
Research Article
The Study and Evaluation of ARM-Based Mobile Virtualization

Lei Xu, Zonghui Wang, and Wenzhi Chen

College of Computer Science and Technology, Zhejiang University, Hangzhou 310000, China

Correspondence should be addressed to Zonghui Wang; zjuzhwang@zju.edu.cn

Received 4 August 2014; Revised 14 October 2014; Accepted 14 October 2014

Academic Editor: Neil Y. Yen

Copyright © 2015 Lei Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In common sense, virtualization technology is adopted to offer several isolated execution environments and make better use of
computational resources in server environment. However, in embedded systems, the significance of virtualization does not come
into the picture. The extensive utilization of mobile smart devices has led to a series of issues such as security, wasting of resources,
and power consumption. In this paper, we discuss how mobile virtualization addresses these challenges and then present a detail
analysis of four mainstream mobile virtualization solutions: containers, paravirtualization, hardware-assisted full virtualization,
and microkernel. At last, we carry out a series of performance comparisons among these solutions and make some suggestions for
further research.

1. Introduction

Virtualization is a relatively old technology and can date back
more than 30 years.Throughout these years, the ideas behind
virtualization evolved as different software and hardware
techniques allowed it to be widely used, especially in the
enterprise market [1]. The ability of virtualization brings
immense benefits in terms of reliability, efficiency, and scal-
ability. It enables the cloud data centers to flexibly provision
resource which makes the “computing-as-a-service” vision of
cloud computing possible [2]. A substantial amount of work
has been carried out on traditional virtualization most of
whose architecture is x86.

Nevertheless, ARM-based mobile smart devices are
becoming more and more ubiquitous and the preferred
platform for users’ daily computing needs is shifting from
traditional desktop to mobile smart devices [3]. Undisput-
edly, as mobile computing advances, it brings several tough
challenges, described as follows.

(1) Security. Mobile device, as a kind of intimate personal
portable equipment, contains lots of user’s sensitive data, such
as SMS, contacts, and photos. People cannot pay much more
attention on its security issues, especially in a poor secure
condition nowadays.

(2) Performance Wasting. Multicore (4 even 8 cores) SOC is
being increasingly adopted by hardware vendor along with
2G RAM ormore. It seems that these vendors participated in
a hardware competition which led to a serious performance
wasting. How to make better use of hardware resources is a
new challenge.

(3) Power Consumption. Power is always the bottleneck of
mobile devices. Modern device architecture especially is
becoming more and more complicated to support various
modem stacks (GSM, WCDMA, and LTE) simultaneously
and many complex applications. People have to find a way to
simplify the hardware architecture.

(4) Shorter Time to Market. For devices manufacturer, they
wish to quick release their newest products to meet dynamic
market requirements. They want to find a way to reduce
dependencies among hardware and software components
so as to reuse legacy software or legacy operating system
on a new design chip/board and reduce development and
integration time and effort.

To address these challenges, the role of virtualization
within the mobile device architecture is being discussed
among academia and industry [4]. Actually, mobile vir-
tualization can deal well with these challenges. But this

Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2015, Article ID 310308, 10 pages
http://dx.doi.org/10.1155/2015/310308

http://dx.doi.org/10.1155/2015/310308

2 International Journal of Distributed Sensor Networks

technology seems that it has not yet aroused people’s attention
until now. We cannot find a related work that systematically
analyses the solutions of mobile virtualization.

In this paper, we comprehensively introduce the mobile
virtualization technology. The most important contributions
wemake can be summarized as follows: (1) we deeply analyze
the architecture of all mainstream solutions and present our
opinions about their advantages and disadvantages, respec-
tively; (2) we build an experiment platform and experiment a
lot to compare their performance.

The rest of this paper is organized as follows: Section 2
describes the definition and the differences with traditional
virtualization. Section 3 shows the benefits that mobile virtu-
alization can bring and Section 4 discusses the architectures
of four mainstream solutions in detail. Section 5 carries out
performance comparison among those solutions. A summary
and plan of our future work are described in Section 6.

2. Mobile Virtualization Overview

2.1. What Is It? Virtualization has been a major topic in
the enterprise space for quite some time but has become
an important technology for mobile smart devices (also
other embedded systems) only in the last few years. Mobile
virtualization is a variant of system virtualization which
is a technology that enables multiple isolated operating
systems run simultaneously on a single physical machine.
The hypervisor (also known as virtual machine monitor
(VMM)), is responsible for creating and managing the VMs
and, by providing the physical abstraction, allowing VM’s
instructions to be executed correctly on the real hardware
[5]. Figure 1 shows the virtualization architecture ofmulticore
ARM-based mobile smart devices.

In 2008, the mobile industry became interested in using
the benefits of virtualization technology for cell phones and
other devices like tablets, netbooks, andmachine-to-machine
(M2M) modules. Mobile virtualization can support mobile
devices using a single-core or a multicore processor and it
uses a mobile virtual machine monitor (mVMM) to create
secure separation between the underlying hardware and the
software that runs on top of it.

2.2. What Are the Differences between Mobile and Traditional
DesktopVirtualization? Therequirements ofmobile hypervi-
sor architecture are quite distinct from hypervisors aimed at
traditional desktop applications, which have a fundamentally
different set of requirements. Mobile smart device, a modern
embedded system, is increasing taking on characteristics of
general-purpose systemswhile traditional embedded systems
used to be relatively simple and single purpose. Their func-
tionality is growing, and so are the amount and complexity of
their software [6]. This creates a demand that runs more and
more high-level applications originally developed for the PC
world, such as the virtualization.

However, they were dominated by hardware constraints,
especially the power energy and screen size. Even though
their CPU and memory are becoming more and more
powerful even stronger than lots of PCs, they should exhibit

Core 3

mVMM (mobile virtual machine monitor)

Android Android

Core 0 Core 1 Core 2

Android

Real-time

VxWorks

protocol stack

APP
APP

APP APP
APP

APP

Figure 1: A virtualization architecture of multicore ARM-based
mobile smart device.

low to moderate software complexity. In addition, mobile
devices are subject to real-time constraints which means we
should take resource constraint into fully account in mobile
virtualization.

In case of x86 architecture, it supports four distinct
privilege levels known as CPU ring [7]. The advantage of
having different privilege is that all the components do
not have same rights to access the resources. In a virtual
environment VMM runs in ring 0, OS kernel runs in ring 1,
and applications run in ring 3, while ARM is based on RISC
architecture with total 7 rings out of which 6 are privileged
modes and 1 is unprivileged mode. So there are a few new
challenges in virtualizing a processor when we design mobile
virtualization architecture.

In fact, mobile smart device is a personal communication
device rather than a totally computing devices. This means
that we should take communication channels virtualiza-
tion into consideration. Memory protection mechanism is
another big question in memory virtualization. We cannot
deal with it like PCwhich is obviously not adequate tomobile
virtualization [8]. The requirements of mobile virtualization
are summarized below:

(1) a small code size and light-weight hypervisor with
support for multiple VMs;

(2) high-bandwidth, low-latency communication be-
tween system components;

(3) a strict system-wide security policy;
(4) minimal impact on system resources and real-time

performance;
(5) be suitable for ARM architecture and make use of

ARM features;
(6) strong interaction to enhance user experience.

3. Mobile Virtualization Benefits

As you probably already know, the cost reduction benefit is a
clear driver when you virtualize your server infrastructure,
but what is the driver for mobile virtualization? Mobile
phones are not like PCs. They have a real-time operating
system (RTOS) that performs critical tasks: voice compres-
sion, PIN access, base band radio, encryption, and so forth.

International Journal of Distributed Sensor Networks 3

Core 1Core 0

AndroidAndroid

(for business)

Preinstalled

Common domainSecurity domain
(for entertainment)

Isolation

3rd downloaded
APP APP

· · ·

mVMM (mobile virtual machine monitor)

Figure 2: OS isolation for enhanced security.

The following 4 main benefits may be the driver for mobile
virtualization.

3.1. Enhanced Security. The security issues of mobile smart
devices are heavily exposed. Viruses, Trojan horses, and
malwares from all kinds of external attackers have caused
people’s attention. Traditional information security technolo-
gies are always aimed at a specific type of attacks and
always lag in the update of malicious software. For ensuring
device security, users have to deploy all kinds of information
security approaches, such as encryption, digital signature,
safety audit, access control, and digital certification. Because
of the lack of any security technology, the system may be
invaded by a variant of malwares. However, deploying a
security environment is very hard for common users. So they
need an innovative solution which offers a secure execution
environment model: people can be in a secure and trusted
domain when they use some critical applications (mobile
banking) or access to sensitive data (SMS, contacts) and yet
people should not care whether current system is safety or
not, actually!

Mobile virtualization is such kind of solution! As shown
in Figure 2, a security domain contains preinstalled applica-
tion for the basic functions of a mobile, such as a SMS and
a mailer. The 3rd-party downloaded applications can never
affect the base domain, which are only allowed executing in a
common domain. The isolation offered by the mobile virtu-
alization technology makes this possible. We can use security
domain for telephony, business office,mobile banking, and so
on. Also, we create several common domains for browsing,
gaming, movie, music, and so forth.

3.2. Simplify Hardware Structure. A typical mobile smart
device generally includes four processing cores, as shown in
Figure 3. Each core runs different operating system, carry-
ing corresponding purpose. ARM-A runs general-purpose
operating system (Android, iOS, et al.), up to interact with
users. ARM-C runs a real-time operating system, mainly to

ARM-A
general purpose

Android
for
application

DSP-C
comm

DSP-M
media

comm

ARM-C
real time

RTOS

communication

BareMetalBareMetal
forfor
media

ARM SOC

for

Figure 3: Typical mobile smart device solution architecture.

RTOS

Modem
software

stack
(GSM)

RTOS

ARM SOC

Android
for
application

DSPARM
general purpose

(LTE)
RTOS

Modem
software

stack

Modem
software

stack
(WCDMA)

mVMM (mobile virtual machine monitor)

Figure 4: Mobile virtualization simplifies hardware architecture.

complete high-level protocol stack processing of different
communication format (GSM, WCDMA, and LTE). DSP-C
has strict real-time requirements, mainly to process underly-
ing protocol stack by interrupt trigger. DSP-M is always used
to decode audio and video.

As mentioned above, current device architecture is very
complicated and inevitably brings power consumption prob-
lem. Mobile virtualization breaks the tightly one-to-one
relationship between operating systems and processors.

Current universal mobile telecommunications system
(UMTS) devices generally need to support variety of com-
munication networks, such as GSM, WCDMA, HSPA, and
LTE. How to enable devices support multiple new protocol
stacks and avoid compatibility problems between different
protocol stacks is a challenge. Instead of using multiple
dedicated real-time processors, mobile virtualization offers a
new architecture as shown in Figure 4.

In this architecture, VMM supports multiple Android
systems and RTOSs run concurrently on oneARMprocessor.
And some underlying protocol processes can be scheduled to
unique DSP by the VMM.This architecture offered bymobile
virtualization can authentically simplify hardware structure.

3.3. Better Use of Multicore CPU. Multicore is now widely
used in mobile smart devices, in order to meet users’ rising
demand formobile computing performance.However, differ-
ent tasks have different requests for computing performance
like idle and gaming. Mobile virtualization can offer a load
balancing feature which helps devices a lot to make better use
of multicore CPU. It contains a load balancing scheduler that

4 International Journal of Distributed Sensor Networks

Real-time
protocol stackAPP

APP
PP

mVMM Load balancing scheduler

APP APP
APP

APP

AndroidAndroid

Core 3Core 0 Core 1 Core 2

VxWorks

Figure 5: Mobile virtualization with load balancing scheduler.

can check utilization of each core, make a schedule scheme,
and migrate virtual devices.

In Figure 5, a VMM with load balancing scheduler can
schedule some tasks from a high workload core to the low
workload one, so as to achieve load balancing and improve
the QoS performance. Similarly, VMMwill schedule all tasks
together on some cores and free other low utilization cores,
so as to reduce power consumption.

3.4. Reuse Legacy Software. Mobile virtualization empowers
mobile device manufacturers and semiconductor vendors to
speed time to market and reduce costs by reusing legacy
software assets while taking advantage of new designed chip.
Maintaining a competitive edge is vital for mobile device
manufacturers, whomust integrate huge amounts of complex
software on multiple chipsets and hardware platforms. It
allows ready reuse of software components and applications,
even a RTOS. Native or proprietary device drivers, protocol
stacks, and system modules can be integrated with ease,
and legacy applications can run unmodified in the new
environment. This ensures minimum development cost and
faster time to market for new products.

Mobile virtualization offers support for processors based
on new designed architecture in single and multicore config-
urations. It is enabling device manufacturers to take advan-
tage of this latest family of cores without the need to modify
an existing high-level operating system. Customer benefits
by not having to redesign, redevelop, and revalidate existing
software to support new OS configurations.

4. Mainstream Solutions

In our research, we have found several existing solutions
based on different technologies. In this section, we will dis-
cuss four mainstream solutions and analyze their advantages
and disadvantages.

4.1. OS-Level Virtualization: Containers. OS-level virtualiza-
tion partitions the OS namespace to form a number of
separated virtual machines (VMs) [9]. VMs on the same OS
share a single OS kernel and the host environment, and each
VM only preserves state changes with its local environment.
Programs in a VM run as normal applications that directly

use the host OS’s system call interface and do not need to run
on top of an intermediate hypervisor.

Compared to system virtualization approaches, OS-level
virtualization takes two crucial drawbacks into consideration.
(1) Mobile devices are more resource constrained, and run-
ning an entire additional OS and user space environment
in a VM imposes high overhead and limits the number of
instances that can run. Slow system responsiveness is less
acceptable on a mobile device than on a PC since the mobile
device is often used for just a fewminutes or even seconds at a
time. (2)Mobile devices incorporate a plethora of devices that
applications expect to be able to use, such as GPS, cameras,
and GPUs. Existing system virtualization approaches provide
no effective mechanism to enable applications to directly
leverage these hardware device features from within VMs,
severely limiting the overall system performance andmaking
existing approaches unusable on a mobile device.

Containers. Containers are illusions of controlling system
resources so as to provide lightweight virtualization that
isolates processes and resources without the complexities
of full virtualization. Containers are built on top of two
technologies, control groups, and namespace [10].

Control Groups. Access to resources for a container can be
controlled with control groups (cgroups). Cgroups associate
a group of processes with a set of parameters for one or
more “resource controllers.” There are 7 subsystems used
to allocate varying levels of system resources to different
control groups: cpuset, cpu, cpuacct, memory, devices,
freezer, and net cls [11]. These subsystems are kernel
modules that are designed to control a specific resource.

Namespaces. Namespaces provide resource isolation for
implementing containers [12]. A container is essentially a
group of processes, with access to a subset of system resources
virtualized by cloning resource namespaces. Linux system
resources such as process IDs, IPC keys, or network interface
identifiers have traditionally been identified in global tables.
The namespaces feature transforms these global resource
identifier tables into tables (namespaces) specific to groups
of processes. The ability to create multiple instances of
a namespace enables multiple resources (processes, users,
network interfaces, etc.) with the same identifier, within a
single instance of the Linux kernel.

A container-based system provides a shared, virtualized
OS image consisting of a root file system, a (safely shared)
set of system libraries. Each VM can be booted, shut down,
and rebooted just like a regular operating system. Resources
such as disk space, CPUguarantees, andmemory are assigned
to each VM when it is created yet often can be dynamically
varied at run time. To applications and the user of a container-
based system, the VM appears just like a separate host [13].
Figure 6 schematically depicts the design.

As shown in Figure 6, there are several basic platform
groupings. The hosting platform consists essentially of the
shared OS image and a privileged host VM. This is the VM
that a system administrator uses to manage other VMs. The
virtual platform is the view of the system as seen by the

International Journal of Distributed Sensor Networks 5

Shared OS imageH
os

tin
g

pl
at

fo
rm

Vi
rt

ua
l p

la
tfo

rm

/d
ev

/u
sr

/h
om

e
/p

or
c

/d
ev

/u
sr

/h
om

e
/p

or
c

/d
ev

/u
sr

/h
om

e
/p

or
c

/d
ev

/u
sr

/h
om

e
/p

or
c

Core services

Apache MySQL PHP

· · ·VMhost VM1 VM2 VMn

Figure 6: OS-level virtualization overview.

guest VMs. Applications running in the guest VMs work just
as they would on a corresponding noncontainer-based OS
image.

Android Containers. Andrus et al. [3] presented a mobile
container based on Android system, named Cells. Cells
introduces a usage model of having one foreground virtual
phone (VP) and multiple background virtual phones. This
model enables a new device namespace mechanism and
novel device proxies that integrate with lightweight operating
system virtualization to multiplex phone hardware across
multiple virtual phones while providing native hardware
device performance. Cells virtual phone features include
fully accelerated 3D graphics, complete power management
features, and full telephony functionality with separately
assignable telephone numbers and caller ID support. Cells
does not require running multiple OS instances. It uses
lightweight OS virtualization to provide virtual namespaces
that can run multiple VPs on a single OS instance. Cells
isolates VPs from one another and ensures that buggy or
malicious applications running in one VP cannot adversely
impact other VPs. Cells provide a novel file system layout
to maximize sharing of common read-only code and data
across VPs, minimizing memory consumption and enabling
additional VPs to be instantiated without much overhead.

Cells use a VoIP service to provide individual telephone
numbers for each VP without the need for multiple SIM
cards. Incoming and outgoing calls use the cellular network,
not VoIP, and are routed through the VoIP service as
needed to provide both incoming and outgoing caller ID
functionality for each VP. Cells uses this combination of a
VoIP server and the cellular network to allow users to make
and receive calls using their standard cell phone service, while
maintaining per-VP phone number and caller ID features.

Actually, in Cells system architecture, each VP runs a
stock Android user space environment. Each VP has its own
private virtual namespace so that VPs can run concurrently
and use the same OS resource names inside their respective
namespaces, yet be isolated from and not conflict with each
other. This is done by transparently remapping OS resource
identifiers to virtual ones that are used by processes within
each VP.

Advantages and Disadvantages. This solution offers several
advantages.

(i) Reduced Overhead. Containers impose little overhead
because they use the normal system call interface of the
operating system and do not need emulation support from
an intermediate-level VM.

(ii) Increased Density. More useful work can be done by
applications because fewer resources are consumed by the
complexity of full virtualization. Given the same machine,
you can run more containers on it than virtual machines.

(iii) Reduced Sprawl. Because containers can share many
resources with the host OS, upgrades and modifications to
the underlying operating system propagate seamlessly to any
containers sharing the underlying file system.

There are some drawbacks to containers.

(i) Reduced Flexibility. OS-level virtualization cannot host a
guest OS different form the host, or a different guest kernel.
For example, you cannot have a Windows container in a
Linux host.

(ii) Decreased Isolation. Because the kernel of the underlying
operating system is shared between containers, there is less
isolation than with full virtualization.

4.2. Microkernel. The modern microkernel concept is cap-
tured in Liedtke’sMinimality Principle: A concept is tolerated
inside the microkernel only if moving it outside the kernel;
that is, permitting competing implementations would pre-
vent implementation of the system’s required functionality
[14]. The basic idea is to reduce the kernel code to funda-
mental mechanisms and implement actual system services
in user-level servers. Microkernel features a minimum of
functionality, typically scheduling, memory management,
process synchronization, and IPC.

With virtual machine based on microkernel architecture,
we can convert hardware resources to various real-time
system services and deliver to client operating systems which
run on virtual machine by mode of virtual devices. In this
way, it can support real-time and non-real-time applications
to run simultaneously and provide a universal and transpar-
ent interactive interface between non-real-time applications
and real-time system functions. The microkernel approach
leads to a system structure that differs significantly from that
of classical operating system.

We have found lots of solutions are based on microkernel
to virtualize amobile device. Among them,OpenKernel Labs
(OK-Labs) has been successfully and well known. It provides
a microkernel derived from the L4 project with the ability of
runningmultiple guest OSes, namedOKL4microvisor which
has been deployed in more than 1.1 billion mobile devices.

OKL4Microvisor.TheOKL4microvisor is a third-generation
(3G) microkernel of L4 heritage (as indicated by the name).
It grew out of our experience with large-scale commercial

6 International Journal of Distributed Sensor Networks

deployment of the OKL4 microkernel in mobile wireless
devices and the growing demand for low-overhead platform
virtualization in embedded systems [15]. In line with the
goal of supporting virtualization with the lowest possible
overhead, themicrovisor’s abstractions are designed tomodel
hardware as closely as possible.

Specifically: (1) the microvisor’s execution abstraction is
that of a virtual machine with one or more virtual CPUs
(vCPUs), on which the guest OS can schedule activities; (2)
the memory abstraction is that of a virtual MMU (vMMU),
which the guest OS uses to map virtual to (guest) physical
memory; (3) the I/O abstraction consists ofmemory-mapped
virtual device registers (vDRs) and virtual interrupts (vIRQs);
(4) communication is abstracted as vIRQs (for synchroniza-
tion) and channels. The latter are bidirectional FIFOs with a
fixed (configurable per channel) buffer allocated in user space
(you can run TCP/IP on a channel if you really want to).

The OKL4 microvisor is a clean, from-scratch design and
implementation. It shares no code with the early commer-
cially deployed version of the L4microkernel (but shares code
modules with the presently shipping OKL4 microkernel).
It is less complex than earlier microkernels, which is one
indication of an improved API.

In particular, the use of vIRQs as the communication
primitive lead to dramatic simplifications compared to the
synchronous IPC model traditionally used by L4 micro-
kernels (even though that model had been significantly
simplified over the years). As a consequence, it has no need
for an “IPC fast path”—there is really only a single code path
in the vIRQ implementation, and it is much shorter than that
of any synchronous IPC primitive.

The microvisor has a total of 30 hypercalls. This is more
than the typical number of system calls of L4 microkernels
(between seven and twenty, depending on L4 version).
However, L4 system calls tend to be heavily overloaded (the
OKL4 microkernel version 3.0 system header files contain
over 200 APIs) while the microvisor hypercalls are all simple.

Advantages and Disadvantages. This solution offers several
advantages.

(i) Efficient Resource Sharing. Microkernel provides mecha-
nisms for efficient sharing of resources. Arbitrary memory
regions can be shared by setting up mappings between
address spaces (providing high-bandwidth communication
channels).

(ii) Flexible Scheduling.Microkernel allows the guest operat-
ing system to select the appropriate global scheduling priority
whichmeans it can run at a high prioritywhen executing real-
time threads and a lower prioritywhen executing background
tasks.

(iii) Enhanced Security. Microkernel mediates all resource
access and communication in the system. A policy module
controls who gets access to system resources and who can
communicate with whom.

ARM CPU hardware

VMM

Guest OS

New-added
privileged
HYP mode

APP

Privileged
SVC mode

Nonprivileged
USR mode

CPU enables trap
automatically when

executing unprivileged
sensitive instructions

Figure 7: Modes of ARM with virtualization extensions.

There are some drawbacks to microkernel.

(i) Device Emulation. Microkernel has to provide device
support and emulation, an onerous requirement for mobile
devices which provide increasingly diverse hardware devices.
For example, we are not aware of any OKL4 implementations
that run Android on any phones other than the dated HTC
G1.

(ii) Poor IPC Performance. IPC is used to deliver interrupts
to guest OS’s interrupt handler and communicate with device
drivers, and the IPC mechanism is used for communication
and synchronization between any components of the system.

4.3. Hardware-Assisted Full Virtualization. ARM is now the
dominant processor architecture for mobile devices and
many other high-end embedded systems. Even the ARM
architecture has evolved over the decades, ARM announced
architectural support for virtualization to their Cortex-A15
processor in 2010.

The virtualization extensions to theARMare superficially
similar to those for x86, in that they provide a new processor
mode and a number of features to improve performance [16].
The extensions only apply to nonsecuremode.They introduce
a new processor mode, HYPmode, which is more privileged
than the existing nonsecure kernel modes. This leaves the
existing kernel and user modes for unmodified guest OSes
and applications.

As shown in Figure 7, HYP mode is entered form other
modes via a new instruction (hvc), and optionally on a
configurable set of exceptions from user or kernel mode. It
has banked registers, as well as additional hyp-only registers
for system configuration and information on the event which
caused entry of hyp mode. There is a hyp-only virtual
machine identifier (VMID) register. TLB entries are tagged
with the VMID, which supports coexistence of mappings
frommultiple guests and thus eliminates the need to flush the
TLB on a world switch.

Virtualization extensions offer instructions emulation.
Load and store instructions are not inherently virtualization-
sensitive but become sensitive when operating on privileged
data (e.g., device registers).The hypervisor must decode such
an instruction and emulate it. The overhead of emulation
is not just the extra instructions executed (which include
translating guest-physical to physical addresses) but also the

International Journal of Distributed Sensor Networks 7

D-cache miss generated when loading the offending instruc-
tion (despite the fact that it has already been fetched into
the instruction register and the I-cache). ARM’s emulation
support in most cases eliminates both the load and the
software decode, by keeping the relevant information in
hypervisor registers (source or target registers, whether it was
a load or a store, the size of the data item to be transferred,
etc.).

Virtualization extensions also offer memory virtualiza-
tion support, named second-stage translation. Similar to
extended PTs on x86, ARM supports two-stage address trans-
lation: guest-virtual to guest-physical (called intermediate
physical by ARM) followed by guest-physical to physical.
On a TLB miss in non-hyp mode, the hardware page-table
walker traverses first the guest and then the hypervisor PT
and constructs a TLB entry representing the guest-virtual
to physical translation. While this requires traversal of four
levels of page tables, this can be reduced to three if the
hypervisor uses 2MiB superpages. Obviously, only a single
translation stage is used when running in hyp mode.

KVM-on-ARM. KVM-on-ARM is the first hypervisor tech-
nology using the hardware virtualization extensions of ARM
Cortex-A15 enablingmultiple copies of operating systems and
delivering near-native performance for server, consumer, and
mobile market segments [17]. It was originally developed by
Software Systems Lab, Columbia University. And now it is
in collaboration with Virtual Open Systems, an innovative,
agile, and dynamic start-up company.

The primary differentiating factor between KVM-on-
ARM and other virtualization techniques is the rather sim-
plistic implementation approach used by KVM-on-ARM.
Most VMMs largely implement all major services like the
scheduler, memory manager, and timers. This results in a
fairly large and complicated code base. KVM-on-ARM, on
the other hand, leverages the existing functionality in the
Linux kernel and thus is comparatively smaller andmuch less
complex. With the support of hardware-assisted, KVM-on-
ARM does not carry the general performance overheads of
the software virtualization techniques.

In the KVM-on-ARM-based approach, the host is not
a hypervisor per say but happens to be a Linux kernel
running directly on top of the hardware. The hypervisor
is implemented as a kernel module and thus accesses the
hardware through the Linux kernel interface. The guest
operating system runs as a process on top of the host kernel.
Different guest operating system instances are viewed as
separate processes under the host kernel.

Advantages and Disadvantages. This solution offers several
advantages.

(i) Hardware Support. This solution is the exclusive way that
makes use ofARMhardware feature.Thismeans it can reduce
code size and increase reliability. Predictably, this solution
will be the major way used in ARM-based machines, may be
ARM server, not ARMmobile device.

There are some drawbacks.

(i) Poor Compatibility with Android. As we know, KVM
is a module of Linux kernel and leverages most of kernel
functionality. However, in user space, KVM must leverage
QEMU to virtualize I/O device which is not compatible with
Android system. We cannot image install a heavy-weight
QEMU emulation in our mobile system.

4.4. Paravirtualization. Paravirtualization is a very mature
technology used by Xen, a famous hypervisor in server field.
It refers to a technique where the guest operating system
is modified. Privileged instructions are replaced with calls
to the hypervisor called hypercalls. The hypervisor layer
provides a hypercall interface with services such as memory
management and device usage and interrupts management
to the guest. This ensures that all privileged mode activities
are moved from the guest operating system to the hypervisor.
Paravirtualization is usually faster than full virtualization.
The performance gains are primarily achieved due to the lack
of dynamic overheads associated with binary translation and
trap and emulate. Since paravirtualization requires changes
to the guest operating system code to avoid calls to privileged
instructions, it obviates the need for trap and emulate and
binary translation. Of course, this benefit comes with the
additional cost of maintaining a modified guest operating
system, but these costs are considered acceptable because
paravirtualized systems are shown to deliver performance
close to native systems.

One of the best features of the Xen implementation of
virtualization is in the way I/O is handled: Xen proposes a
concept of a privileged VM responsible for dealing with those
operations, named as domain 0.This VM links the simplified
interfaces that appear to the VMs as the real native drivers by
requiring no emulation whatsoever. The concept proved to
be so good that even VMware adopted it in newer versions of
ESX server by implementing paravirtualized network drivers.

Xen on ARM. Xen on ARM is used to be one of leading
paravirtualization solutions for ARM-based mobile devices.
This project is led by Samsung company [18] to improve
security and fine-grained access control by isolated multiple
virtual machines under Xen hypervisor. However, we can
see from its official source that this project has stopped
updating since 2010. With ARM beginning to enter the
high-performance serverworld, virtualization support is very
critical and ARMv7 hardware has processor extensions for
supporting hardware virtualization. Citrix has brought the
Xen hypervisor to the ARM Cortex-A15, which uses the
ARMv7 virtualization extensions.Thatmeans Xen has turned
attention to hardware virtualmachine (HVM) support, rather
than paravirtual machine (PV).

EmbeddedXEN. EmbeddedXEN is an academic project of
the XEN.org research group where the main targets are
embedded real-time applications. EmbeddedXEN results
from several years of research in the field of ARM-based
CPUs and hypervisor technology based on XEN. The overall
architecture has been revisited in order to support the

8 International Journal of Distributed Sensor Networks

hardware diversity of ARM CPUs platforms and provide
an excellent framework to deal with a native OS and a
third-party OS cross-compiled from a different ARM CPU.
EmbeddedXEN provides a virtualized hardware interface to
the third-party OS. EmbeddedXEN has been initiated and is
under current development at the Reconfigurable Embedded
Digital Systems (REDS) Institute of HEIG-VD, Switzerland
[19].

In terms of architecture, EmbeddedXEN creates a page
table for each guest OS when the guest domain is created
to support virtual memory systems. Although some RTOSs
do not use any virtual memory technique, using the physical
memory itself, the hypervisor can map the physical memory
allocated by a guest RTOS into the same virtual memory,
statically. At run time, the guest OS is executed as if it was
using a physical memory, being isolated one from another
by the page table provided by the hypervisor. This is a very
simple approach that enables to use unmodified OSs with the
virtualization solution although it may cause paging failures.

Advantages and Disadvantages. This solution offers several
advantages.

(i) Mature Technology. As we know, Xen is a very mature
virtualization technology. So porting it to ARM platform
seems not hard. It is easy to get a great help from the Xen
community.

There are some drawbacks.

(i) Not Fit for Mobile Device. Actually, solutions based on
paravirtualization especially the Xen project will be very
mature. But we think it is not fit for mobile device. It has a
complex configuration which is not easy for common user
and it needs to modify the guest OS code which means
it cannot support several closed-source systems, like iOS,
windows phone, and so forth.

5. Performance Comparison

We have carried out a series of experiments to evaluate
the performance of these different solutions described in
Section 4. Tomake a comparison, we choose out their mutual
features to test. We built three open source project platforms
representing correspondingly those solutions: CodeZero [20]
for microkernel solution, KVM-on-ARM for hardware-
assisted full virtualization solution, and EmbeddedXEN for
paravirtualization solution. However, Cells, the only existing
solution based on container technology, is not compatible
with our experiment platform until the time we carry out
these experiments. So it is not able to obtain the experiment
data of container solution.

5.1. Experiment Environment. All of our results are obtained
using Urbetter S5PV210 board with ARM Quad-core CPU,
2GB RAM, and 8GB ROM. The experimental environment
of our platform is as shown in Table 1.

Table 1: Experiment environment.

Device Description
Board Urbetter S5PV210
CPU ARM Exynos 4412 Quad-core
Mem 2GB DDR3
Disk iNAND 8GB
Host OS Linux 3.5.4
Guest OS Android 4.1
Benchmark LMBENCH

Table 2: Context switching time.

Hardware-
assisted Paravirtualization Microkernel

Average time
(𝜇s) 18.3 30.1 23.7

5.2. Evaluation Results. All experiments to evaluate the per-
formance have been done on end-user experience with no
hard real-time constraints. Our approach to track progress
toward this goal involves continuous benchmarking with
workloads that include the following.

Context Switching. We measured context switching time
between guest OSes and host OS. A context switch is the
switching of the CPU from one process or thread to another.
When the VMM receives a hardware interrupt, it generally
suspends the progression of the current process and starts
servicing the interrupt. This is an important feature for
mobile software which means a good user experience.

As shown in Table 2, hardware-assisted solution has the
fastest switch speed. The reason may be that new ARM
hardware features help a lot in accelerating the store/read
context process. Then the microkernel solution gets the
second place which embodies the advantages of microkernel.
Paravirtualization solution does not have superiority in con-
text switching; so it has the lowest switch speed.

Microbenchmarks.We used the benchmark programs, which
are basically equivalent to the fork + exec, fork + exit, pipe,
and syscall programs included in the LMbench benchmark
suite. We show the result of comparing the execution speed
in Table 3.

Table 3 shows that paravirtualization solution gets rel-
atively good performance and microkernel solution gets
relatively bad performance.This is because paravirtualization
has the shortest execution path and microkernel has the
longest. All benchmark programs are executed in the guest
OS, and paravirtualization solution andmicrokernel solution
need to run the modified guest OS while hardware-assisted
full virtualization solution runs the stock guest OS.

Macrobenchmarks. To see the virtualization’s performance
impact on common operations in mobile phones, we com-
pared UI loading time, codec performance, and image file
saving time. For UI loading test, we used Qtopia installed
at NOR flash memory. We prepare 100 files whose size are

International Journal of Distributed Sensor Networks 9

Table 3: Preliminary performance.

Hardware-
assisted Paravirtualization Microkernel

fork + exit
(𝜇s) 4,328.53 4,012.38 5,117.75

fork + exec
(𝜇s) 6,211.51 5,984.14 7,463.90

pipe
(𝜇s) 173.30 201.64 1,190.35

syscall
(𝜇s) 17.21 13.74 19.93

Table 4: UI performance evaluation.

Hardware-
assisted Paravirtualization Microkernel

UI loading
(s) 12.32 13.45 10.17

Image saving
(s) 45.17 54.23 40.32

Encoding
rate
(fps)

5.67 4.76 7.21

Decoding
rate
(fps)

20.41 23.14 24.13

distributed from 10KB to 5MB to test image file saving and
we measure the time taken to save all those image files from
a NFS server to NAND flash memory. For codec tests, WMV
stream encoder/decoder is used.

Table 4 tells us that microkernel solution has the best
UI loading and image saving performance because of its
shorter I/O handle logic. However, this solution has the worst
encoding rate and decoding rate because of its complicated
handle path in dealing with compute-intensive tasks.

Scalability Analysis. To analyze the scalability performance,
we measure the CPU utilization, memory usage, and storage
usage with the number of concurrent VMs (n) increasing.We
test five cases: 𝑛 = 1, 2, 3, 4, and 5 for iterated 10 times, respec-
tively, to get an average value. Root filesystems aremounted as
read-only; then we run a daemon process simultaneously on
all running VMs to calculate CPU utilization, memory usage,
and storage usage.

(1) CPU Utilization Comparison. From Figure 8, we can see
microkernel does not have a good scalability because when
the number of VMs increases CPU utilization grows heavily.
On the contrary, Paravirtualization gets a relatively good
result.

(2) Memory Usage Comparison. See Figure 9.
From the results, we can know that microkernel gets the

most outstanding performance in memory usage and then is

1.0

0.0

1 VM 2 VMs 3 VMs 4 VMs 5 VMs

0.2

0.4

0.6

0.8

CP
U

 u
til

iz
at

io
n

Microkernel
Paravritualization
Fullvritualization

Figure 8: The results of CPU utilization experiment.

1 VM 2 VMs 3 VMs 4 VMs 5 VMs

Microkernel
Paravritualization
Fullvritualization

1000

0

200

400

600

800

M
em

or
y

us
ag

e (
M

B)

Figure 9: The results of memory usage experiment.

the full virtualization solution. Paravirtualization is not the
right choice when you only have limited RAM.

(3) Storage Usage Comparison. Figure 10 shows that micro-
kernel uses the least storage while paravirtualization solution
occupies themost.These three solutions grow stablywhile the
number of VMs increases. So when it comes to storage usage,
all these 3 solutions have linear scalability.

6. Conclusions and Future Work

Virtualization of mobile smart devices is becoming a more
and hotter research point. In our research, we find many big

10 International Journal of Distributed Sensor Networks

1 VM 2 VMs 3 VMs 4 VMs 5 VMs

Microkernel
Paravritualization
Fullvritualization

24002400

00

600600

12001200

18001800

St
or

ag
e u

sa
ge

 (M
B)

Figure 10: The results of storage usage experiment.

IT companies such as VMware, OK Labs, Samsung, Citrix,
Wind River, and Red Bend have changed attentions on this
field. In this paper, we described what mobile virtualization
is and the benefits it brings. We do this work more detailed
than others. As far as we know that we are also the first
to classify existing works as four kinds of solutions: con-
tainers,microkernel, hardware-assisted full virtualization, and
paravirtualization. We introduced these solutions in detail
and talked about their advantages and limitations. At last,
we built an experiment platform and carried out a series of
performance evaluation between three open source projects.

Our work is in progress and we research deeply on
containers technology. We believe it will be a suitable
solution for mobile devices because of its light-weight and
configuration. We will continue this research and perform
comprehensive evaluations. We plan to develop a well user
experienced platform to support multiple isolated virtual
domains running on an Android system.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] A. Aguiar and F. Hessel, “Current techniques and future trends
in embedded system’s virtualization,” Software: Practice and
Experience, vol. 42, no. 7, pp. 917–944, 2012.

[2] L. Xu,W. Chen, Z.Wang, and S. Yang, “Smart-DRS: a strategy of
dynamic resource scheduling in cloud data center,” in Proceed-
ings of the IEEE International Conference on Cluster Computing
Workshops (Cluster Workshops ’12), pp. 120–127, Beijing, China,
September 2012.

[3] J. Andrus, C. Dall, A. V. Hof, O. Laadan, and J. Nieh, “Cells: a
virtual mobile smartphone architecture,” in Proceedings of the

23rd ACM Symposium on Operating Systems Principles (SOSP
’11), pp. 173–187, October 2011.

[4] S. Yoo, Y. Liu, C. H. Hong, C. Yoo, and Y. Zhang, “Mobivmm: a
virtual machine monitor for mobile phones,” in Proceedings of
the 1st ACM Workshop on Virtualization in Mobile Computing,
pp. 1–5, June 2008.

[5] A. Aguiar and F. Hessel, “Embedded systems’ virtualization: the
next challenge?” in Proceedings of the 21st International IEEE
Workshop on Rapid System Prototyping (RSP ’10), pp. 1–7, June
2010.

[6] G. Heiser, “The role of virtualization in embedded systems,” in
Proceedings of the 1st Workshop on Isolation and Integration in
Embedded Systems (IIES ’08), pp. 11–16, April 2008.

[7] K. Adams and A. Ole, “A comparison of software and hardware
techniques for x86 virtualization,” ACM SIGOPS Operating
Systems Review, vol. 40, no. 5, pp. 2–13, 2006.

[8] X. Y. Chen, “Smartphone virtualization: status and challenges,”
in Proceedings of the International Conference on Electronics,
Communications and Control (ICECC ’11), pp. 2834–2839,
September 2011.

[9] “Operating system-level virtualization,” http://en.wikipedia
.org/wiki/Operating system-level virtualization.

[10] V. Z. Open, http://wiki.openvz.org/Introduction to virtual-
ization.

[11] “cgroups,” http://en.wikipedia.org/wiki/Cgroups.
[12] Namespaces, http://en.wikipedia.org/wiki/Namespace.
[13] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson,

“Container-based operating system virtualization: a scalable,
high-performance alternative to hypervisors,” ACM SIGOPS
Operating Systems Review, vol. 41, no. 3, pp. 275–287, 2007.

[14] G. Heiser and B. Leslie, “The OKL4 microvisor: convergence
point of microkernels and hypervisors,” in Proceedings of the 1st
ACM Asia-Pacific Workshop on Systems (APSys ’10), pp. 19–23,
August 2010.

[15] P. Varanasi and G. Heiser, “Hardware-supported virtualization
on ARM,” in Proceedings of the 2nd Asia-Pacific Workshop on
Systems (APSys ’11), July 2011.

[16] C. Dall and N. Jason, “KVM for ARM,” in Proceedings of the
Ottawa Linux Symposium, pp. 1–12, 2010.

[17] J. Y. Hwang, S. B. Suh, S. K. Heo et al., “Xen on ARM: System
virtualization using xen hypervisor for ARM-based secure
mobile phones,” in Proceedings of the 5th IEEE Consumer Com-
munications and Networking Conference, pp. 257–261, January
2008.

[18] “EmbeddedXEN,” http://sourceforge.net/projects/embedded-
xen.

[19] CodeZero, https://github.com/jserv/codezero.
[20] S. Chawla, A. Nigam, P. Doke, and S. Kimbahune, “A survey

of virtualization on mobiles,” in Advances in Computing and
Communications, vol. 191 of Communications in Computer and
Information Science, pp. 430–441, Springer, Berlin, Germany,
2011.

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mechanical
Engineering

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Antennas and
Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

