
2014/4/13 1

Computer Architecture
----A Quantitative Approach

College of Compute of Zhejiang University
CHEN WEN ZHI

chenwz@zju.edu.cn
 Room 511, CaoGuangBiao BLD

2014/4/13 2

Instruction Set Architecture

Instruction Set Architecture

Applications

Operating System

FirmwareCompiler

Instruction Set Processor I/O System

Datapath & Control

Digital Design

Circuit Design

Layout

2014/4/13 3

Instruction Set Design Tasks

Classifying Instruction Set
Architectures

Memory Addressing

Operations in the Instruction Set

Type and Size of Operands

Encoding an Instruction Set

Optimizing an Instruction Set

2014/4/13 4

Recall: The Design Engineering

Quantitative
principle

Evaluate Existing
Systems for
Bottlenecks

Simulate New
Designs and
Organizations

Implement Next
Generation System

Technology
Trends

Benchmarks

Workloads

Implementation
Complexity

Requirements

2014/4/13 5

Important step for ISA design

To analyze and evaluate the existing
machines with a large collection of
programs before making architectural
decisions.

Compare with research/graduate project
 reading a large amount of materials in the area

evaluating or classifying the existing methods

make your focus and your work plan

 implement your ideas

write the report : summary of your work

Recall: Three application area
 Desktop Computing

 emphasizes performance of programs with integer and
floating-point data types, with little regard for program size
of processor power consumption

 integer /floating-point programs

Servers
 used primarily for databases, file server and Web

applications, plus some time-sharing applications for many
users.

 Time-sharing applications for many users
 FP performance is less important than that of integer/strings

 Embedded Applications
 value cost and power, so code size is important because less

memory is both cheaper and lower power
 code size

2.2 Classifying Instruction Set
Architectures

The type of internal storage in CPU
stack
The operands are implicitly on the top of the

stack :B5000

accumulator
One operand is implicitly the accumulator : PDP-8

GPR(General-Purpose Register)
architecture
Have only explicit operands-either registers or

memory locations

1975-now all machines use general purpose registers

Three general types of GPR

Max number of operands in ALU instruction.
Total memory-address operands in ALU instruction

Register-Register (0) ------ Load/Store
 Data must be explicitly moved between registers and memory.
 ALU operations use register operands only.
 Usually 3 operands, all in registers.

 Register-Memory (1)
 Operations occur between register and memory (one operand in

memory).
 Usually 2 operands, one in a register (src and dest) and one in

memory (src only).
 Memory-Memory (2~3)

 May have 2 or 3 operands in memory (VAX).

2014/4/13 9

Examples of Computers

Number of
Memory
addresses

Maximum
num. of
operands
allowed

Type of
Architecture

Examples

0 3 Load-store Alpha, ARM, MIPS, PowerPC,
SPARC, superH, TM

1 2 Reg-Mem IBM360/370, Inter80x86,Ti TM

Motorola 6800,

2 2 Mem-Mem Vas(aoso has three-oprands
formats)

3 3 Mem-Mem Vas(aoso has three-oprands
formats)

2014/4/13 10

Operand location for 4 ISA classes

ALU

TOS

T

ALU ALU ALU

Stack Accumulator Reg-mem Reg-reg

Code sequence of C=A+B

MIPS is one of these: this is what we’ll be learning

2014/4/13 12

Why are GPR ISAs so popular ?

registers are faster than memory
memory traffic is reduced, so program is

speed up (since registers are faster than
memory)

registers can hold variables
registers are easier for a compiler to use:

 e.g., (A*B) – (C*D) –(E*F) can do multiplies
in any order vs. stack

code density improves (since register
named with fewer bits than memory
location)

2014/4/13 13

ISA metrics

Code density :
How much space does a program require ?

 Instruction count :
How many instructions are necessary for a

specific task ?
 Instruction complexity :
How much decoding is necessary to interpret an

instruction ?
 Instruction length :
Is length dependent on the type of instruction

and addressing mode ?
Other metrics
Encoding Complexity, CPI

2014/4/13 14

Pros and Cons of the three GPR computers

Metrics Reg-Reg Reg-mem Mem-mem

Code density lowest Higher Highest

Instruction count Largest Large small

Instruction complexity Simplest Complex most complex

Instruction length Fixed variable Large variation

Encoding complexity Fixed, Hybrid Variable

CPI small middle Large variation

Computers with fewer alternatives simplify the
compiler’s task.

The number of registers also affects the
instruction size.

2014/4/13 15

2.3 Memory Addressing

How memory addresses are
interpreted ?

How the memory addresses are
specified ?

2014/4/13 16

Memory Organization
Viewed as a large, single-dimension array,

with an address.
A memory address is an index into the

array
Can be addressed in
Word: Easy to implement, not support for non-

numerical computing
Bit: variable length computing, waste of address

space
Byte: Most popular, exists data storage and align

problems

"Byte addressing" means that the index
points to a byte of memory.

2014/4/13 17

Addressed in Words or Bytes

232 bytes with byte addresses from 0 to 232-1

230 words with byte addresses 0, 4, 8, ... 232-4

Words are aligned

Two different conventions for
ordering the bytes within a larger
object

 Little Endian

 (Intel)

 Big Endian

 (IBM.Motorola)

Little Endian vs. Big Endian

7 6 5 4 3 2 1 0

0 1 2 3 4 5 6 7

Aligned Memory Access

Aligned address of byte, half-word,
word, and double-word
 byte XXXXXXXXXXX
 half-word XXXXXXXXXX 0
 word XXXXXXXXX 0 0
 double-word XXXXXXXX 0 0 0

 3 2 1 0

2014/4/13 20

Misaligned memory access
A misligned memory access may take multiple

aligned memory references

Even in computers that allow misaligned access,
programs with aligned accesses run faster.

7 6 5 4 3 2 1 0

CPU

32 Bits Memory Bus

2014/4/13 21

Alignment network
External alignment：Data exchange between

CPU and external storages

Internal alignment：Data exchange between
CPU’s internal data bus and registers

Hardware Alignment

Registers

Data Bus

2014/4/13 22

Addressing Modes (Fig B.6)

Addressing Modes
Register Add R4, R3
Immediate Add R4, #3
Displacement Add R4, 100(R1)
Register indirect Add R4, (R1)
Indexed Add R3, (R1+R2)
Direct or absolute Add R1, (1000)
Memory indirect Add R1, @(R3)
Autoincrement Add R1, (R2)+
Autodecrement Add R1, -(R2)
Scaled Add R1,100(R2)[R3]

2014/4/13 23

Measuring addressing mode

Addressing modes influence Instruction
Set Architecture
Significantly reduce instruction counts

Add to the complexity of building a
computer

May increase the average CPI

So measuring various addressing modes
is quite important in helping the
architect choose what to include.

2014/4/13 24

Summary: use of memory addressing modes

32%

43%

24%

0%

1%

55%

17%

3%

16%

6%

40%

39%

11%

6%

1%

0% 10% 20% 30% 40% 50% 60%

Displacement

Immediate

Register Defered

Scaled

Memory indirect

GCC

Spice

Tex

2014/4/13 25

Register modes, which are not counted, account
for one-half of the operand references

The PC-relative addressing modes, used almost
exclusively for branches, are not included；

Displacement mode includes all displacement
lengths (8, 16, and 32 bits)

Most popular memory addressing modes are:
Displacement 42%
Immediate 33%
Register indirect 13%

Summary: use of memory addressing modes

2014/4/13 26

Displacement Addressing Mode

Provides the means of implementing
pointers

Issue: What is the appropriate
displacement field size ?
Important because it affects

instruction length.

2014/4/13 27

Summary of the range of
displacement values

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

p
er

ce
n

ta
g

e
o

f
d

is
p

al
ce

m
en

t Integer average Floating-point average

2014/4/13 28

 Data were collected on a computer with 16-bit
displacements, so can’t tell us about longer displacements.

 Data are relative to the policies of compiler optimization.

 The graph does not include the sign bit. Most
displacements are positive, but a majority of the largest
displacements(14+ bits) are negative.

 Number of bits needed for displacement values:
12 bits 75%
16 bits 99%

 16～31 bits 1%

Therefore, 12-16 bits is probably
sufficient.

Summary of the range of
displacement values(2)

2014/4/13 29

Immediate Addressing Mode

 Immediate are mostly used in：arithmetic
operations, comparisons, and data moves；

The last case occurs for constants written in
the code-which tend to be small, and for
address constants, which tend to be large；

 Issue:
What is the appropriate immediate field size ?

Important because it affects instruction length.

Support all operations or only a subset？

2014/4/13 30

Percent of instr. which
provide immediates

21%

25%

23%

16%

19%

22%

0% 5% 10% 15% 20% 25% 30%

All instructions

ALU operation

Loads

Floating-point average Integer average

2014/4/13 31

The distribution of immediate values

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

integer average Floating-point average

2014/4/13 32

Summary of Immediate mode
 percent of instructions which provide immediate

addressing mode
Integer ALU 21% 1/5
Floating-Point 16% 1/6

 range of values for immediates
 <8 Bits 65%~ 90%
 <16 Bits 82%~ 99%

Therefore, 8-16 bits is probably sufficient.

Other addressing modes are certainly useful, but are
they worth the chip space and design complexity ?

2.4 Addressing Modes for Signal Processing

Several novel addressing modes for DSPs:

Modulo or circular addressing mode

Bit reverse addressing

 X1X2X3….Xn ----> XnX2X3….X1

There is often a mismatch between what

programmers and compilers actually use versus

what architects expect.

2014/4/13 34

Summary: Memory Addressing

Support at least 3 addressing mode
Register indirect, displacement, immediate

Fig B.7, 75%~99%

The size of the address for displacement
mode to be at least 12-16 bits
FigB.8, 75%~99%

The size of the immediate field to be at
least 8-16 bits
FigB.10, 50%~80%

 2.5 Type and Size of Operands

How is the type of an operand designated?
Encode in the opcode

Annotated with tags (interpreted by the
hardware)

Common used operand types include:
byte(1B)、half word(2B)、word(4B)、single-

precision floating point(4B)、double-precision
floating point(8B)

packed decimal, character strings

2014/4/13 36

Frequency of access to
different data types

What types are most popular used which

need to be supported by hardware?

Should the computer have a 64-bit access

path, or would taking two cycles to access

a double word be satisfactory?

How important is it to support bytes as

primitives?

2014/4/13 37

Most Common Used Data
Types Statistics

10%

5%

26%

29%

70%

59%

1%

0%

0% 10% 20% 30% 40% 50% 60% 70% 80%

byte

half word

word

double word

floating-point average

integer average

2014/4/13 38

Summary of the usage of
integer Data types

Bytes or half words access accounts for no more
than 12% of register references, or roughly 6%
of all operand accesses (VAX)

Use more than one instructions to implement
access of bytes and half words (Alpha)

Double words access frequency will be increased
with the development of 64 bits computers

2.6 Operands for Media and

Signal Processing

Data types used in 2D & 3D images:
Vertex (32-bit floating-point values)

x-coordinate, y-coordinate, z-coordinate, w (help with
color or hidden surfaces)

Triangle (3 vertices)

Pixel (32bits)
R, G, B, A

Fixed point(special data type used in DSP, low-
cost floating point)
Has a binary point just to the right of the sign bit

Fixed-point data are fractions between –1 and +1

2014/4/13 40

Summary of Type and Size of
Operands

A new 32-bit architecture to support 8-,16-,32-
bit integer and 32- and 64-bit IEEE floating-
point data.

A new 64-bit address architecture need to
support 64-bit integer.

Support for decimal data is less clear.

DSPs need wider accumulating registers than
the size in memory to aid accuracy in Fixed-
point arithmetic.

2.7 Operations in the Instruction Set

Categories of instruction operators:
Basic instruction operators

Arithmetic and logical
Data transfer
Control

Special instruction operators
Floating point(scientific calculation)
Decimal(commercial)
String
Graphics

Privileged instruction operators
Virtual memory management instructions
Operating system call

2014/4/13 42

Categories of instruction operators
and examples of each

Pixel and vertex operations, compression/decompression

operations
Graphics

String move, string compare, string search String

Decimal add, decimal multiple, decimal-to-character conversions Decimal

Floating-point operations: add, multiple, divide, compare Floating point

Operating system call, virtual memory management instructions System

Branch, jump, procedure call and return, traps Control

Loads-stores(move instructions on computers with memory

addressing)
Data transfer

Integer arithmetic and logical operations: add, subtract, and, or,

multiple, divide
Arithmetic and logical

Examples Operator type

2014/4/13 43

Instruction Operations
 All machines generally provide a full set of operations

for the first three categories.

 All machines MUST provide instruction support for
basic system functions.

 Floating point instructions are optional but are commonly
provided.

 Decimal and string instructions are optional, because
they can be easily emulated by sequences of simpler
instructions.

 Graphic instructions are optional.

2014/4/13 44

Decide which operations to support

Rule of thumb
 most widely executed instructions are the

simple operations of an instruction set. Hence,

the implementor of these instructions should be

sure to make these fast.
Remember MAKE THE COMMON CASE FAST ?

How to get the statistic data ?
usually use benchmarks

2014/4/13 45

The top 10 instructions for the 80x86

80x86 instruction Rank Integer average

1 L oad 22%

2 Conditional branch 20%

3 compare 16%

4 Store 12%

5 Add 8%

6 And 6%

7 Sub 5%

8 Move register-register 4%

9 Call 1%

10 Return 1%

Total 96%

2.8 Operations for Media and Signal Processing

Some special operations to Support media
and signal processing:
Single-instruction multiple-data (SIMD), vector(Fig2.17)

fixed-width operations, performing multiple narrow operations

on either a 64-bit or 128-bit ALU

partitioned add

paired single operations

Saturating arithmetic (for DSP)

Multiply-accumulate(MAC) instruction (for DSP)

2.9 Instructions for Control Flow

Conditional branches branch
Unconditional jumps
 Procedure calls call
 Procedure returns return

 Frequencies of these control flow
instructions

82%

10%

8%

75%

6%

19%

0% 20% 40% 60% 80% 100%

Conditional

branch

Jump

Call/Return Integer average

Floating-Point average

2014/4/13 48

Specification of destination address

The destination is specified
explicitly in the instruction in the
vast majority of cases
Procedure return is the major

exception, since for return the
target is not known at compiler
time，

2014/4/13 49

How to specify the destination?

 PC-relative
The target is often near the current instruction, so

it requires fewer bits

Position independence(permit the code to run
independently of where it is loaded)

How to do with procedure return or indirect jump?

Register indirect
case or switch

 virtual functions or methods

high-order functions or function pointers

dynamically shared libraries

2014/4/13 50

Most displacement can be encoded in 2~7 bits
  7 bits：93%

About 75% of the branches are in the forward
direction

Bits of branch displacement

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Integer Average FP average

2014/4/13 51

Conditional Branch Options

Since most changes in control flow are braches,
deciding how to specify the branch conditions is
important.

Three techniques to specify the branch
conditions

condition code tests special bits set by ALU
operations, possibly under program control.

condition register tests arbitrary register with the
result of a comparison.

compare and branch compare is part of the branch.
Often compare is limited to subset.

2014/4/13 52

Pros and cons of three methods

May be too much work per
instruction for pipelined
execution

One instruction
rather than two
for a branch

PA-RISC,
VAX

Compare
and branch

Uses up a register Simple Alpha, MIPS Condition
register

CC is extra state.
Condition codes constrain
the ordering of
instructions since they
pass information from one
instruction to a branch

Sometimes
condition is set
for free

80x86,ARM,
PowerPC,
SPARC,
SuperH

Condition
Code(CC)

Disadvantages Advantages Examples Name

2014/4/13 53

Frequency of different types of
compares in conditional branches

35%

33%

0%

11%

18%

2%

34%

44%

0%

0%

16%

5%

0% 10% 20% 30% 40% 50%

Less than

Less than or equal

Greater than

Greater than or equal

equal

Not equal Floating-point average

Integer average

2014/4/13 54

Analysis of different types of
compares in conditional branches

 Less than (or Equal) branches dominate this combination
of compiler and architecture

 Comparisons with 0：50% is “ =0 ”

 (this leads to third method to specify the branch
condition, “compare and branch”)

 A special branch instruction：not only makes
comparisons, but also branches

 DSP add repeat instruction to avoid loop overhead.

2014/4/13 55

Procedure invocation options
(call & return)

State saving (at a minimum the return address
must be saved somewhere)

Save registers
Provide a mechanism to save many registers
Require the complier to generate stores and loads

for each register saved and restored

caller-saving: Caller saves any registers that
it wants to use after the call, then invoke.

callee-saving: first invoke, then callee saves

the registers.

2014/4/13 56

Sometimes, caller save must be used

 Caller save: store x to a location,which is known by P2.

 Compiler should discover a called procedure may access
register-allocated quantities. ------complicated by
separate compilation.

 Many compilers conservatively caller save any variable
that may be accessed during a call.

 Most real systems today use a combination of the two
conventions.

P1 P2 P3

Call P2 Call P3

Rx ----X

2014/4/13 57

Summary: Instructions for Control flow

Common used instructions shall be
considered firstly：Load, store, add, sub,
move R-R, and, shift, ＝, ≠, branch and etc.

Conditional branch: displacement 100 <=27

PC-relative branch: displacement > 8 bits

 PC-relative conditional branches dominate the
control instructions.

 jump and link instruction for procedure call

 register indirect jump for procedure return;

2.10 Encoding an Instruction Set

 Encoding affect:

 Size of compiled program

 the implementation of the CPU

 Balancing forces:

From the compiler viewpoint: to have as many

registers and addressing modes as possible

Impact of register size and addressing mode

fields on Average instruction size、average

program size

Easy to implement

2014/4/13 59

Key factors for Encoding

Key Factors
The range of addressing modes

The degree of independence between
opcodes and addressing modes

2014/4/13 60

Three popular choices for
 instruction encoding

Operation & Address Address

no. of operands specifier1

Address Address

 specifier n field n

Operation & Address Address Address

no. of operands field 1 field 2 field 3

Operation Address

 specifier field

Operation Address Address

 specifier1 specifier2 field

Operation Address Address

 specifier field 1 field 2

…

(a) Variable(e.g.,VAX,Intel 80x86)

(b) Fixed(e.g.,Alpha,ARM,MIPS,PowerPC,SPARC,SuperH)

(c) Hybrid(e.g.,IBM360/70,MIPS16,Thumb,TI TMS320C54x)

 field 1

Address

Address

Address

2014/4/13 61

Comparison of three instruction
encoding formats

Variable length：
Number of operations and addressing modes is big
Small program size, high code density, a variety of

formats for one instruction

Fixed length：
Number of operations and addressing modes is small
Large program size, low code density, fixed format,

easy to implement

Hybrid
Has multiple formats specified by the opcode,

adding or or two fields to specify the addressing
mode and one or two fields to specify the operand
address

2014/4/13 62

Reduced Code Size in RISCs
New hybrid version of RISC instructions, with

both 16-bit and 32-bit instructions.
 ARM Thumb , MIPS16

 IBM CodePack : compress standard instruction
set
 full 32-bit instruction in instruction cache

 compressed code kept in main memory, ROM, disk.

 Hash table (TLB)

Hitachi：special RISC instruction set for embedded

applications.
 SuperH

2.11 The Role of Compilers

Understanding compiler technology is
critical to designing an effective
instruction set.

 Assembly language programming has
been largely replaced by compilers which
work together with the hardware to
optimize performance.

 Therefore, design architectures to be
compiler targets .

2014/4/13 64

Compilers and Architecture

What features of an architecture lead
to high quality code ?

What "makes it easy" to write efficient
compilers for an architecture ?

2014/4/13 65

The Structure of Recent Compilers

2014/4/13 66

About compiler

The goals of compiler
All valid programs must be compiled correctly

Fast speed of the compiled code
 fast compilation, debugging support, interoperability among

languages

Multiple-pass structure’s advantage：
Reduce compiler complexity

Easy writing a bug-free compiler

Disadvantages：
Phase-ordering problem

 e.g. global common subexpression elimination

fch2.doc

2014/4/13 67

Optimizations Classification

High-level optimizations
 Procedure inlining

 Local optimizations within a straight-line code
fragment
 Common subexpression elimination、constant propagation、

Global optimizations extend the local optimizations
across branches and introduce a set of transformations
aimed at optimizing loops

Register allocation associates registers with
operands
 Calculate expressions、transfer parameters、store variables

 Processor-dependent optimizations attempt to
take advantage of specific architectural knowledge

2014/4/13 68

The Impact of Compiler Technology on the
Architect’s Decisions

 Two important questions:

 How are variables allocated and addressed?

 How many registers are needed to allocate variables

appropriately?

 Three areas in which current high-level languages

allocate the data：

 Stack：local variables; scalars(single variables)

 Global data area：global variables, constants; arrays

 Heap：dynamic objects; accessed with pointers

At least 16 GPRs + separate floating-point
registers

2014/4/13 69

How the Architect Can Help the Compiler
Writer ?

The difficulties of compiler
Big program size

Interactive

complexity of compiler’s structure

Basic principle of the compiler

Make the frequent case fast and the rare
case correct

2014/4/13 70

Architect’s Guidelines

 Provide regularity

 Provide primitives, not solutions
 Providing special features that "match" language constructs is

NOT a good idea.

 These features may be good only for a certain language.

 And, worse, they may match but do more or less than what's
required.

 Simplify trade-offs among alternatives
 If there are 20 ways to implement an instruction sequence, it

makes it difficult for the compiler writer to choose which is the

most efficient.

 provide instructions that bind quantities known at compile
time as constants.

2014/4/13 71

Summary for compiler’s role

At least 16 gerneral-purpose registers

 all supported addressing modes apply to all
instructions that transfer data

 provide primitives instead of solutions

 simplify trade-offs between alternatives

KEEP IT SIMPLE , Less is more

SIMD extensions are examples of good
marketing than that of hardware-software
codesign

2.12 The MIPS Architecture

MIPS emphasizes:
A simple load-store instruction set

Design for pipelining efficiency, including a
fixed instruction set encoding

Efficiency as a complier target

MIPS provides a good architectural
model for study, because of:
Popularity of this type of processor

An easy architecture to understand

2014/4/13 73

Summary of the statistic data
from above sections

 B.2 Use GPRs with a load-store architecture
 B.3 Addressing modes：
 displacement(12-16), immediate(8-16), register indirect

 B.4 Support the data size and types:
 8-, 16-, 32-, and 64-bit integers and 64-bit IEEE 754 floating-

point numbers

 B.5 Support the simple instructions:
 load, store, add, subtract, move register-register, and shift

 B.6 compare equal, compare not equal, compare less,
branch, jump, call, and return

 B.7 Use fixed instruction encoding
 B.8 Provide at least 16 GPRs, and all addressing modes

apply to all data transfer instructions

2014/4/13 74

MIPS emphasizes

A simple load-store instruction set

Design for pipelining efficiency, fixed
instruction set encoding

Efficiency as a compiler target

2014/4/13 75

MIPS Architecture

 Registers for MIPS
 R0~R31, F0~F31, a few special registers

 Data Types for MIPS
 8-bit bytes, 16-bit half words, 32-bit words, and 64-bit double

words for integer data
 32-bit single precision and 64-bit double precision for floating

point

 Addressing Modes for MIPS Data Transfers
Immediate, displacement
 (register indirect ~ D=0

 absolute addressing ~ base register=R0)

PC-relative addressing

2014/4/13 76

MIPS Register Conventions

Conventions

• This is an agreed upon “contract” or
• “protocol” that everybody follows
Specifies correct (and expected) usage,
and some naming conventions
• Established part of architecture
• Used by all compilers, programs,
and libraries
• Assures compatibility

2014/4/13 77

MIPS Register Convention (cont.)

 Important Ones for Now
(shaded)

 R0 Constant 0

 R2 Return Value

 R3 Can use as temporary

 R4 First argument

 R5 Second argument

 R31 Return address

2014/4/13 78

MIPS Addressing Modes

addi R1, R0, 10

add R2, R0, R1

2014/4/13 79

MIPS Addressing Modes

lw R1, 100(R2)

2014/4/13 80

MIPS Addressing Modes

beq R1, R2, 100

2014/4/13 81

MIPS Addressing Modes

j 10000

2014/4/13 82

MIPS Operations(Fig.B.23, pB-37)

2014/4/13 83

Instruction layout of MIPS
 Fig.B.22, pB-35

 I-type instruction

Encodes: loads and stores of bytes, half words, words, double words.

All immediate(rt  rs op immediate)

Conditional branch instructions(rs is register, rd unused)

Jump register, jump and link register

 (rd = 0, rs = destination, immediate = 0)

6

opcode rs rt immediate

 6

opcode rs rt rd shamt funct

opcode Offset added to PC

5 5 16

R-type instruction
6 5 5 5 5 6

Register-register ALU operations: rd  rs funct rt

 Function encodes the data path operation: Add, Sub, …

 Read/write special registers and moves

J-type instruction
6 26

Jump and jump and link

Trap and return from exception

All instructions are encoded in one of three types, with common fields in the same

location in each format.

2014/4/13 84

Loading Immediate Values

What’s the largest immediate value that
can be loaded into a register?

But, how do we load larger numbers?

2014/4/13 85

Load Upper Immediate

2014/4/13 86

Larger Constants?

2014/4/13 87

Procedure calls

Steps followed in executing a procedure call:
Place parameters in a place where the procedure

(callee) can access them

Transfer control to the procedure

Acquire the storage resources needed for the
procedure

Perform desired task

Place results in a place where the calling program
(caller) can access them

Return control to the point of origin

2014/4/13 88

Resources Involved

2014/4/13 89

MIPS Register Convention

2014/4/13 90

Alternative Architectures

About MIPS as an ISA
It’s a simple/small ISA;

It emphasizes a small number of instructions,
formats, address modes

Design alternative:
Provide more powerful operations, and many of them

Goal is to reduce number of instructions executed

Danger is a slower cycle time and/or a higher CPI

Sometimes referred to as “RISC vs. CISC”
RISC: Reduced Instruction Set Computing

CISC: Complex Instruction Set Computing

CISC (Complex Instruction Set Computer)

Enhance the function of instructions,
many kinds of operations, each
instruction’s function is strong

RISC(Reduced Instruction Set Computer)

Reduce the function of instructions,
Provide basic instructions, each
instruction’s function is weak

Two completely different directions for
Instruction Set Architectures

CISC vs. RISC

2014/4/13 92

CISC

Complex Instruction Set Computer
Background: lack of storage resource,

emphasize compiler optimization

Techniques: Enhance the function of the
instructions, Design some complex
instructions, instead of some functions which
are originally implemented by software

 CISC example was DEC VAX: min code size, make asm
easy instructions from 1 to 54 bytes long!

2014/4/13 93

RISC

Reduce CPI:

 CPUtime=Instr_Count * CPI * Clock_cycle

Reduce the instruction set:

 only keep the most basic ones

 Load/Store architecture

Simple instructions, simple addressing
modes, fixed-length instruction format…

2014/4/13

94

A Brief history of RISC

 Load/Store architecture：

 CDC6600(1963)--CRAY1(1976)

 IBM801(1979年),

 first RISC computer

 1980, Patterson(Berkeley) & Ditzel

 first put forward RISC, RISC-,

 1981, Hennessy(Stanford)

 MIPS

 Commercial RISC CPU after 1985:

 MIPS1(1986) & SPARC V1(1987) …

2014/4/13 95

Some typical high performance RISC CPU

SUN, SPARC(1987)

MIPS, SGI:MIPS(1986)

HP, PA-RISC,

IBM, Motorola, PowerPC

DEC、Compaq, Alpha AXP

IBM RS6000(1990) first Superscalar
RISC

2014/4/13 96

Summary of ISA

Architecture = what’s visible to the program
about the machine
Not everything in the deep implementation is “visible”

The name for this invisible stuff is “the
implementation”

A big piece of the ISA = assembly language
structure
Primitive instructions, execute sequentially,

atomically

Issues are formats, computations, addressing modes,
encoding etc

2014/4/13 97

Summary of ISA

Two broad flavors:
CISC: lots of complicated instructions

RISC: a few, essential instructions

Basically all recent machines are RISC,
but the dominant machine of

today, Intel x86, is still CISC (though
they do RISC tricks in the guts…)

Example: MIPS

2014/4/13 98

History of ISA

60’ Stack----reduce the gap between

high-level programming language and
machine language.

70’ reduce the software cost, replacing

software with hardware

80’ processor performance  simple ISA

2014/4/13 99

90’s ISA
Address size doubles: 32bit 64bit

Optimization conditional branch via
conditional execution

Optimization of cache performance via
prefetch

Support of multimedia

Faster floating-point operations

Long instruction word

Increased Conditional Execution

2014/4/13 100

Homework

2014/4/13 101

