‘5\. ZheJiang University

= =
1 5=

f Computer Architecture
----A Quantitative Approach

College of Compute of Zhejiang University
CHEN WEN ZHI

chenwz@zju.edu.cn
Room 511, CaoGuangBiao BLD

Instruction Set Arc

Applications
Operating System
Assembly Language
Compiler Firmware
Instruction Set Architecture Instruction Set Architecture
Instruction Set Processor /O System
Datapath & Control Machine Language
Digital Design
Circuit Design
Layout

‘ Instructlon Set Desic

»Classifying Instruction Set
Architectures

»Memory Addressing

»QOperations in the Instruction Set
> Type and Size of Operands
»Encoding an Instruction Set
>Op’r|m|z|n9 an Instruction Set

The DeS|gn Eng -14 i n

-

Recall:

Requirement

Implementatio

, Benchmarks
Complexity

Technology

Tr'ends
Implegienign

orkloads

¥) Important step for

> To analyze and evaluate the existing
machines with a large collection of
programs before making architectural
decisions.

» Compare with research/graduate project
> reading a large amount of materials in the area
» evaluating or classifying the existing methods

» make your focus and your work plan
> implement your ideas

& > ?Ei’re the report : summary of your work

Y)Recall: Th “

» Desktop Computing

> emphasizes performance of programs with integer and
floating-point data types, with little regard for program size
of processor power consumption

> integer /floating-point programs

» Servers

> used primarily for databases, file server and Web
applications, plus some time-sharing applications for many
users.

> Time-sharing applications for many users
> FP performance is less important than that of integer/strings

» Embedded Applications

> value cost and power, so code size is important because less
memory is both cheaper and lower power

e size

““’ Architectures

The type of internal stor'ag.eﬁhi_ﬁ CPU

> stack

> The operands are implicitly on the top of the
stack :B5000

»accumulator
> One operand is implicitly the accumulator : PDP-8

»GPR(General-Purpose Register)
architecture
> Have only explicit operands-either registers or

memory locations
W-now all machines use general purpose registers

) Three general types of GE f

_—

Max number of operands in ALU instruction.
Total memory-address operands in ALU instruction

» Register-Register (0) ------ Load/Store

> Data must be explicitly moved between registers and memory.
> ALU operations use register operands only.
» Usually 3 operands, all in registers.

> Register-Memory (1)

> Operations occur between register and memory (one operand in
memory).

» Usually 2 operands, one in a register (src and dest) and one in
memory (src only).

» Memory-Memory (2~3)
>

have 2 or 3 operands in memory (VAX).

Number of | Maximum | Type of Examples

Memory num. of Architecture

addresses | operands

allowed

0 3 Load-store Alpha, ARM, MIPS, PowerPC,
SPARC, superH, TM

1 2 Reg-Mem IBM360/370, Inter80x86,Ti TM
Motorola 6800,

2 2 Mem-Mem Vas(aoso has three-oprands
formats)

3 3 Mem-Mem Vas(aoso has three-oprands
formats)

R
i

Operand Iocatio 49

Stack Accumulator Reg-mem Reg-req
[@ |§|

10

Stack Accum Mem-mem Reg-mem Reg-reg
Push A Load A AddC, A, B | LoadR1, A |Load R1, A
Push B Add b AddR1, B |Load R2, B
Add Store C Store C, R1 JAdd R3, R1, R2
Pop C Store C, K3

=

MIPS is one of these: this is what we'll be learning

»registers are faster ’rhan"hié’l?r'\"o—ry

>»memory traffic is reduced, so program is
speed up (since registers are faster than
memory)
»registers can hold variables
>registers are easier for a compiler to use:
e.g., (A*B) - (C*D) -(E*F) can do multiplies
in any order vs. stack

»code density improves (since register
amed with fewer bits than memory

mocaﬁon)
12

ISA metrics

» Code density: o
» How much space does a program require ?
» Instruction count :
» How many instructions are necessary for a
specific Task ?
» Instruction complexity :
» How much decoding is necessary to interpret an
instruction ?
» Instruction length :

> Is length dependent on the type of instruction
and addressing mode ?

> Other metrics

Wncoding Complexity, CPI
1 13

Pros and Cons of the three

Rég— mem

Metrics| Reg-Reg Mem-mem
Code density | lowest Higher Highest
Instruction count |Largest Large small
Instruction complexity | Simplest Complex most complex
Instruction length |Fixed variable Large variation
Encoding complexity |Fixed, Hybrid Variable
CPI | small middle Large variation

» Computers with fewer alternatives simplify the

compiler’'s task.
> The number of registers also affects the

uction size.

14

B ae—

¥ 2.3 Memory Addressings

-—“-'.

»How memory addresses are
intferpreted ?

»How the memory addresses are
specified ?

15

Memory Organization ¢

> Viewed as a large, single-dimension array,
with an address.

» A memory address is an index into the
array

> Can be addressed in

> Word: Easy to implement, not support for non-
numerical computing

> Bit: variable length computing, waste of address
space

> Byte: Most popular, exists data storage and align
problems

~"Byte addressing” means that the index

Wcin‘rs to a byte of memory.
14 16

> Addressed in Worc

8 bits of data

32 bits of data
wEm Byte addresses

32 bits of data
8 bits of data of words

i 32 hits of data
8 bits of data In mem 8

12 | 32 bits of data

8 bits of data

8 bits of data

SN W e = O

8 bits of data

> 232 bytes with byte addresses from O to 232-1
» 239 words with byte addresses 0, 4, 8, ... 232-4

ds are aligned

17

> Two different conventions for
ordering the bytes within a larger

object

Little Endian 7161514 (3121|110
(Intel)

Big Endian 0112|3456]|7
(IBM.Motorola)

R B

Alighed Memory A

+ Aligned address of byfe, half-word,
word, and double-word

> by’re XXXXXXXXXXX
> half-word XXXXXXXXXX 0
» word XXXXXXXXX 00

» double-word XXXXXXXX00O
3 2 1 0 0 1 2 3

7’-:

) Misalighed memc

> A misligned memory access may ‘take mul’ruple
aligned memory references

/1615141312110

32 Bits Memory Bus

CPU

» Even in computers that allow misaligned access,
programs with aligned accesses run faster.

A B m

24
o

Hardware Alignment

» Alignment network

> External alignment: Data exchange between
CPU and external storages

> Internal alignment: Data exchange between
CPU's internal data bus and registers

Registers |

Data Bus

21

Addressing o

~ Addressing Modes

> Register

> Immediate

> Displacement

> Register indirect
» Indexed

> Direct or absolute
» Memory indirect
> Autoincrement

> Autodecrement

> Scaled

A B

Add
Add
Add
Add
Add
Add
Add
Add
Add
Add

R4, R3

R4, #3

R4, 100(R1)
R4, (R1)

R3, (R1+R2)

R1, (1000)

R1, @(R3)

R1, (R2)+

R1, -(R2)
R1,100(R2)[R3]

22

&) Measuring addressing-nideie

» Addressing modes influence Instruction
Set Architecture
» Significantly reduce instruction counts

»Add to the complexity of building a
computer

»May increase the average CPI

» S0 measuring various addressing modes
is quite important in helping the
architect choose what to include.

23

use of memol

Scaled

Register Defered

Immediate

Displacement

. 1%
Memory indirect 6%
1%
I 6%

16%

BGCC

55%

0%

10% 20%

30% 40% 50% 60%

24

> Register modes, which are not '_cﬁc_)’un’red, account
for one-half of the operand references

» The PC-relative addressing modes, used almost
exclusively for branches, are not included;

» Displacement mode includes all displacement
lengths (8, 16, and 32 bits)

» Most popular memory addressing modes are:
> Displacement 42%
» Immediate 33%
> Register indirect 13%

A B

25

Displacement Addre

»Provides the means of implementing
pointers

»Issue: What is the appropriate
displacement field size ?

»Important because it affects
instruction length.

26

3

~ Summary o
<’ displacement values

S—

percentage of dispalcement

40.00%
35.00%
30.00%
25.00%
20.00%
15.00%
10.00%

5.00%

0.00%

—e-Integer average

-=-Floating-point average

A

/[\

)

/

Vo

|

|

J

9

10

11

12

13

14

15

27

‘ displacement values(

> Data were collected on a compu’rer' wu’rh 16-bit
displacements, so can't tell us about longer displacements.

» Data are relative to the policies of compiler optimization.

» The graph does not include the sign bit. Most
displacements are positive, but a majority of the largest
displacements(14+ bits) are negative.

» Number of bits needed for displacement values:

> <12 bits 75%
> <16 bits 99%
> 16~31 bits 1%

Therefore, 12-16 bits is probably
1 Icient. N

» Immediate are mostly used in: arithmetic
operations, comparisons, and data moves;

> The last case occurs for constants written in
the code-which tend to be small, and for
address constants, which tend to be large;

» Issue:

» What is the appropriate immediate field size ?
» Important because it affects instruction length.

» Support all operations or only a subset?

A B

29

R

Loads

ALU operation

All instructions

19%

25%

16%

21%

0% 5% 10%

15% 20% 25%

O Floating-point average

O Integer average

30%

30

e distribution ‘

45.00%

1| —— integer average —=— Floating-point average
40.00%
35.00% / \

30.00% / \

oo |
15.00% \\ // \ /
e =

5.00% Y/
0.00% - \/j -
o 1 2 3 4

A B

7 10 11 12

13 14 15

8 9

5 6

v
=

> percent of instructions which provide immediate
addressing mode

» Integer ALU 21% 1/5

> Floating-Point 16% 1/6
» range of values for immediates

> <8 Bits 65%~ 90%

> <16 Bits 82%~ 99%
» Therefore, 8-16 bits is probably sufficient.

» Other addressing modes are certainly useful, but are
they worth the chip space and design complexity ?

32

3 %\

s 2
A&

ddressing Modes for

> Several novel addressing modes for DSPs:
» Modulo or circular addressing mode

> Bit reverse addressing
X1 XoX3... X, ——==> X X5 X3... X

> There is often a mismatch between what
programmers and compilers actually use versus
what architects expect.

R B

—

» Support at least 3 addressing mode
»Register indirect, displacement, immediate
>Fig B.7, 75%~99%

» The size of the address for displacement
mode to be at least 12-16 bits
>FigB.8, 75%~99%

» The size of the immediate field to be at
least 8-16 bits

igB.10, 50%~80%

34

»How is the type of an operdﬁdﬁdésigna’red?
»Encode in the opcode

»Annotated with tags (interpreted by the
hardware)

» Common used operand types include:

»byte(1B). half word(2B). word(4B). single-
precision floating point(4B). double-precision
floating point(8B)

»packed decimal, character strings

&) ®

‘ Frequency of access'to
different data Wpes

»What types are most popular used which

need to be supported by hardware?

» Should the computer have a 64-bit access
path, or would taking two cycles to access
a double word be satisfactory?

»How important is it to support bytes as

Wiﬁves?
2014 : 26

&,

=’ Types Statistics

double word

word

half word

byte

70%
59%
29%
26%

0%

0)

% O floating-point average
_l 10 O integer average

10%
0% 10% 20% 30% 40% 50% 60% @ 70%

80%

" G Summary of the USGRBREL
““’integer Data types ~ —=%

> Bytes or half words access accounts for no more
than 12% of register references, or roughly 6%
of all operand accesses (VAX)

» Use more than one instructions to implement
access of bytes and half words (Alpha)

» Double words access frequency will be increased
with the development of 64 bits computers

AP

38

““’ Signal Processing

» Data types used in 2D & 3D images:
» Vertex (32-bit floating-point values)

» x-coordinate, y-coordinate, z-coordinate, w (help with
color or hidden surfaces)

» Triangle (3 vertices)
> Pixel (32bits)
~R, 6,B, A
> Fixed point(special data type used in DSP, low-
cost floating point)
» Has a binary point just to the right of the sign bit

W@d-poin’r data are fractions between -1 and +1

operands

> A new 32-bit architecture Té—_S;liaporT 8-,16-,32-
bit integer and 32- and 64-bit IEEE floating-
point data.

> A new 64-bit address architecture need to
support 64-bit integer.

» Support for decimal data is less clear.

» DSPs need wider accumulating registers than
the size in memory to aid accuracy in Fixed-

point arithmetic.
AP .

)/ Operations in the

_—

» Categories of instruction operators:

> Basic instruction operators
> Arithmetic and logical
» Data transfer
» Control

> Special instruction operators

> Floating point(scientific calculation)
» Decimal(commercial)

» String

» Graphics

> Privileged instruction operators

» Virtual memory management instructions
» Operating system call

Operator type

Examples

Arithmetic and logical

Integer arithmetic and logical operations: add, subtract, and, or,
multiple, divide

Data transfer Loads-stores(move instructions on computers with memory
addressing)

Control Branch, jump, procedure call and return, traps

System Operating system call, virtual memory management instructions

Floating point

Floating-point operations: add, multiple, divide, compare

Decimal Decimal add, decimal multiple, decimal-to-character conversions
String String move, string compare, string search
Graphics Pixel and vertex operations, compression/decompression

operations

42

» All machines generally provide a ftrl'l's‘éf'éf:opem’rions
for the first three categories.

> All machines MUST provide instruction support for
basic system functions.

» Floating point instructions are optional but are commonly
provided.

» Decimal and string instructions are optional, because
they can be easily emulated by sequences of simpler
instructions.

» Graphic instructions are optional.

A B

43

v)Decide which operatior

>Rule of thumb

most widely executed instructions are the
simple operations of an instruction set. Hence,
the implementor of these instructions should be

sure to make these fast.
> Remember MAKE THE COMMON CASE FAST 2

»How to get the statistic data ?

usually use benchmarks

014 .. a4

¥pe top 10 instructions

_2=""

Rank 80x86 instruction Integer average
1 Load 22%
2 | Conditional branch 20%
3 compare 16%
4 Store 12%
5 Add 8%
6 And 6%
7 Sub 5%
8 Move register-register 4%
9 Call 1%

Return 1%
96%

45

>Some special operations o Support media
and signhal processing:
» Single-instruction multiple-data (SIMD), vector(Fig2.17)
» fixed-width operations, performing multiple narrow operations
on either a 64-bit or 128-bit ALU
» partitioned add

» paired single operations

» Saturating arithmetic (for DSP)
» Multiply-accumulate(MAC) instruction (for DSP)

&) B

y9) 2.9 Instructions 0

> Conditional branches branch
» Unconditional jumps
> Procedure calls call
> Procedure returns return
Frequencies of these control flow
Instructions

Call/Return %l 1% O Integer average
— 6% U Floating-Point average
Jump 10%
Conditional | 75%
branch | 82%

0% 20% 40% 60% 80% 100%

> The destination is specified
explicitly in the instruction in the
vast majority of cases
»Procedure return is the major
exception, since for return the

target is not known at compiler
Time

*) B

48

ow to specify t

> PC-relative

» The target is often near the current instruction, so
it requires fewer bits

» Position independence(permit the code to run
independently of where it is loaded)

» How to do with procedure return or indirect jump?
> Register indirect
> case or switch

> virtual functions or methods
> high-order functions or function pointers

Wamically shared libraries
49

<

&¢7) Bits of branch disp

30. 00% HEE | el

25 00% ——Integer Average —#-FP average
20. 00%

15. 00% //‘7(\ -\-\

10. 00% // / \ \

5. 00% / //J \\\\

0. 00% HA// S M. Y

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

» Most displacement can be encoded in 2~7 bits
< 7 bits: 93%

50N

» Since most changes in con’rro’i__fﬁlﬁéw are braches,
deciding how to specify the branch conditions is
important.

» Three techniques to specify the branch
conditions

» condition code tests special bits set by ALU
operations, possibly under program control.

» condition register tests arbitrary register with the
result of a comparison.

» compare and branch compare is part of the branch.
WT&\ compare is limited to subset.
1

51

3 and cons of three methéds

>

Name Examples |Advantages |Disadvantages
Condition 80x86,ARM, | Sometimes CC is extra state.
Code(CC) PowerPC, condition is set | Condition codes constrain
SPARC, for free the ordering of
SuperH instructions since they

pass information from one
instruction to a branch

Condition | Alpha, MIPS | Simple Uses up a register

register

Compare PA-RISC, One instruction | May be too much work per

and branch | VAX rather than two | instruction for pipelined
for a branch execution

52

C

Fr

uency of di

Not equal

equal

Greater than or equal
Greater than

Less than or equal

Less than

0%

5%
= 2%

0%

0%
0%

11%

Floating-point average

16% @ Integer average
18%

44%

| 337

34%
35%

10%

20% 30% 40%

50%

53

» Less than (or Equal) branches domma’re this combination
of compiler and architecture

» Comparisons with 0: >50% is " =0 "

(this leads to third method to specify the branch
condition, “compare and branch”)

> A special branch instruction: not only makes
comparisons, but also branches

» DSP add repeat instruction to avoid loop overhead.

A B

54

\ \
B) A W

‘ Procedure invocatio 1 O}
(call & return)

e

» State saving (at a minimum the return address
must be saved somewhere)

» Save registers

» Provide a mechanism to save many registers

> Require the complier to generate stores and loads
for each register saved and restored

» caller-saving: Caller saves any registers that
it wants to use after the call, then invoke.

> callee-saving: first invoke, then callee saves

Wagismrs.
/ 55

gometimes, caller sa

/S
& pq P2 ,
Call P2 Call P3
RX ----X

> Caller save: store x to a location,which is known by P2,

» Compiler should discover a called procedure may access
register-allocated quantities. ------ complicated by
separate compilation.

» Many compilers conservatively caller save any variable
that may be accessed during a call.

Most real systems today use a combination of the two
ntions.
56

@mary: Instructions forc

&

> Common used ins’rrucfio’ﬁs"'éhéll be

considered firstly: Load, store, add, sub,
move R-R, and, shift, =, #, branch and etc.

» Conditional branch: displacement 100 <=27
PC-relative branch: displacement > 8 bits

> PC-relative conditional branches dominate the
control instructions.

» jump and link instruction for procedure call

Wis‘rer indirect jump for procedure return;
4 57

> Encoding affect:
> Size of compiled program
> the implementation of the CPU

> Balancing forces:

» From the compiler viewpoint: to have as many
registers and addressing modes as possible

» Impact of register size and addressing mode
fields on Average instruction size. average
program size

W Easy to implement

) Key factors for Encoc
»>Key Factors
> The range of addressing modes

» The degree of independence between
opcodes and addressing modes

59

- Three popular choice
@ instruction encodlng

Operation & Address Address Address Address
no. of operands specifierl field 1 specifier n field n
(a) (e. g., VAX, Intel 80x86)
Operation & Address Address Address
no. of operands field 1 field 2 field 3
(b) (e. g., Alpha, ARM, MIPS, PowerPC, SPARC, SuperH)
Operation Address Address
specifier field
Operation Address Address Address
specifierl specifier2 field
Operation Address Address Address
specifier field 1 field 2

(c) (e. g., IBM360/70, MIPS16, Thumb, TI TMS320C54x)

‘ Cocmpa rison of three it
encoding formats

> Variable length:
» Number of operations and addressing modes is big

» Small program size, high code density, a variety of
formats for one instruction

> Fixed length:
» Number of operations and addressing modes is small

» Large program size, low code density, fixed format,
easy to implement

» Hybrid

» Has multiple formats specified by the opcode,
adding or or two fields to specify the addressing

ode and one or two fields to specify the operand
dress
61

» New hybrid version of RISC ins’r‘ﬁﬂ"c""rﬂi"—c}ns, with
both 16-bit and 32-bit instructions.
> ARM Thumb , MIPS16

» IBM CodePack : compress standard instruction
set

> full 32-bit instruction in instruction cache
» compressed code kept in main memory, ROM, disk.
> Hash table (TLB)

»Hitachi: special RISC instruction set for embedded
applications.

» SuperH
w 62

L

2.11 The Role of

3

» Understanding compiler technology is
critical to designing an effective
instruction set.

» Assembly language programming has
been largely replaced by compilers which
work together with the hardware to
optimize performance.

» Therefore, design architectures to be
compiler targets .

&) B

) Compilers and Ar

> What features of an architecture lead
to high quality code ?

»What "makes it easy" to write efficient
compilers for an architecture ?

Language
Dependent

Y
Machine
Dependent

» Structure of Rece

Front end

'

High level optimizations

'

Global optimizers

|

Code gent:ratinn

—

Transforms high level language into
a common intermediate form.

Procedure inlining and loop
transformations (unrelling).

Register allocation, conmmon
subexpression elimination, etc.

Generates assembly or machine
language. Machine dependent
optimizations (Le. filling delay slots,
instruction reordering.)

65

About compiler

» The goals of compiler
» All valid programs must be compiled correctly

> Fast speed of the compiled code

» fast compilation, debugging support, interoperability among
languages

> Multiple-pass structure’'s advantage:
» Reduce compiler complexity
> Easy writing a bug-free compiler

» Disadvantages:
» Phase-ordering problem

e.g. global common subexpression elimination
66

fch2.doc

» High-level optimizations
» Procedure inlining
» Local optimizations within a straight-line code
fragment
» Common subexpression elimination. constant propagation.
» Global optimizations extend the local optimizations

across branches and introduce a set of transformations
aimed at optimizing loops

» Register allocation associates registers with
operands
> Calculate expressions. transfer parameters. store variables

» Processor-dependent optimizations attempt to

take advantage of specific architectural knowledge
at N :

'he Impact of Compilel

Architect’s Decisions

> Two important questions:
> How are variables allocated and addressed?
> How many registers are needed to allocate variables
appropriately?
> Three areas in which current high-level languages
allocate the data:
» Stack: local variables; scalars(single variables)
> Global data area: global variables, constants; arrays
» Heap: dynamic objects; accessed with pointers

> Al least 16 GPRs + separate floating-point
Isters 68

How the Architect Catr -:
< Writer ?

> The difficulties of compiler
> Big program size
» Interactive
» complexity of compiler's structure

> Basic principle of the compiler

»Make the frequent case fast and the rare
case correct

69

> Provide regularity

> Provide primitives, not solutions

» Providing special features that "match" language constructs is
NOT a good idea.

» These features may be good only for a certain language.
» And, worse, they may match but do more or less than what's
required.
» Simplify trade-offs among alternatives

» If there are 20 ways to implement an instruction sequence, it
makes it difficult for the compiler writer to choose which is the

most efficient.

> provide instructions that bind quantities known at compile
time.as constants.

70

Summa ry.ifof ‘éém‘pl.~ - o

> At least 16 gerneral-purpose registers

> all supported addressing modes apply to all
instructions that transfer data

> provide primitives instead of solutions
> simplify trade-offs between alternatives

»KEEP IT SIMPLE , Less is more

» SIMD extensions are examples of good
marketing than that of hardware-software

a codesign

» MIPS emphasizes:

> A simple load-store instruction set
»Design for pipelining efficiency, including a
fixed instruction set encoding
»Efficiency as a complier target
»MIPS provides a good architectural
model for study, because of:

»Popularity of this type of processor

g » An easy architecture to understand

Summary o

from above sectlons

> B.2 Use GPRs with a load-store architecture
» B.3 Addressing modes:

displacement(12-16), immediate(8-16), register indirect
> B.4 Support the data size and types:

8-, 16-, 32-, and 64-bit integers and 64-bit IEEE 754 floating-
point numbers

» B.5 Support the simple instructions:
load, store, add, subtract, move register-register, and shift

> B.6 compare equal, compare not equal, compare less,
branch, jump, call, and return

> B.7 Use fixed instruction encoding

.. » B.8 Provide at least 16 GPRs, and all addressing modes
oy to all data transfer instructions

73

»A simple load-store instruction set

»Design for pipelining efficiency, fixed
instruction set encoding

» Efficiency as a compiler target

74

MIPS Architecture

> Registers for MIPS
» RO~R31, FO~F31, a few special registers
> Data Types for MIPS

> 8-bit bytes, 16-bit half words, 32-bit words, and 64-bit double
words for integer data

> 32-bit single precision and 64-bit double precision for floating
point
> Addressing Modes for MIPS Data Transfers
» Immediate, displacement
» (register indirect ~ D=0
absolute addressing ~ base register=R0)
» PC-relative addressing

75

Conventions

* This is an agreed upon “contract” or

- "protocol” that everybody follows
Specifies correct (and expected) usage,
and some naming conventions

+ Established part of architecture

- Used by all compilers, programs,

and libraries

- Assures compatibility

RO
R1
R2
R3
R4
R5
R6
R7
R38
R9
R10
R11
R12
R13
R14
R15

Constant O

Resarved Temp.

Return Values

Procedure
arguments

Caller Save
Temporaries:
May be
overwritten

by called
procedures

76

—_

> Important Ones for Now 313 —257—
Callee S
(S hCld ed) 21 g g:g Leamepeﬂ rF E:E.:
> RO Constant O R20 [$s4 nfa;*::rﬁtte?'l by
R21 $s5 called pro-
> R2 Return Value R22 cedures
> R3 Can use as temporary R23 | $s7
. R24 $.t.B Caller Save
> R4 First argument R25 | $to Temp
» RS Second argument R26 | $kO Reserved for
R27 Sk Operating Sys
» R31 Return address R28 | $qp Global Pointer
R29 $sp Stack Pointer
R30 $s8 Callee Save
T
R31 $I‘EI Ree-?:lr:n Address

77

» MIPS Addressi

1. Immediate addressing (I-Format)

op s rt Immediate

addi R1, RO, 10

8 0 1 10

2. Regqister addressing (R-Format)

op rs rt rd . funct
0 0 1 2 0 32 add R2, RO, Rl
Registers

'I Register
:%ﬂi 78

3. Base addressing (I-Format)

rt Address

s
l |
Register @7
Memory

— | Bvte Halfword l Word

op

lw R1, 100(R2)
»| 35 | 2 1 100

™

79

L

)MIPS Addressing

4. PC-relative addressing (I-Format)

op rs rt Address
I
Memory
— Word

beq R1, R2, 100
4 1 2 100

80

5. Pseudodirect addressing (J-Format)

op Adldress
. 5
Memory
> Word
j 10000

10000

81

Mé@;ﬁ Operations(Fic

Example instruction

Instruction name

Meaning

LD R1,30(R2) Load double word Regs[R1] e, Mem[30+Reqgs [R2]]

LD R1,1000(RO) Load double word Regs[R1] <, Mem[1000+0]

LW R1,60(R2) Load word Regs[R1] e, {Hem[ﬁD+F€egs[RE]]ﬂ}32 ## Mem[60+Regs[R2]]

LB R1,40(R3) Load byte Regs[R1] <, (Mem[40+Regs[R3]],)7° ##
Mem[40+Regs [R3]]

LBU R1,40(R3) Load byte unsigned Regs[R1]e, 0°° ## Mem[40+Regs[R3]]

LH R1,40(R3) Load half word Regs[R1]e, (Mem[40+Regs[R3]],)*® ##
Mem[40+Regs[R3]] ## Mem[41+Regs[R3]]

L.S F0,50(R3) Load FP single Regs[FO] <., Mem[50+Regs[R3]] ## 0

L.D FO,50(R2) Load FP double Regs[FO] <, Mem[50+Regs [R2]]

SD R3,500(R4) Store double word Mem[500+Regs [R4]] <, Regs[R3]

SW R3,500(R4) Store word Mem[500+Regs [R4]] <5, Regs[R3]4, 4

S.S F0,40(R3) Store FP single Mem[40+Regs [R3]] <, Regs [FO], 1,

S.D F0,40(R3) Store FP double Mem[40+Regs[R3]] <, Regs[FO]

SH R3,502(R2) Store half Mem[502+Regs[R2]]« . Reas[R3] 45 e

SB R2,41(R3) Store byte Mem[41+Regs [R3]] <z Regs[R2]s¢ 4

!Figure B.23 The load and store instructions in MIPS. All use a single addressing mode and require that the mem-

82

I-type instruction
6 5 5 16

opcode rs rt immediate

Encodes: loads and stores of bytes, half words, words, double words.

All immediate(rt < rs op immediate)
Conditional branch instructions(rs is register, rd unused)
Jump register, jump and link register

6(rd = 0, rs = destination, immediate = 0)

R-type instruction
yP 6 5 5 5 6

opcode rs rt rd shamt funct

Register-register ALU operations: rd « rs funct rt
Function encodes the data path operation: Add, Sub, ...
Read/write special registers and moves

J-type instruction
yP 6 26

opcode Offset added to PC

Jump and jump and link
Trap and return from exception

All instructions are encoded in one of three types, with common fields in the same
location in each format.

Loading Immediate \

» What's the largest immediate value that
can be loaded into a register?

Nam Fieds Comments
Fied Slze 6bits |5bhits | 5bits [5bits |5bits |6 hts [AIl MIPS instruct ions 32 bits
shmt | furct | Arith meti cinstructi onformat

|-format addressflmmdate ransfer, branch, mmeliate
format
tar ge W Jumpinstr uctionformat

» But, how do we load larger numbers?

) Load Uppr Imme

» Example: lui RS, 255

001111 OOOOO 01000 0000 0000 1111 1111

immediate

Transfers the immediate field into the register’s top 16 bits and

fills the register’s lower 16 bits with zeros

R8[31:16] <-- IR[15:0] ; top 16 bits of R8 <-- bottom 16 bits of the IR
R8[15:0] <--0 » bottom 16 bits of R8 are zeroed

3] 16_15 0

Reg. 81 0000 0000 1111 1111 0000 0000 0000 0000

85

> Larger *

» We'd like to be able to load a 32 bit constant into afr’é—gister

» Must use 2 instructions: first, new "load upper immediate" instruction
lui $t0, 1010101010101010

filled with z

1010101010101010

eros
0000000000000000 “\)

» Second, mustthen get the lower order bits right, i.e.,

ori $t0, $t0, 1010101010101010

1010101010101010 0000000000000000
Ori 000000000000COO00O 1010101010101010
1010101010101010 1010101010101010

86

r)Procedure calls

> Steps followed in executing a procedure call:

> Place parameters in a place where the procedure
(callee) can access them

» Transfer control to the procedure

» Acquire the storage resources needed for the
procedure

> Perform desired task

> Place results in a place where the calling program
(caller) can access them

» Return control to the point of origin

87

<

¥) Resources Involv

» Registers used for procedure calling:
~ $a0 - $a3 : four argument registers in which to pass parameters
> $v0 - $v1 : two value registers in which to return values
-~ $ra : one return address register to return to the point of origin

» Transferring the control to the callee:

jal ProcedureAddress ;jump-and-link to the procedure address
. the return address (PC+4) is saved in $ra

» Returning the control to the caller:

. instruction following jal is executed next

88

MIPS Register Co

Preserved

Name |Register Usage
number on call?
§zero 0 constant 0 N/A
§vO-5vl 2-3 values for results and no
expression evaluation

sal-ga3 4-7 arguments yes
$t0-5t7 1 8-15 temporaries no
$80-5s87| 16-23 saved yes
St8-5t9| 24.25 more temporaries no
$gp 28 global pointer yes
29 stack pointer yes
30 frame pointer yes
31 return address VES

89

‘ Alternatlve Archite

» About MIPS as an ISA
> It's a simple/small ISA;

» It emphasizes a small number of instructions,
formats, address modes

> Design alternative:
» Provide more powerful operations, and many of them
» Goal is to reduce number of instructions executed
» Danger is a slower cycle time and/or a higher CPI

> Sometimes referred to as "RISC vs. CISC”
» RISC: Reduced Instruction Set Computing

90

P

) CISC vs. RISC

> CISC (Complex Instruction Set Computer)

> Enhance the function of instructions,
many kinds of operations, each
instruction’'s function is strong

» RISC(Reduced Instruction Set Computer)

>»Reduce the function of instructions,
Provide basic instructions, each
instruction’'s function is weak

» Two completely different directions for

Wrﬂcﬁon Set Architectures

) CISC

» Complex Instruction Se’r_C_bmpuTer'

»Background: lack of storage resource,
emphasize compiler optimization

» Techniques: Enhance the function of the
instructions, Desigh some complex
instructions, instead of some functions which
are originally implemented by software

» CISC example was DEC VAX: min code size, make asm
easy /nstructions from 1 to 54 bytes long!

92

> Reduce CPT.

CPUtime=Instr_Count * CPI * Clock_cycle
» Reduce the instruction set:

only keep the most basic ones
> Load/Store architecture

» Simple instructions, simple addressing
modes, fixed-length instruction format...

93

) A Brief history

> Load/Store architecture:
CDC6600(1963)--CRAY1(1976)
> IBM801(19794F),
first RISC computer
» 1980, Patterson(Berkeley) & Ditzel
first put forward RISC, RISC-I,I1
» 1981, Hennessy(Stanford)
MIPS
> Commercial RISC CPU after 1985:

a |i|| MIPS1(1986) & SPARC V1(1987) ...
94

Carp

N} J)
N 2

> SUN, SPARC(1987)

> MIPS, SGI:MIPS(1986)
>HP, PA-RISC,

»>IBM, Motorola, PowerPC
»DEC. Compaq, Alpha AXP

»IBM RS6000(1990) first Superscalar
RISC

95

pSummary of ISA

> Architecture = what's visible to the program
about the machine
» Not everything in the deep implementation is “visible"

> The name for this invisible stuff is "the
implementation”

> A big piece of the ISA = assembly language
structure

> Primitive instructions, execute sequentially,
atomically

> Issues are formats, computations, addressing modes,
encoding etc

T e

|

96

> Two broad flavors:

»CISC: lots of complicated instructions
»>RISC: a few, essential instructions

> Basically all recent machines are RISC,
but the dominant machine of

»today, Intel x86, is still CISC (though
they do RISC tricks in the guts...)

»Example: MIPS

97

History of ISA

»60’ Stack----reduce the gap between
high-level programming language and
machine language.

» 70" reduce the software cost, replacing
software with hardware

»80" processor performance = simple ISA

98

‘903 ISA

> Address size doubles: 32bit> 64bit -

» Optimization conditional branch via
conditional execution

» Optimization of cache performance via
prefetch

» Support of multimedia
» Faster floating-point operations
» Long instruction word
» Increased Conditional Execution

99

o
o
i

JaRARRR
_:,%ww?i [F1%}

—
o
—

