondingly 13.6%, 9.7% and 7.3%.
That means SES algorithm has an acceptable predicting ac-
curacy while applied in a small-scale datacenter and �= 0.5
is a better situation in our experiment environment.

124

Figure 6. Real value and forecasting value.

In the second experiment, we compare Smart-DRS with
other classic forecasting algorithms. Such as Autoregressive
(AR), Moving Average (MA), Autoregressive Moving Aver-
age (ARMA), Autoregressive Integrated Moving Average
(ARIMA) and Back Propagation (BP) neural network. To
our knowledge, the prediction time interval has a certain
influence on the forecasting value. In order to fully observe
the predictive ability of various prediction models, we re-
spectively set the prediction time interval as 1s and 15s to
make a comparison. Figure 7 shows our experiment result.

(a) The time interval is 1 second.

(b) The time interval is 15 second

Figure 7. Mean relative error of various predicting models.

From the aforementioned experiments, we can know that:
(1) some models work well with small interval, like MA and
ARMA. Some other models work well with long interval,
like ARIMA. However, some other models are not sensitive
with the interval, like BP and Smart-DRS. (2) Even Smart-
DRS is a relatively simple model, it has a relatively good
performance, and the MRE of it is acceptable.

B. Scheduling Evaluation
In the third experiment, we try to evaluate the perfor-

mance of scheduling. First of all, we should claim that we
have defined ./0/12 � to represent the degree of load ba-
lancing of each machine and 343567689: to represent the
degree of load balancing of the whole system (a higher val-
ue is better).

 ./0/12 � � ;<=9>?@ 	 =A:A@ 	 =�B@C DE (6)

 =9>? � 2�"� � 2�"6FG (7)

 =A:A � & &� �& &6FG (8)

 =�B � #+� � #+6FG (9)

 343567689: � � ./0/12 �8��� 1E (10)

This experiment compares the performance of Smart-
DRS with two classical Bin Packing algorithms used in dy-
namic resource scheduling, Best Fit Decreasing (BFD) and
First Fit Decreasing (FFD). We measure the execution time
and 343567689: of each algorithm. As shown in Figure 8, the
BFD and FFD consume much more execution time but
achieve no better performance in343567689: than Smart-DRS.
The reason is that they have to sort all of the potential VMs
and target PMs firstly according to their resource utilization.

 Figure 8. Performance comparison of various scheduling algorithms

0%

5%

10%

15%

20%

25%

30%

M
ea

n
R

el
at

iv
e E

rr
or

0%

5%

10%

15%

20%

25%

30%

M
ea

n
R

el
at

iv
e E

rr
or

125

(a) Before scheduling (load balancing) (b) After scheduling (load balancing)

(c) Before scheduling (load consolidation) (d) After scheduling (load consolidation)

Figure 9. The contrast between before scheduling and after scheduling.

In our forth experiment, we assess the performance of
Smart-DRS in load balancing and load consolidation. By
continuously monitoring the resource utilization of cpu, mem,
diskio of 32 PMs, we could observe the difference between
before scheduling and after scheduling. In order to carry out
this experiment, we have set 0.8 as the upper threshold and
0.2 as the lower threshold.

Figure 9 shows that our scheduling algorithm really
works. It is clear that the load of system is imbalanced and
the resource utilization of several machines exceeds 0.8 be-
fore scheduling as shown in Figure 9 (a). While in Figure 9
(b), after scheduling, the load of system is more balanced
than before and none of resource utilization exceeds the up-
per threshold. Similarly, in Figure 9 (c) we can see the re-
source utilization of several machines is under 0.2 while in
Figure 9 (d), these low utilization machines are taken offline
and the others are load balancing.

VI. CONCLUSIONS
In this paper, we studied the server load balancing and

power consumption problems in cloud datacenter environ-
ment and we have presented an integrated dynamic resource
scheduling strategy named Smart-DRS. It employs SES algo-
rithm to predict the resource utilization of PMs in order to
avoid tiny and temporary load peak value triggering unne-
cessary migration. The experiment result shows that predic-
tion value is pretty close with the real value. Then Smart-
DRS employs VP algorithm to make the migration scheme.
The reason why we choose VP algorithm is that it’s a novel
theory which can be used to make the process of choosing
PMs easier and more appropriate. The experiment result tells

us that it really works and it’s a kind of low cost and efficient
method.

 Nevertheless, our strategy has some limitations that we
plan to address in the future. We now don’t consider the
spending of migration, sometimes, the best match may bring
much more spending while a common match is our best
choice. In addition, various other measurements and optimi-
zation strategies will need to be explored in the future.

REFERENCES
[1]. F. Hermenier, X. Lorca, J.M. Menaud, G. Muller, and J.

Lawall, “Entropy: a consolidation manager for clusters,” in
Proceedings of the 2009 ACM SIGPLAN/SIGOPS
international conference on Virtual execution environments,
2009, pp. 41-50.

[2]. Hyser, C. and Mckee, B. and Gardner, R. and Watson, B.J,
“Autonomic Virtual Machine Placement in the Data Center,”
Hewlett Packard Laboratories, 2007, pp.189-195.

[3]. L. Grit, D. Irwin, A. Yumerefendi, and J. Chase, “Virtual
machine hosting for networked clusters: Building the
foundations for "autonomic" orchestration,” in First
International Workshop on Virtualization Technology in
Distributed Computing, 2006, pp.1–8.

[4]. D. Irwin, J. Chase, L. Grit, A. Yumerefendi, D. Becker, and
K. G.Yocum, “Sharing networked resources with brokered
leases,” in Proceedings of the annual conference on USENIX
Annual Technical Conference, Berkeley, CA, USA, 2006,
pp.18-18.

[5]. A. Verma, P. Ahuja, and A. Neogi, “Power-aware dynamic
placement of hpc applications,” in Proceedings of the 22nd
annual international conference on SuperComputing, New
York, NY, USA, 2008, pp.175–184.

[6]. T.Wood, P. J. Shenoy, A. Venkataramani, and M. S. Yousif,

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
R

es
ou

rc
e U

til
iz

at
io

n

Physical Machine

cpu mem diskio

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
es

ou
rc

e U
til

iz
at

io
n

Physical Machine

cpu mem diskio

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

R
es

ou
rc

e U
til

iz
at

io
n

Physical Machine

cpu mem diskio

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
es

ou
rc

e U
til

iz
at

io
n

Physical Machine

cpu mem diskio

126

“Black-box and gray-box strategies for virtual machine
migration,” in Proceedings of the 4th ACM/USENIX
Symposium on Networked Systems Design and
Implementation, 2007, pp.229-242.

[7]. L. Kleinrock and S. Lam, “Packet switching in a multiaccess
broadcast channel: Performance evaluation,” IEEE
Transactions on Communications, vol.23, pp.410-423, April,
1975.

[8]. Peter A. Dinda and David R. O’Hallaron, “An evaluation of
linear models for host load prediction,” in Proceedings of the
8th international symposium on High Performance
Distributed Computing, 1999, pp.87-96.

[9]. Songnian zhou, “A trace-driven simulation study of dynamic
load balancing,” IEEE Transaction on Software Engineering,
vol.14, pp.1327-1341, Sept,1998.

[10]. VMware DRS. http://www.vmware.com/products/drs/
[11]. OpenNebula. http://opennebula.org/
[12]. Ganglia. http://ganglia.sourceforge.net/
[13]. Entropy. http://entropy.gforge.inria.fr/
[14]. XenMotion. http://support.citrix.com/article/CTX115813
[15]. Exponential Smoothing. http://en.wikipedia.org/wiki/

Exponential _smoothing
[16]. Mayank Mishra, Anirudha Sahoo, “On theory of VM

placement: Anomalies in existing methodogies and their

migration using a novel vector based approach,” in IEEE 4th
International Conference on Cloud Computing, 2011,
pp.275-282.

[17]. P Dinda, “Online prediction of the running time of tasks,”
in Proceedings of 10th IEEE international symposium on
High Performance Distributed Computing, 2001, pp.383-394.

[18]. Bin packing problem. http://en.wikipedia.org/wiki/Bin
packing problem

[19]. E. Arzuaga, “Quantifying load imbalance on virtualized
enterprise servers,” in Proceedings of the �rst joint
WOSP/SIPEW international conference on Performance
engineering, 2010, pp.235-242.

[20]. G. Khanna, “Application performance management in
virtualized server environments,” in 10th IEEE/IFIP
Symposium on Network Operations and Management, 2006,
pp.373-381.

[21]. A. Singh, “Server-storage virtualization: integration and load
balancing in data centers,” in Proceedings of the 2008
ACM/IEEE conference on Supercomputing, 2008, pp.1-12.

[22]. T. Wood, L. Cherkasova, K. Ozonat, and P. Shenoy,
“Predicting Application Resource Requirements in Virtual
Environments,” HP Laboratories, 2008, pp.122-128,.

[23]. Qingyi, G, “VirtualRank: A Prediction Based Load
Balancing Technique in Virtual Computing Environment,” in
IEEE World Congress on. Services , 2011, pp.247-256.

127

