
Microprocessors and Microsystems 52 (2017) 365–380

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Joint affinity aware grouping and virtual machine placement

Jianhai Chen

a , Qinming He

a , Deshi Ye

a , ∗, Wenzhi Chen

a , Yang Xiang

b , Kevin Chiew

c ,
Liangwei Zhu

a

a College of Computer Science, Zhejiang University, Hangzhou, China
b School of Information Technology, Deakin University, Burwood, Vic. 3125, Australia
c Handal Indah Pte. Ltd., Singapore

a r t i c l e i n f o

Article history:

Received 2 February 2016

Revised 25 November 2016

Accepted 9 December 2016

Available online 13 December 2016

Keywords:

Virtualization

Affinity grouping

Resource allocation

VM colocation

Affinity scheduling

Bin packing

a b s t r a c t

The N on- A ffinity A ware G rouping based resource A llocation (NAGA) method toward the G eneral

VM P lacement (GP) problem enables (1) some VMs to be co-located onto the same PM while the VMs

are required to be placed onto distinct PMs; and (2) some VMs to be dispersedly placed onto dis-

tinct PMs while the VMs are required to be co-located onto the same PM, leading to a serious per-

formance degradation of application running over multiple VMs in cloud computing. In this work

we study an A ffinity A ware VM P lacement (AAP) problem and propose a J oint A ffinity A ware G rouping

and B in P acking (JAGBP) method to remedy the deficiency of the NAGA method. We firstly introduce

affinity of VMs to identify affinity relationships to VMs which are required to be placed with a special

VM placement pattern, such as colocation or disperse placement, and formulate the AAP problem. Then,

we propose an affinity aware resource scheduling framework, and provide methods to obtain and identify

the affinity relationships between VMs, and the JAGBP method. Lastly, we present holistic evaluation ex-

periments to validate the feasibility and evaluate the performance of the proposed methods. The results

demonstrate the significance of introduced affinity and the effectiveness of JAGBP method.

© 2016 Elsevier B.V. All rights reserved.

1

i

c

c

t

G

f

f

S

t

I

t

t

t

p

s

y

X

c

i

p

t

l

a

m

i

d

a

s

t

e

r

u

t

P

h

0

. Introduction

Cloud computing has been a paradigm for delivering comput-

ng services to users with an abstraction of scalable, unlimited

omputing resources on a pay-as-you-go basis and it runs appli-

ations to provide services for users on remote datacenters over

he Internet [9] . Nowadays many large companies, such as Amazon,

oogle, Microsoft and Alibaba, have built public clouds success-

ully. More and more enterprises set up private clouds managed by

rameworks such as VMware vCloud [1] , OpenStack [5] , and Cloud-

tack [18] , paving a new commercial business model with migra-

ion of business applications to clouds. Due to a recent survey of

T decision makers of large companies, 68% of the respondents es-

imate that more than 50% of their companies’ IT services will be

ransmitted to cloud platforms by the end of 2014 [26] .

The success of cloud computing partly ascribes to virtualiza-

ion. Virtualization has become a crucial technology of cloud com-

uting and built the essential infrastructure for clouds. It enables

erver consolidation and live migration, and brings the dynami-
∗ Corresponding author.

E-mail addresses: chenjh919@zju.edu.cn (J. Chen), hqm@zju.edu.cn (Q. He),

edeshi@zju.edu.cn (D. Ye), chenwz@zju.edu.cn (W. Chen), yang@deakin.edu.au (Y.

iang), kchiew@handalindah.com.my (K. Chiew), zhulw@zju.edu.cn (L. Zhu).

V

c

m

/

ttp://dx.doi.org/10.1016/j.micpro.2016.12.006

141-9331/© 2016 Elsevier B.V. All rights reserved.
al resource scheduling and allocation into reality for clouds. Var-

ous applications, such as High Performance Computing (HPC) ap-

lications [21] , multi-tiers web applications [17] , parallel applica-

ions [14] , and big data processing applications [2] , are encapsu-

ated into multiple virtual machines (VMs) which are dynamically

llocated to a large pool of physical machines (PMs) [8,32,44] .

With the growing number of users using clouds, the VM place-

ent resource scheduling and allocation has become an increas-

ngly important problem of current datacenter [20] . Many cloud

atacenters currently are still at a very low resource utilization

nd need efficient resource allocation methods [6] . The goal of re-

ource allocation is commonly to maximize datacenter revenues or

he ratio between performance and cost. It involves performance

fficiency as well as energy efficiency. The performance efficiency

equires the allocation to minimize application performance cost

sing virtualization. The energy efficiency requires the allocation

o maximize resource utilization, namely, minimize the number of

Ms.

Besides, as virtualization brings itself performance cost, some

Ms running applications are required to be placed with a spe-

ific placement pattern, i.e., VMs colocation or disperse place-

ent [15,30] . For examples, the running of many communication-

data- intensive applications inside multiple VMs generates net-

http://dx.doi.org/10.1016/j.micpro.2016.12.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2016.12.006&domain=pdf
mailto:chenjh919@zju.edu.cn
mailto:hqm@zju.edu.cn
mailto:yedeshi@zju.edu.cn
mailto:chenwz@zju.edu.cn
mailto:yang@deakin.edu.au
mailto:kchiew@handalindah.com.my
mailto:zhulw@zju.edu.cn
http://dx.doi.org/10.1016/j.micpro.2016.12.006

366 J. Chen et al. / Microprocessors and Microsystems 52 (2017) 365–380

t

o

i

i

S

c

2

l

t

h

w

2

b

i

o

t

t

a

m

i

n

i

p

b

d

i

w

c

C

t

p

f

n

a

t

d

f

o

a

M

t

n

b
work communication traffics or data traffics amongst VMs [25] .

Colocating VMs with traffics can reduce network communication

overhead and improve application performance. While co-locating

the VMs onto the same PM can cause competition of shared com-

puting resources, such as CPU, memory, disk and network I/O

bandwidth, etc. The special demand of VM placement pattern

brings a dependency or relationship for VMs running applications.

Nevertheless, considering the dependency between VMs, the

VM placement resource scheduling and allocation bring forward

two major challenges:

(1) Obtaining the dependency of VMs with an effective place-

ment pattern for running applications efficiently is not a

trivial task. It requires a detailed analysis of application pro-

gram behaviours or features and a holistic performance eval-

uation for running application under all kinds of distinct VM

placement schemes.

(2) Solving the problem of VM placement resource scheduling

and allocation is always an optimization problem, such as

the bin packing problem. Due to bin packing is an NP-hard

problem, making decision of an optimal VM placement re-

source allocation solution for both minimizing the number

of PM to guarantee energy efficiency and guaranteeing the

dependency between VMs is a big challenge.

There have been some research works addressing the challenges

and proposed some methods on resource allocation [10,34,39–42] .

However, current methods rarely consider the dependency of VMs

and lack a general approach to generalize the dependency of VMs

for VM placement. Further, there still are no general efficient meth-

ods to obtain and identify relationships between VMs in VM place-

ment. Although some methods solve the general VM placement re-

source allocation as a bin packing problem, without consideration

of the dependency or relationship between VMs, the bin packing

methods will enable the VMs which are required to be colocation

placed onto the same PM but not, and the VMs which are required

to be dispersedly placed onto distinct PMs but not, causing a cer-

tain level of application performance degradation [46] .

In this paper, we target to remedy the deficiency of the gen-

eral resource allocation methods like bin packing and focus on

both minimizing the application performance cost and maximiz-

ing the resource utilization. At first, by conducting experiments in

a testbed with several typical cloud applications running between

multiple VMs, we do performance evaluation by running applica-

tions under two different VM placement patterns, namely, VMs

colocation placement and dispersedly placement with all kinds of

combination of VMs and PMs. Motivated by the observation re-

sults, we introduce affinity to denote the dependency between

VMs and define affinity relationships between VMs for VM place-

ment and state an affinity aware VM placement (AAP) problem.

Then, we propose a Joint Affinity Aware Grouping and Bin Pack-

ing (JAGBP) method to solve the AAP problem, including an affinity

grouping algorithm and several heuristic bin packing algorithms.

At last, we present three experiments to validate efficiency of the

proposed methods, including (1) experiments on obtaining and

identifying the affinity relationships between VMs, (2) a simula-

tion experiment on verifying the run efficiency of algorithms, and

(3) a real cloud environment experiment to illustrate the effective-

ness of the JAGBP method through constructing seven virtual clus-

ters (VCs) configured with 59 VMs for running typical cloud appli-

cations, including the HPCC and RUBiS benchmarks. By comparing

to the Non-affinity aware grouping allocation (NAGA) method, the

JAGBP method significantly improve the application performance

better than the NAGA method.

In brief, our contributions are as follows.

(1) We model affinity between VMs for VM placement. In the

model, we give the methods to find and identify affinity re-
lationships between VMs, involving the performance mea-

surement, analysis and evaluation of typical cloud virtual-

ization applications.

(2) We present an affinity aware VM placement (AAP) problem

and the JAGBP method. To the best of our knowledge, we are

the first to present AAP problem and propose JAGBP method.

(3) We provide an affinity aware VM placement framework for

cloud computing system resource scheduling. It integrates

affinity obtaining methods and resource scheduling algo-

rithms which can be efficiently used to advance the practical

cloud computing platforms.

(4) We conduct overall experiments to demonstrate the effec-

tiveness of our proposed methods.

The remaining sections are organized as follows. We present

he related work in Section 2 , the background and motivation of

ur work in Section 3 . Next, we model the affinity and affin-

ty relationship, and state the affinity aware placement problem

n Section 4 and we propose solutions to solve the problem in

ection 5 , followed by experiments in Section 6 . Finally we give

onclusion in Section 7 .

. Related work

This paper presents an approach for VM placement resource al-

ocation in cloud computing systems, considering both optimiza-

ion of application performance and resource utilization to provide

ighly performance cost ratio for cloud. Here, we discuss related

ork in the literature related to similar issues.

.1. Affinity and virtualization performance studies

Many research on affinity and virtualization performance has

een conducted in cloud computing.

Chen and Li et al. proposed affinity as a property of VMs to

dentify the relation between a virtual CPU and CPU core in VMM

r Hypervisor to implement a new schedule strategy to improve

he efficiency of virtualized resource scheduling under a single vir-

ualized system in cloud computing [4] . Sonnek et al. presented

n affinity-aware VM migration technique to minimize the com-

unication overhead on a virtualized platform [33] . The affinity

s identified as a policy or a technique of VM migration for a dy-

amic resource allocation. Yan, Cairong et al. discussed an affin-

ty aware virtual cluster optimization method for Mapreduce ap-

lications placement [43] . The affinity is defined as relationships

etween virtual clusters and obtained by measuring the latency

istance between network virtual machines. The proposed affin-

ty in this paper denotes relationships between VMs associated

ith special VM placement patterns, colocation placement and no-

olocation placement.

Sudevalayam et al. put forward an affinity aware modeling of

PU usage method to evaluate performance of virtualized applica-

ions hosted onto two VMs with colocation placement or disperse

lacement [35] . They focus on CPU usage-based application per-

ormance evaluation under VM colocation or disperse location sce-

arios but not resource allocation. Two years later, they described

n affinity aware modeling of CPU usage with communicating vir-

ual machines and develop pair-wise affinity-aware models to pre-

ict expected CPU resource requirements [36] . Their proposed per-

ormance evaluation methods paved a good way to obtain affinity

f VMs for our work. Our work presents a general affinity of VMs

nd affinity relation model for VM placement resource allocation.

eng et al. introduced a traffic-aware VM placement to improve

he network scalability [25] . The network traffic generates commu-

ications. The authors did not address affinity for VM placement

ut the traffic property defines a kind of affinity for our work. Re-

J. Chen et al. / Microprocessors and Microsystems 52 (2017) 365–380 367

c

t

t

a

V

e

k

I

r

2

c

s

m

r

c

b

h

b

w

m

V

r

p

i

m

m

s

t

a

s

t

a

r

n

i

v

e

m

a

t

3

p

w

t

a

3

o

S

d

a

p

t

P

t

V

t

A

h

fi

i

t

P

e

o

p

g

c

w

p

i

d

p

f

d

P

3

m

p

s

u

t

t

c

A

b

a

C

X

s

m

H

s

e

o

s

3

o

t

a

t

t

3

p

a

a

u

m

a

b
ently, Zhang, Wei et al. provided an interference minimization op-

imization method for Hadoop virtual machines placement. The in-

erference between VMs running Hadoop application also denotes

 kind of affinity for our work [47] .

Besides, some Enterprise virtualization products such as

MWare addressed a simple resource management system which

mployed affinity to signify a set of VMs which are required to be

ept together as one unit to do colocation in VM placement [12] .

t proves the practicality of our study on affinity-aware grouping

esource allocation.

.2. Resource allocation, scheduling for virtual machine placement

Virtualization reduces complexity of resource scheduling allo-

ation and eases resource management in VM placement. In large

cale datacenter or cloud computing systems, the network perfor-

ance optimization is a significant issue. Yet many solutions di-

ectly improve the network performance by changing network ar-

hitecture and routing protocols in modern datacenters, but rarely

y optimizing the VM placement [11,27] .

While in virtualized datacenters, more and more researches

ave developed a lot of efficient methods to improve performance

y designing efficient algorithms to optimize VM placement. Still-

ell, M. et al. proposed various algorithms for the VM place-

ent resource allocation problem [34] . Wilcox et al. solved the

M placement as vector packing with a grouping genetic algo-

ithm [40] . Panigrahy et al. addressed the heuristics vector bin

acking based on FFD approximate approaches to the vector pack-

ng problem [29] . Tordsson, J. et al. proposed cloud brokering

echanisms for optimized placement of virtual machines across

ultiple providers [38] . Jay Smitha et al. investigated a robust

tatic resource allocation problem for distributed computing sys-

ems operating under imposed Quality of Service (QoS) constraints

nd used a unique application of both path relinking and local

earch within a Genetic Algorithm [31] .

Recently, Depoorter et al. provided a resource management sys-

em to advance reservation, co-allocation and pricing of network

nd computational resources in grids [7] . Xiaoling Li et al. study a

esource allocation with multi-factor node ranking in data center

etworks [19] . These VM allocation solutions adopt VM bin pack-

ng techniques, in which the VMs and PMs are multi-dimensional

ectors including dimensions like CPU, RAM, disk and network I/O,

tc. [40] . We present an affinity aware grouping resource allocation

ethod to minimize system overhead. In other words, these works

re non-affinity-awareness but the proposed techniques are helpful

o our affinity-aware grouping resource allocation research works.

. Background and motivation

We are interested in recognizing the correlation between ap-

lication performance and VM placement patterns. In this section,

e firstly present a case study on application performance evalua-

ion as a background, resulting in motivation of our further affinity

ware VM placement work.

.1. VM placement pattern

In VM placement one VM is allocated onto a PM, which means

ne VM is mapped to a fixed PM, or VM has a fixed PM location.

ome VMs cannot only be colocatedly placed onto one PM but also

ispersedly placed onto distinct PMs. Certainly we can also choose

 specific PM to deploy some VMs. We introduce a notation VM

lacement pattern to denote some VMs placed onto PMs according

o how to deploy VMs onto PMs. As far as the number of VMs or

Ms is concerned, we use another notation VM placement scheme
o denote a specific combination of given some VMs and PMs for

M placement corresponding to the VM placement pattern.

Moreover, for any one or two VMs placed onto PMs, we address

hree general simple VM placement patterns as shown in Fig. 1 .

t first, if we need to place some VMs into a fixed PM, then we

ave a fixed placement pattern (FP) that is one VM is placed onto a

xed PM. While for any two VMs, there are two patterns as shown

n (1) and (2) of Fig. 1 . One is (1) colocation placement (CP) pat-

ern, that is two or more VMs are colocation placed onto the same

M, and the other is (2) no-colocation placement (NCP) or dispers-

dly placement (DP) pattern that is two VMs are dispersedly placed

nto distinct PMs.

For the simplicity of description in the latter section of this pa-

er, we use a function form CP(·) or CP(n) (n is the number of

iven VMs) to denote the colocation placement scheme in which

onsidering the number of VMs and the VMs are viewed as a

hole group and placed onto the same PM or location. For exam-

le, CP(8) denotes 8 VMs as one group placed onto one PM whilst

dling the other PM. Furthermore, we use a function form DP(·) to

enote no-colocation placement (NCP) or dispersedly placement (DP)

attern in which VMs are distributed among multiple PMs or dif-

erent PM locations. For example, DP(7 + 1) denotes eight VMs are

ivided into two groups with 7 VMs as a group placed onto one

M and 1 VM as a group placed onto the other PM.

.2. Benchmarking cloud application

We choose a typical cloud application, the HPC Challenge bench-

ark (HPCC) [22] . As a case study, we evaluate HPCC application

erformance under distinct VM placement patterns and placement

chemes. HPCC comprises of seven benchmark applications. It is

sed to measure the performance of parallel computing in a clus-

er with several nodes configured with VMs. We choose seven

ypical metrics for our study, including four metrics from four

ommunication-aware benchmarks, namely, HPL, PTRANS, FFT and

vgpingpong from HPCC benchmark and three memory-intensive

enchmarks, namely, STREAM, RandomAccess and DGEMM.

The testbed system involves four homogeneous PMs. All PMs

re Dell PowerEdge T710 servers each with dule Intel(R) Xeon(R)

PU E5620 @ 2.40 GHz, totally 16 cores and 16GB RAM running

en-3.3.1 virtualization technology. We deploy 4, 8 and 16 VMs re-

pectively onto PMs to run the HPCC benchmark applications to

easure its performance under all kinds of placement schemes.

PCC application has four main parameters related to workload

ize, i.e., A, NB, P and Q, in which A denotes the order of the co-

fficient matrix, NB the partitioning blocking factor, P the number

f process rows, and Q the number of process columns. In the case

tudy, Matrix A is set to 10 0 0 × 10 0 0 and others to be default.

.2.1. Traffics between VMs on running HPCC

At first, without consideration of the performance, we focus

n testing the dependency between VMs derived from traffics be-

ween VMs. We create a simple virtual cluster (VC) with four VMs

nd deploy VMs onto one PM. We run the test three times and ob-

ain the average of the traffic results as shown in Fig. 2 . We find

hat traffics between HPCC VMs are very heavy or frequent.

.2.2. HPCC performance

Further, we counter-intuitively think that the traffics can incur

erformance influence for the HPCC application. Then, we create

nother two VCs with 8 VMs and 16 VMs to run the whole HPCC

pplication many times, summarize the performance metric val-

es and conclude the average value as final results for our perfor-

ance analysis. According to the number of VM and PM, we sep-

rate VMs and PMs into several combination forms for all possi-

le VM placement schemes. For example, for given eight VMs and

368 J. Chen et al. / Microprocessors and Microsystems 52 (2017) 365–380

Fig. 1. Three basic placement patterns.

Fig. 2. Traffic amongst 4 VMs (1–4) running HPCC benchmark. The values in the

edge between VMs are average traffic rate, concluded by a ratio between total traffic

volume in all time intervals and the total runtime, detail in Section 4 .

Fig. 3. The runtime performance of HPCC.

Table 1

HPL comparison of three schemes.

CP(16) DP(8+8) DP(4+4+4+4)

HPL_Tflops 0 .0061 0 .0018 0 .0017

3

s

c

a

B

C

t

i

s

V

d

t

c

b

b

w

s

d

a

a

a

g

P

two PMs, we can have totally five combinations to allocate these

VMs to two PMs, namely CP(8), DP(7 + 1), DP(6 + 2), DP(5 + 3),

and DP(4 + 4). Moreover, considering that the number of PMs is

three or four, for eight VMs, we also try other two special scenar-

ios: a scheme DP(3 + 3 + 2) where 8 VMs deployed among three

PMs, and a scheme DP(2 + 2 + 2 + 2) deployed onto four PMs each

with two VMs, respectively. After running HPCC under all schemes

we obtain the runtime metric and seven key metrics corresponding

to all benchmarks of HPCC for evaluation. At last, for 16 VMs, we

only consider three general placement schemes, namely, CP(16),

DP(8 + 8), and DP(4 + 4 + 4 + 4) and obtain the HPL benchmark

metric for evaluation.

The results are described as follows.

(1) We first compare the runtime performance metric as shown

in Fig. 3 . We see that CP(8) requires the least runtime as

compared with others, meaning that all eight VMs placed

onto one PM can complete running with the runtime less

than half of that of DP(4 + 4) or one fourth of that of DP(2 +
2 + 2 + 2).
(2) We then compare the performance in terms of the other

four different metrics from communication/data- intensive

benchmarks under different VM deployment schemes. The

results is shown in Fig. 4 . It tells that CP(8) outperforms

all other schemes for the four metrics; especially, for met-

ric PTRANS, CP(8) is five times better than DP(7 + 1) or 10

times better than others.

(3) We further compare the performance derived from three

non-communication intensive metrics of HPCC. These met-

rics are memory intensive. From the results shown in Fig. 5 ,

we find that all memory intensive metrics shows little dif-

ference under distinct VMs placement schemes.

(4) Table 1 illustrates the comparison of HPL metric for these

schemes for 16 VMs used to run HPCC application, from

which we confirm that CP(16) outperforms nearly four times

than other two schemes so that colocation-placing VMs can

obtain much more benefit.

.3. Motivation

From the above observations of performance evaluation case

tudy, we conclude that for heavy communication intensive appli-

ations, VMs colocation placement scheme can obtain much better

pplication performance according to specific concerned metrics.

ut certainly this may not be true because the performance of the

PU-intensive or memory-intensive applications are restricted by

he limit of PM resource capacity because of contention of shar-

ng resource. In other word, with consideration of limited PM re-

ource capacity, in colocation-placement the overloaded allocation

Ms onto PMs cannot be sure to improve application performance

ue to contention of sharing resource between colocated VMs.

Therefore, in view of application performance, it is meaningful

o do co-locating such VMs to run communication intensive appli-

ations during the VM placement resource allocation. Then, if the

enefit of performance under distinct placement patterns is known

efore VM allocation decision, it is necessary to identify the VMs

ith a dependency or relationship. Motivated by this, in the latter

ection of the paper, we further introduce affinity to denote the

ependency or relationship between some VMs running a specific

pplication and in practical VM placement we do placing the VMs

ccording to the affinity rules. When the VMs are identified with

ffinity relationships, we can also offer benefit to do affinity aware

rouping and placing VM groups with affinity as a whole unit to

Ms, so as to guarantee the affinity.

J. Chen et al. / Microprocessors and Microsystems 52 (2017) 365–380 369

Fig. 4. Communication-intensive benchmark metrics of the HPCC benchmark performance evaluation amongst different metrics in distinct CP and DP schemes.

Fig. 5. Non-communication intensive benchmarks of the HPCC performance evaluation against different metrics.

4

e

m

4

D

t

a

t

r

v

s

o

e

t

c

a

i

D

r

t

p

m

a

4

t

t

n

t

p

4

i

p

a

D

V

m

d

i

s

m

p

. Problem statement

In this section, we firstly provide some definitions for mod-

lling affinity of VMs and then state the Affinity Aware VM Place-

ent (AAP) problem.

.1. Definition

efinition 1. Affinity . The affinity is defined as a dependency be-

ween one or more VMs with a special placement pattern running

 special application workload.

The affinity can be derived from the communication or data

ransmission traffics between the two VMs generated during the

unning of application. Generally, to reduce performance cost of

irtualization and offer better application performance in VM re-

ource allocation, the two VMs are required to be colocation placed

nto one PM with enough CPU, MEM or placed onto two PMs with

nough network bandwidth and located locally. We further extend

he meaning of affinity conception to a general conception that we

an identify a dependency to VMs if the VMs are required to have

 special placement pattern.

The affinity of VMs means a relationship between VMs. Accord-

ng to relation theory, we define affinity relation as follows [28] .

efinition 2. Affinity Relation. The affinity relation is defined as a

elationship between two VMs with affinity property.
According to the basic VM placement patterns, we define

hree affinity types and affinity relations, namely, colocation

lacement affinity/relation (co-affinity/relation), no-colocation place-

ent affinity/relation (noco-affinity/relation) and fixed placement

ffinity/relation (fixed-affinity/relation).

.2. Affinity aware VM placement problem

Without consideration of affinity, we call the VM placement as

he G eneral VM P lacement (GP) problem. In the following, we state

he affinity aware placement (AAP) problem by adding affinity as

ew rules to the GP problem. Specifically, we put forward defini-

ions and integer programming models for both the GP and AAP

roblem.

.2.1. The GP problem and IP-GP model

As a resource allocation problem, a VM can be viewed as an

tem and a PM as a bin. We formalize the GP problem as a bin

acking or VM packing (VMP) problem which is described detail

s follows [40] .

efinition 3. General VM placement problem (GP). Given a set

 = { v 1 , v 2 , . . . , v n } with n VMs and a set P = { p 1 , p 2 , . . . , p m

} with

 homogeneous PMs, each VM item has a d -dimensional resource

emand size and PM has a d -dimensional resource capacity, find-

ng an optimal placement scheme, subject to matching the PM re-

ource capacity limit (RLC) constraint that for each resource di-

ension the total size of VMs in each PM cannot excess the ca-

acity size of the PM, such that the number of PM is minimized.

370 J. Chen et al. / Microprocessors and Microsystems 52 (2017) 365–380

g

f

m

t

m

c

I

s

5

p

a

5

w

c

o

i

f

s

c

c

F

u
The GP problem is an optimization problem. We describe the

Integer Programming model for GP problem (IP-GP) in the follow-

ing.

Definition 4. IP-GP model. Given n VMs and m homogeneous

PMs, we suppose that a PM is a bin and a VM an item. The PM

bin and VM item are both d -dimensional resource vectors. The

VM items are allocated and packed onto PM bins. For each bin

j ∈ { 1 , . . . , m } we introduce a binary variable y j which we set to

1 if bin j is used in the packing, and 0 otherwise. For each VM

item i ∈ { 1 , . . . , n } and each bin j , we introduce a binary variable

x ij which we set to 1 if item i is packed into bin j , and 0 other-

wise. Each item i is a resource vector s i = (s 1
i
, s 2

i
, . . . , s d

i
) , and each

dimension k ∈ { 1 , . . . , d} denotes a resource demand size s k
i

which

is normalized to 0..1. In each dimension, the capacity of each PM

bin is also normalized to 1.

Specifically, the IP-GP model is described as follows.

min

∑ m

j=1 y j (1)

subject to

∑ m

j=1 x i j = 1 , ∀ i ∈ { 1 , . . . , n } , (2)

∑ n
i =1 s

k
i
· x i j ≤ 1 , ∀ k ∈ { 1 , . . . , d} , j ∈ { 1 , . . . , m } (3)

x i j ≤ y j (4)

x i j ∈ { 0 , 1 } , y j ∈ { 0 , 1 } (5)

The bin packing of GP problem is NP-hard and we cannot get

the optimal VM placement solutions in polynomial time unless

P = NP [16] . In next section, we will describe some bin packing

heuristic methods to give approximate solutions [29] .

4.2.2. The AAP problem and IP-AAP model

Next, we state the affinity aware VM placement problem as fol-

lows.

Definition 5. Affinity Aware VM placement Problem AAP . Given

a set V of n VMs, a set P of m homogeneous PMs, a set E with

e affinity relations between VMs, find an optimal VM placement

solution to allocate the VMs onto PMs, subject to matching the

RLC constraint, such that both the affinity relationships are satis-

fied and the number of PM is minimized.

Like GP problem we further consider an Integer Programming

model of the AAP problem (IP-AAP). The IP-AAP model is de-

rived from the IP-GP model considering three affinity relationships.

Specifically, corresponding to the basic three affinity relationships,

we address three equations as rules and add to the IP-GP model.

The equations are illustrated in Eqs. (6) –(8).

Moreover, for the simplicity of description, we introduce an

affinity relation matrix A = (a i j) i, j∈{ 1 , ... ,n } to denote all affinity rela-

tions between VM items. For ∀ i, j ∈ { 1 , . . . , n } , the value of a ij de-

note a weight value of affinity relation and is set to 0 as default.

We distinguish three affinity relation types by setting the elements

a ij to distinct values.

(1) At first, we set the diagonal element of A , namely, a ii (i ∈
{ 1 , . . . , n }) , a value (≥0) to denote one VM with fixed-

affinity or without fixed-affinity. The value set to 0 denotes

VM item i has no fixed-affinity, otherwise a positive integer

number k (k ∈ { 1 , . . . , m }) denotes item i has a fixed-affinity

and need to be placed onto a fixed PM bin k .
(2) Then, we set other elements a i j (i � = j) , i, j ∈ { 1 , . . . , n } , to a

value to denote the co-affinity and noco-affinity between

item i and j . The value set to 0 denotes item i and j have

no colocation/no-colocation affinity , a positive number (a ij >

0) denotes item i and j have a colocation affinity relation, and

a negative number (a ij < 0) denotes item i and j have a no-

colocation affinity .

The size of value represents a real weight of affinity (affinity de-

ree) which is associated with the value of some application per-

ormance metrics, such as the traffic rate between VMs or perfor-

ance revenue value.

Each affinity relation constructs a rule in IP-AAP model. We add

he rules to the IP-AAP model for every affinity relation as follows.

• Colocation affinity rule (Co-affinity) : let item i and j have a

colocation affinity and are required to be colocation placed onto

the same bin k ∈ { 1 , . . . , m } , then item i and item j can use

equal binary variable, namely, there exists bin k, k ∈ {1.. m },

x jk = x ik = 1 and x jl = x il = 0 , where l � = k , and l for all oth-

ers. In other words, we can combine item i and j to one group

item as a new item, and for each dimension d , the size of group

item v is denoted by the sum of item i and j , i.e., s d v = s d
i

+ s d
j
.

In fact, we use the same binary variable for these two items.

For all colocation affinity relations, we add the following con-

straint (6) to ILP.

x jk = x ik , ∀ k, if a i j > 0 (6)

• No-colocation affinity rule (Noco-affinity) : we assume item i

and j have a no-colocation affinity and are required to be de-

ployed onto two distinct bins k and l (k � = l).

In this case, we add the following constraints (7) to ILP-AAP.

x ik + x jk ≤ 1 , ∀ k, if a i j < 0 (7)

• Fixed PM affinity rule (Fixed-affinity) : let item i have a fixed

PM affinity associated with a fixed PM bin a ii , namely, is placed

onto a fixed PM bin u = a ii . Then we have the following corre-

sponding equation.

x iu = 1 , ∀ i, if u = a ii ≥ 1 (8)

The IP-AAP model also can be solved by a faster optimizer of

athematics, such as CPLEX [3] and Gurobi [13] . We use it to con-

lude a solution. However it lasts even longer time than that of

P-GP model. So it is unrealistic for practical applications when the

ize of items is increased.

. Solve the problem

In this section we propose an overall solution to solve the AAP

roblem with an affinity aware resource scheduling framework and

 joint affinity aware grouping and placement method.

.1. Scheduling framework

We design an affinity aware resource scheduling (AARS) frame-

ork for cloud system as shown in Fig. 6 . We consider a general

loud application scenario in the framework. At first, cloud users

r tenants send requests for running applications by renting VMs

n cloud computing. Each application runs inside one or more VMs,

or example, the cloud App.1 with 2 VMs, App.2 with 3 VMs, and

o on. Then the cloud controller receives a list of VMs request from

loud users and execute a resource scheduling or VM resource allo-

ation, such as initial placement, load balancing at every moment.

or the affinity aware resource scheduling, we design three mod-

les, i.e., affinity generator, affinity scheduler and schedule decider.

J. Chen et al. / Microprocessors and Microsystems 52 (2017) 365–380 371

Fig. 6. Affinity aware resource scheduling framework.

5

t

c

t

5

r

g

I

d

i

m

d

c

p

l

m

d

a

i

l

i

c

p

w

b

g

5

m

t

b

s

d

t

t

t

v

t

p

w

t

p

m

t

F

o

(

d

I
• The affinity generator is in charge of generating affinity rela-

tionships for VMs as resource scheduling rules. During the run-

ning of application between VMs, the affinity generator gener-

ates the affinity relations between VMs. It receives application

workload profiling data, VMs, PMs resource data from cloud

controller. It needs many affinity monitor tools responsible for

monitoring, obtaining and recording the detailed affinity infor-

mation of VMs timely. Eventually, the monitoring result infor-

mation data is summarized to do affinity analysis and conclude

whether VMs have affinity or not.
• The affinity scheduler is responsible for the control and manage-

ment of VM affinity aware resource scheduling. It termly checks

scheduling request from cloud controller, and determines which

type of scheduling should be done, such as initial placement or

load balancing. When a schedule request is coming, it immedi-

ately sends the request to the scheduling decider to complete

scheduling decision.
• The scheduling decider is responsible for making resource

scheduling decision. The decision results are made up of a

list of specific scheduling operations, such as VM migrations,

placement of VMs onto PMs, VM boot or shutdown operation.

The scheduling decision is realized with some decision algo-

rithms including affinity grouping and affinity group packing al-

gorithms.

.2. Obtaining and identifying affinity

We can firstly obtain affinity of VMs and identify affinity rela-

ionships for the VMs in VM placement. Below we give some prin-

iples and methods for obtaining and identification of affinity be-

ween VMs.

.2.1. General principles and methods

We assume in a real cloud scheduling some VMs are known to

un specific applications. The applications always have specific pro-

ram behaviours or features. Then, we identify the affinity to VMs.

f we do not know the application performance features, then we

o some performance evaluations similar as what we have done

n the case study in Section 3 . Certainly performance evaluation

aybe bring much additional cost. Especially, there are no need to

o it for the short-run application programs. But it is useful for
louds to do it for the longrun ones. Therefore, we have a princi-

le with a focus on doing some performance evaluations for the

ongrun applications to obtain affinity relationships between the

ultiple VMs.

After all, we obtain affinity for VMs based on the placement

emand of a special VM placement pattern. The general principles

nd methods are as follows. (1)During the performance evaluation,

f colocating VMs onto one PM can achieve better performance or

ower cost, then identify the VMs with colocation placement affin-

ty. (2)On the contrary, we identify some of two VMs with no-

olocation placement affinity. (3)Moreover, if a cloud user has a

reference with a demand of placing his VMs onto a fixed PM, then

e identify the VMs with a fixed PM placement affinity.

In addition, in order to distinguish the affinity relationship can

e weighed with a value as affinity ratio. The value of affinity de-

ree is mapping to a performance metric value.

.2.2. Colocation placement affinity

We take an example for identifying VMs with colocation place-

ent affinity for VMs running communication intensive applica-

ions. We obtain the affinity between VMs by detecting traffics

etween VM pairs. Actually, the traffic can be easily captured by

ome traffic monitoring tools such as tcpdump [24] . Based on tcp-

ump, we implement a traffic collection tool to automatically cap-

ure traffic fingerprinting between all VM pairs in every time in-

erval during the whole running process of applications.

In every time interval (e.g., second or minute), we sum up a to-

al bytes of all the transferred packets between VM pairs as traffic

olume. Specifically, each traffic record signifies a network packet

ransferred from a source server to a destination server. We ex-

ress it as a triple like < sourceid, destinationid, volume > , in

hich sourceid and destinationid denote the source and distinc-

ion server IP address, respectively, and the volume denotes the

acket size (bytes) of traffic being captured within a length of

onitoring time. In addition, a pair of VMs (x, y) will have dis-

inct value of traffic volumes in the two transmission directions.

or simplicity, we assume they are identical otherwise use average

f them. As a metric, we use average traffic rate (ATR): bps,mbps

bytes/mbytes per second) or pps (packet-amounts per second) to

enote the communication traffic dependency between a VM pair.

n addition, we conclude the metric of ATR between a VM pair,

372 J. Chen et al. / Microprocessors and Microsystems 52 (2017) 365–380

C

V

a

g

t

d

P

s

m

i

a

p

5

c

m

5

a

g

r

a

a

t

o

5

t

t

i

h

i

a

a

(

i

a

h
by dividing the total traffic volume by the total runtime like to-

tal seconds consumed in running applications as in the following

formula.

AT R = T otal tra f f ic v olume/T otal time (sec.) . (9)

VMs with traffics indicates the VMs be colocation placed onto

the same PM and we identify the VMs with colocation placement

affinity . For each VM pair with affinity we map the metric ATR as

affinity degree.

Besides, when a set of VMs runs CPU-/memory- intensive ap-

plications in one PM, we can capture the PM resource usage in-

cluding CPU, RAM, disk I/O and network, and check whether there

are heavy resource contention or not between VMs. And then we

evaluate the application performance by comparing performance

results under distinct VM placement patterns. If there are heavy

resource contention between VMs, then we identify no-colocation

placement affinity for the VMs.

5.3. Joint affinity aware grouping and placement

We adopt the approximation methods to solve the AAP problem

because the AAP problem is NP-hard. We propose a joint affinity

aware grouping and placement method. In the method, the AAP

problem is divided into two subproblems, (1) affinity aware group-

ing problem; (2) affinity-VM-group placement problem.

5.3.1. Affinity aware grouping

The affinity aware grouping problem is generated from the

co-affinity equivalence class partition features derived from the

colocation affinity equivalence relation. Specifically, note that VMs

with colocation affinity relationships are required to be colocation

placed, so two VMs with colocation affinity are required to be colo-

cation placed onto one PM, which indicates the two VMs can be

combined together as one big VM unit to be placed onto one PM.

Further, in Section 4 , we have proved that the colocation affinity

relation is an equivalence relation. Hence, given a number of VMs

with colocation affinity relations, we can do equivalence partition,

i.e., grouping for these VMs. We call it as affinity aware grouping,

which targets to partition the VMs with colocation affinity rela-

tions into a set of disjoint VM sets. That is, the VMs with coloca-

tion affinity are firstly partitioned into a set of disjoint equivalence

classes. Each equivalence class includes a set of VMs, which con-

structs a VM group.

We introduce and define colocation affinity VM group as follows.

Definition 6. Colocation affinity VM Group. The colocation affin-

ity VM group is defined as a set of VMs in an equivalence class

based on colocation affinity relation. In VM placement, all VMs of

this group are viewed as a whole unit required to be colocation

placed onto one PM.

We create rules to generate colocation affinity VM groups as

follows according to the relation theory and co-affinity property.

Given a finite set V of VMs, let x, y ∈ V be two VMs.

Obviously, a set of one VM forms a colocation affinity VM group

because a VM item and itself will be obviously allocated to the

same PM and have colocation affinity relationship.

Claim 1. A set of two VMs having a co-affinity relationship forms one

affinity VM group.

Proof. Given two VMs x and y, x ∼ y , AG is the union of set { x }

and { y }, i.e., AG = { x } ∪ { y } = { x, y } , a subset of V , generates a co-

affinity group on x and y . Due to x and y having co-affinity relation,

x and y are allocated to the same PM, namely, all VMs in AG are

allocated to one PM. �
laim 2. The union of two co-affinity VM groups forms an co-affinity

M group, if two VMs between the two different groups exist one co-

ffinity relation. Equivalently, let AG 1 and AG 2 be two affinity VM

roups, and AG 1 ∩ AG 2 = ∅ , if ∃ x ∈ AG 1 , y ∈ AG 2 , and x ∼ y, then

he union of AG = AG 1 ∪ AG 2 is a union affinity VM group for two

isjoint affinity VM groups.

roof by contradiction. if AG 1 and AG 2 cannot be allocated to the

ame PM, then x and y cannot be allocated to the same PM, which

eans x and y are not grouped into the same group, or the affin-

ty between x and y is broken. So if and only if AG 1 and AG 2 are

llocated to the same PM, or distinct PMs, the affinity-aware VM

lacement between x and y can be guaranteed. �

.3.2. Affinity VM group placement

After affinity aware grouping, the VMs are grouped into a set of

o-affinity VM groups which are uniformly processed in VM place-

ent.

We consider three cases as follows:

(1) The first case is called only-co-affinity placement , denoted by

COAP , in which all the affinity of VMs are co-affinity and

there are no large co-affinity groups. We do not consider

noco-affinity, then the VMs can be grouped of a set of co-

affinity VM groups, and each co-affinity VM group can be

combined and viewed as one big VM. The VM placement

turns into a group placement problem.

(2) The second case is called co- and noco-affinity placement , de-

noted by CN-COAP , in which some VMs have co-affinity and

some VMs have noco-affinity. In this case, we firstly parti-

tion VMs into groups according to co-affinity relations and

then make decision of allocation the VM groups into PMs

with consideration of the noco-affinity one by one.

(3) The third case is called big co-affinity placement denoted by

BIG-COAP in which the total resource demand size of all VMs

in one co-affinity group is bigger than all the PM resource

capacity . In this case, we cannot allocate these co-affinity

group VMs into one PM, so we allow the co-affinity group

VMs to be dispersedly placed onto distinct PMs. But yet,

some co-affinity relations are not satisfied, which generates

a special system overhead.

.4. Scheduling algorithms

In this section, we propose the joint affinity aware grouping

nd placement method with affinity aware resource scheduling al-

orithms to solve the AAP problem. It includes a grouping algo-

ithm for VMs with co-affinity relations and bin packing heuristics

lgorithms for resource scheduling with consideration of all other

ffinity relations except co-affinity. The scheduling includes many

ypes, such as the initial placement and load balancing. We focus

n solving the initial VM placement problem.

.4.1. Affinity aware grouping

Given a set V of VMs and a set AR of VM-affinity relation be-

ween VMs, the affinity aware grouping algorithm aims to group

he VMs into a set of disjoint subsets of V , each of which is a max-

mized co-affinity VM group and in each group none of VM pairs

as noco-affinity relationships. The maximized co-affinity VM group

s such a group inside which any VM has co-affinity relation with

t least one VM in the group and has no co-affinity relation with

ny other VM outside the group.

We accordingly have the following two assumptions, namely

1) an optimal grouping enables each VM group to have the max-

mal number of VM items with co-affinity and each VM has co-

ffinity relationship with at least one VM in the same group and

as no co-affinity relationship with any VM item outside this

J. Chen et al. / Microprocessors and Microsystems 52 (2017) 365–380 373

g

c

(

c

w

G

s

A

R

E

i

p

a

t

b

t

t

a

a

n

5

g

a

a

t

c

o

l

v

c

i

p

g

a

p

o

n

t

r

c

s

S

S

S

S

i

t

t

F

m

P

a

8

p

D

i

h

A

t

e

c

T

g

s

i

K

w

5

n

s

F

t

s

m

p

g

s

e

t

n

w

W

o

h

a

i
roup; (2) for each dimension the total resource demand of any

o-affinity VM group is no more than the resource capacity of PM;

3) two VMs with noco-affinity must be allocated onto two distinct

o-affinity groups, namely, the affinity groups are also identified

ith noco-affinity relations.

We denote this co-affinity grouping algorithm as Max-VA-

rouping (MVAG) algorithm and describe the detailed steps as

hown in Algorithm 1 .

lgorithm 1 Algorithm MVAG : Max-VA-Grouping.

equire:

A VM set with the number N;

A VM affinity relation set V R with the number E;

nsure:

A set of disjoint maximized co-affinity VM groups V G and a set

of noco-affinity relation between co-affinity groups GR .

1: Input the resource demand value of VMs V , and affinity rela-

tions V R .

2: Build-set. Initially each VM of V is built as a co-affinity VM

group set (singleton set) V G and a new noco-affinity relation

set for co-affinity groups GR is set empty.

3: Find-set. For each affinity relation between a VM pair in V R ,

find the co-affinity VM group set which contains the two VMs,

and get the two co-affinity VM group sets.

4: Union-set. If the affinity relation is co-affinity, then we apply

union operation to the two co-affinity VM group sets to get a

new co-affinity VM group set; otherwise, we have the affinity

is noco-affinity, then we create and identify a new noco-affinity

relation between the two co-affinity groups, namely, add the

noco-affinity between the two co-affinity groups to GR .

5: If there are any other co-affinity relations, then goto Step 3;

otherwise goto Step 6.

6: return V G , the result co-affinity VM group set and GR , a noco-

affinity relation set for V G .

The grouping can reduce the size scale of the number of VM

tems in resource allocation and improve the efficiency of VM

lacement decision. Specifically, let NV be the number of VM items

nd NG be the number of group items, then we have NG ≤ NV . The

ime complexity consists of the time for three operations, namely

uild-set (Step 2), find-set (Step 3), and union-set (Step 4) opera-

ions. We use a tree-based data structure and a path compression

echnique to minimize the computation complexity. Being similar

s the disjoint set algorithm [37] , the time complexity of MVAG

lgorithm is O(N+E), where N is the number of VMs and E is the

umber of affinity relations.

.4.2. Affinity-VM-group packing

After affinity aware grouping, we have a set of co-affinity VM

roups and a set of noco-affinity relationships between these co-

ffinity VM groups. Next, we firstly assume the resource size of

ll affinity groups is smaller than the PM resource capacity. And

hen, we consider an optimal resource allocation scheme to allo-

ate these co-affinity groups onto PMs and minimize the number

f PM with satisfying two constraints, namely, resource capacity

imit of PM and affinity. Given that the co-affinity group can be

iewed as a whole unit like one big VM, the co-affinity group allo-

ation is similar as the single VM resource allocation and the affin-

ty group allocation problem is NP-hard [16] . Thus, we also use bin

acking methods to conclude the optimal solution. We call the VM

roup bin packing as affinity group packing (AGP), which is also

 type of vector bin packing (VBP) [29] , or multi-dimensional VM

acking. In particular, during the whole process of decision making

f group allocation, all affinity relations are required to be satisfied,
amely, the VMs in the same group be allocated onto the same PM,

wo VMs with noco-affinity be disperse placed onto distinct PMs.

In the following, we depict some affinity group packing algo-

ithms based upon bin packing heuristic methods. The main pro-

ess of affinity group packing algorithm includes the following four

teps.

tep 1. Input. Initially, input affinity VM group items, PM bins and

no-colocation affinity relations between groups;

tep 2. Sorting groups. Use a measure to identify a value for each

group item to decompose resource vectors and make sort

by the measure in a decreasing order;

tep 3. Packing groups. Make decision of selecting and packing

each group items into a suitable PM according to a policy

of satisfying two constraints or rules: (a) resource capacity

limits constraint; (b) the affinity constraints including colo-

cation affinity and no-colocation affinity.

tep 4. Output. Output the group items placement results, a list of

mapping VMs to PMs.

From the above basic process, if we do not sort the group

tems in a decreasing order, we have the heuristics methods,

he First Fit (FF), Best Fit (BF), Next Fit (NF), etc. If we employ

he sort in placement we have the heuristics including the First-

it-Decreasing (FFD), the Best-Fit-Decreasing (BFD). We also have

any variants of FFD for multi-dimensional items, such as FFD-

rod, FFDAvgSum etc. if we convert the resource vector items to

 numerical value for sorting in a decreasing order. In particular,

 variants of FFD and BFD based on eight kinds of measures are

roposed in [23] and three variants of FFD, namely, FFDProd, FF-

AvgSum and FFDExpSum are provided in [29] .

Without loss of generality, we choose the FFD bin packing pol-

cy to make decision of the affinity group packing, and then we

ave a FFD-based group packing. The algorithm is denoted as FFD-

GP algorithm. We analyze the performance of the algorithm. The

ime complexity of FFD-AGP includes the sorting and packing op-

ration. The sorting complexity is at least O (K log (K)) because we

an use quick-sort method, where K is the number of group items.

he packing includes iterations of making decisions of packing K

roup items and testing E times of no-colocation affinity relations,

o the complexity of packing is O (K + E) . Thus, the total complex-

ty of FFD-AGP is O (K log (K)) + O (KE) . Especially, the max of E is

(K − 1) / 2 if all pairs of group items have a no-colocation affinity,

hich is actually impossible.

.4.3. Discussion

We have mentioned three cases of affinity VM group placement,

amely, COAP, CN-COAP and BIG-COAP. The first two cases can be

olved by the above-mentioned affinity group packing algorithms.

or the BIG-COAP scenario, the big affinity VM group is split into

wo or more groups, each of which can be packed into a PM. The

plit operation will generate a special system overhead. To mini-

ize the overhead derived from the unsatisfied affinity, the best

lacement scheme is that the VMs in each colocation affinity VM

roup are allocated onto the same PM, and the PM have so large

ize of resource capacity that can pack all VMs in this VM group.

We can assume that for each VM affinity group, there always

xists one PM that has enough resource capacity to pack VMs in

his affinity group. This assumption may be reasonable because

ow the increasingly growing hardware technology brings one PM

ith increasing size of resource capacity, such as CPU and RAM.

e can use a bigger location, such as rack, which denotes a cluster

f several PMs deployed onto one or more racks connected with

igh bandwidth. We also assume that for each service most ten-

nts use a small number of VMs across which having affinity lead-

ng to a small affinity group. Only a few services require a large

374 J. Chen et al. / Microprocessors and Microsystems 52 (2017) 365–380

Fig. 7. Traffic rate amongst 3 VMs (1–3) running RUBiS benchmark. The values

(Mbps) are average traffic ratio (ATR).

Fig. 8. Traffic amongst 16 VMs (1–16) running a Hadoop workload: wordcount. The

values (Mbps) are average traffic ratio (ATR).

V

f

t

w

p

fi

t

T

r

l

6

t

w

H

p

a

m

e

d

r

a

6

t

t

h

i

s

e

1

t

u

r
number of VMs with affinity as one large affinity group with total

resource requests overstepping the PM resource capacity.

Actually, in the BIG-COAP scenario, there are no PMs that can

take in all VMs in one large affinity group. We also can use a

mini-cut method [25] to divide the large affinity VM group item

into several small affinity VM group items, across the items having

minimized overhead, such that each group resource request is less

than one PM capacity and the network communication overhead is

minimized.

6. Evaluation

We implement a tool based on tcpdump to automatically obatin

traffics between VMs running communication-/data- intensive ap-

plications for testing the existence of affinity between VMs. Then

we implement a simulation software tool for affinity resource

scheduling with grouping and bin packing heuristic algorithms in

C language. We create a real cloud environment to evaluate the

effectiveness of the JAGBP method. The configuration of experi-

mental environment is the same as described in our case study

in Section 3 .

6.1. Evaluate affinity from traffics

In Section 3 , we provide a case study of obtaining traffic be-

tween VMs on running the HPCC benchmark application. In this

section, we present a further experiment to evaluate the existence

of affinity to generalize the method. We choose other two typical

benchmark applications, namely, RUBiS and hadoop [47] for affin-

ity evaluation. RUBiS is a multi-tier emulation of e-bay web appli-

cation. It simulates various tasks done by various clients, including

user and item registration, browsing items per category and per

region, bidding for or buying items and so on. Hadoop provides a

distributed file system by using the MapReduce paradigm to an-

alyze and transform very large data sets. It tackles computation

from files distributed amongst multiplicative nodes.

6.1.1. Traffics on running RUBiS

In this section, we evaluate the traffics between the VMs of

RUBiS. RUBiS contains three modules: a web server, a database

server and an emulation client, which are setup onto three VMs

under one PM, respectively. In traffic measurement, the number of

clients, a primary parameter determining the workload size, is set

to 1400, and other parameters are set as default. We run the ex-

periment five times and each run lasts twenty minutes. We get the

average of total traffic volumes and conclude the traffic rate of all

VM pairs. The final results are shown in Fig. 7 . We observe that the

traffic rate between different VM pairs is different, i.e., the traffic

rate between client and web server VM is 16.6 times higher than

that of between web and DB server VM. Hence, the web server and

database server have frequent communications because all web re-

quests from clients are processed by the web server and database

server.

6.1.2. Traffics on running hadoop

In this section, we evaluate the traffic between VMs running

Hadoop application. We construct a virtual cluster (VC) with 16
Ms, which are placed onto one PM and all VM image files are uni-

ormly stored in a network file system (NFS) server. We pick one

ypical workload of hadoop: wordcount, which is used to count all

ords inside a certain word file under a distributed multi-nodes

latform. The size of word file is set to 100MB. We capture traf-

c fingerprinting between all VM pairs and conclude the average

raffic rate as affinity degree as shown in Fig. 8 .

Fig. 8 shows that all VM pairs have small average traffic rates.

he main control node is VM node 1 which has the most traffic

ates. We can conclude that the traffics between hadoop VMs are

ess frequent.

.1.3. Result analysis

By comparison of all traffic measurement results from the three

ypical cloud applications, HPCC performs the largest traffic rates,

hich indicates the largest dependency between the VMs. While

adoop performs as the opposite, the traffic rates between VM

airs are very small and much less than that from RUBiS. The large

mount of traffic rate indicates that the VMs hosting HPCC bench-

ark application require much more network bandwidth than oth-

rs. In conclusion, these results tell us that not only the traffic

ependency between VM pairs commonly exist amongst the VMs

unning cloud applications, but also it reveals a great difference

mong distinct cloud applications running between multiple VMs.

.2. Evaluate algorithms in simulation

In this section, we provide a simulation experiment to verify

he effectiveness of algorithms used in JAGBP method. Initially, all

he algorithms, including the affinity grouping and bin packing

euristics algorithms, are implemented in a simulator tool which

s used as a resource scheduler for our affinity aware resource

cheduling framework. The simulator program runs on a Dell Pow-

rEdge T710 Intel(R) Xeon(R) CPU E5620 @ 2.40 GHz machine with

6GB of memory running Linux OS.

We generate several classes of VM workloads according to dis-

inct scale in VM number, dimension, and affinity relation. We

se a metric affinity ratio to denote the number scale of affinity

elations, which is concluded by dividing the number of affinity

J. Chen et al. / Microprocessors and Microsystems 52 (2017) 365–380 375

r

f

1

a

0

r

a

w

6

t

c

v

V

1

i

i

a

f

G

m

t

w

M

T

f

b

D

a

P

r

i

b

p

e

s

d

i

t

N

s

a

V

o

4

i

t

a

a

c

t

a

i

s

r

c

6

e

V

w

Table 2

The configuration of each virtual cluster.

VC VM RAM/VM CPU Total

number (MB) RAM(GB)

VC1 16 512 shared 8

VC2 8 768 shared 6

VC3 6 640 shared 3 .75

VC4 12 384 shared 4 .5

VC5 10 512 shared 5

VC6 4 896 shared 3 .5

VC7 3 1024 shared 3

c

s

V

i

6

h

r

c

o

s

m

f

c

s

e

3

T

i

i

s

t

p

H

p

p

v

o

n

o

e

o

i

r

w

s

6

t

e

s

c

t

a

w

i

c
elationships to the number of VMs N . each class contains 5 dif-

erent scales of VM number (N is set to 20 0 0 , 40 0 0 , 60 0 0 , 80 0 0 ,

0 , 0 0 0), 6 dimensions (d is set from 1 to 6), and 6 kinds of

ffinity relation scale, which is denoted by affinity ratio (AR): r =
 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , respectively.

Firstly, we randomly generate totally 8 VM workload files cor-

esponding to 8 classes of distribution workloads. Each file denotes

 class of VM workload information. To facilitate running tests,

e generate two arrays with 10,0 0 0 rows and 6 columns, totally

0 , 0 0 0 real numerical VM workload data in each file. However,

he production of the affinity relation workloads data is directly in

orrelation with the VM workload and also generated random. It

aries in different classes of workload distribution, the number of

M, dimension and affinity relation. Then, totally 5 × 6 × 6 × 8 =
440 affinity workload files are produced. One simulation instance

ncludes one VM workload file and one affinity file.

We conduct simulations for two scenarios, (1)VM pack-

ng (VMP) method, a bin packing method without considering

ffinity, i.e., a non-affinity aware grouping allocation method (NAGA)

or the GP problem, and (2) JAGBP method, for our Joint-Affinity

rouping and Bin Packing method, to test and compare perfor-

ance based on the runtime metric. In each round of simula-

ion execution, the simulation tool firstly loads a VM workload file

ith a set of VMs and an affinity relation file. Then it invokes the

ax-AV-Grouping algorithm and outputs the affinity group results.

hese results are a set of VM affinity groups and used as input

or the bin packing algorithms. At last it implements the heuristic

in packing algorithms and outputs the placement scheme results.

uring the period of each round of execution, the runtime of each

lgorithm and the packing efficiency of relative metrics including

M number for each heuristic packing algorithm, are logged in a

esult file. In JAGBP, the total runtime is the sum of Affinity Group-

ng time, denoted by AGT and affinity group packing time, denoted

y GPT. While in NAGA method the runtime is just only total of VM

acking time. Besides, for the correctness of the result, the overall

xecution runs three times and the results are accumulated into

everal files. We generate total 1440 × 3 × 14 = 60 , 480 amounts of

ata used for performance analysis.

At last, we choose FFD packing algorithm based on a descend-

ng order by total sum of all dimensions of each item and the run-

ime metric to show the efficiency of JAGBP with comparison to

AGA method. The results are shown in Fig. 9 which includes four

ubfigures. Fig. 9 (a) is the total runtime results of JAGBP and NAGA

mongst all workload classes in the case of 2 dimensions, 40 0 0

Ms, and affinity ratio = 0.4; Fig. 9 (b) is the total runtime results

f JAGBP and NAGA amongst all distinct VM number in the case of

 dimensions, workload class C4, and affinity ratio = 0.4; Fig. 9 (c)

s the total runtime results of JAGBP and NAGA amongst all dis-

inct affinity ratios in the case of 4 dimensions, workload class C4,

nd 60 0 0 VMs; and Fig. 9 (d) is the total runtime results of JAGBP

nd NAGA amongst all distinct dimensions in the case of workload

lass C1, 60 0 0 VMs, and affinity ratio = 0.5.

From the Fig. 9 , in all cases the total runtime of JAGBP is less

han that of NAGA method, resulting that the VM affinity grouping

nd packing achieve higher efficiency than the single VM packing

n terms of less runtime. Actually, in a large resource scheduling

cenario, the scheduling decision efficiency is important. Thus the

untime efficiency of JAGBP method will be meaningful for practi-

al applications.

.3. Evaluate performance of the JAGBP method

In this section, we create a real cloud application running

xperiment in which we combine the simulator algorithms and

M placement as a whole solution. Given many VMs and PMs,

e present two schemes based on two VM deployment schemes
orresponding to JAGBP and NAGA method, respectively. In each

cheme we run the same cloud application running on multiple

Ms and evaluate the efficiency of the JAGBP method by compar-

ng the application performance results.

.3.1. Experimental environment

A cloud datacenter generally runs many kinds of applications

osted amongst multiple VMs, and we denote a group of VMs for

unning one type of application as a virtual cluster (VC). Hence a

loud datacenter comprises several VCs. Different VCs run different

r same applications with distinct preset input workloads or data

cales. We focus on the case that one application is hosted with

any VMs. For simplicity, we choose HPCC and RUBiS application

or our evaluation.

To construct an experimental environment imitating a real

loud datacenter, we chose four identical Dell PowerEdge T710

erver machines with dual Intel(R) Xeon(R) CPU E5620 @ 2.40 GHz,

ach of which has totally 16 Cores and 16GB RAM running Xen-

.3.1. The Linux VMs and domain0 run Linux Kernel-2.6.18.8-xen.

he domain0 is configured with many virtual CPU cores. All VM

mages are stored in a Network Filesystem Server (NFS). The VMs

n different VC share CPU cores, and are allocated with different

ize of memory.

To simulate multiple applications, we totally construct 7 dis-

inct VCs with total 59 VMs as computing nodes by given different

reset configurations. 6 VCs (VC1-VC6) are generated by running

PCC benchmarks according to different number of nodes and ap-

lication scale parameters. The VC7 is used for running RUBiS ap-

lication with three VMs and each VM is allocated with 1 shared

CPU and 2GB memory. Each VC is made up of different number

f VMs with different total vCPU and memory. Because the run-

ing of HPCC and RUBiS generate traffics between VMs, the VMs

f each VC are identified with colocation placement affinity. Thus

ach VC is made up of a colocation affinity VM group.

The configuration of V C1 − −V C7 is listed in Table 2 . The VMs in

ne PM share the CPU limited to 32 Cores, and the RAM capacity

s limited to 12GB (total 16GB) with consideration of the resource

eservation [45] . As shown in Table 2 , we limit each affinity-group

ith a total resource (RAM) demands less than the PM capacity,

uch that it can be colocation placed onto one PM.

.3.2. Placement schemes

We implement two specific placement schemes. In each scheme

he placement pattern is determined by a certain placement strat-

gy. The placement solution is concluded by a provided allocation

trategy, denoted as a table, in which the row represents VC, the

olumn represents PM and a numerical value in a cell (i, j) denotes

he VM number of VC i allocated to PM j . One VC runs a multi-VM

pplication and the VMs construct one colocation affinity group

ith colocation placement affinity relationships.

The first scheme adopts the JAGBP method. The VMs are firstly

dentified with affinity relationships and grouped into several colo-

ation affinity groups via Max-VA-Grouping. Then, we arbitrarily

376 J. Chen et al. / Microprocessors and Microsystems 52 (2017) 365–380

Fig. 9. The performance comparison from JAGBP to NAGA method against total runtime.

Table 3

FFD-based affinity-VM-group placement using

JAGBP.

VC/PM PM1 PM2 PM3 PM4

VC1(HPCC) 16 0 0 0

VC2(HPCC) 0 8 0 0

VC3(HPCC) 0 0 6 0

VC4(HPCC) 0 0 12 0

VC5(HPCC) 0 10 0 0

VC6(HPCC) 0 0 4 0

VC7(RUBiS) 0 0 0 3

Table 4

FFD-based VM placement.

VC/PM PM1 PM2 PM3 PM4

VC1(HPCC) 0 16 0 0

VC2(HPCC) 8 0 0 0

VC3(HPCC) 4 2 0 0

VC4(HPCC) 0 0 12 0

VC5(HPCC) 0 5 5 0

VC6(HPCC) 4 0 0 0

VC7(RUBiS) 1 0 1 1

6

t

s

g

s

b

P

o

t

e

o

t

M

2

f

p

n

P

c

a

H

a

J

d

p

s

p

1

e

2

m

7

m
use an FFD bin packing heuristic method to allocate these colo-

cation affinity groups onto PM. In FFD bin packing the VMs are

sorted by the VM memory resource dimension in a decreasing or-

der. The detailed deployment is listed in Table 3 .

The other scheme employs the VM packing (VMP) method with-

out considering affinity of VMs, namely, non-affinity grouping allo-

cation method, which is denoted as NAGA . We use FFD bin packing

heuristic method in which VMs are firstly sorted in a decreasing

order based on memory dimension, and then deployed onto PMs

one by one. For VC7 we deploy the 3 VMs dispersedly onto three

PMs to run RUBiS with a workload size 20 0 0 (client number) in

order to do a comparison with JAGBP method. Table 4 lists the de-

tail of deployment information. Except VC7, the VMs of VC3 and

VC5 are deployed amongst two PMs, i.e., VC3 as (4 + 2 + 0 + 0)

and VC5 as (0 + 5 + 5 + 0) , while the VMs of other VCs are still

colocation placed onto one PM, e.g., VC1 as (0 + 16 + 0 + 0) .
.3.3. Running and results analysis

We firstly run the HPCC applications over the VC1-VC6 and

he RUBiS application of VC7 under both JAGBP scheme and NAGA

cheme respectively. All schemes run concurrently three times and

enerate several files each time. And then we extract from the re-

ult files and pick four metrics from four communication-intensive

enchmarks of HPCC, i.e., HPL_Tflops for HPL, PTRANS_GBs for

TRANS, AvgPingPongBandwidth_GBytes for PingPong benchmark

f b_eff, MPIFFT_Gflops for FFT, and choose the metric average

hroughput from the RUBiS application result. Table 5 gives the av-

rage result for each metric value.

From Table 5 , we can observe that all performance metrics

f VC3 and VC5 generated from JAGBP scheme are better than

hose generated from NAGA scheme. Especially, the performance of

PIFFT benchmark in VC5 derived from JAGBP scheme performs

3.5 times better than that from NAGA scheme, while VC3 per-

orms 5 times better. For other VCs, JAGBP scheme performs better

erformance results than NAGA scheme. However, a few cases do

ot show expected performance, such as MPIFFT in VC6, AvgPing-

ong in VC2 and VC6, VC6 under JAGBP and NAGA scheme, be-

ause of the resource contentions derived from VMs sharing CPU

nd memory bring impact on it.

In addition, in our experiments, due to VC1-VC6 run the same

PCC benchmark, we sum the metric value to compare the over-

ll performance of the simulated cloud multi-VCs system under

AGBP and NAGA deployment schemes. All metric value of VCs un-

er JAGBP and NAGA deployment schemes are normalized to 1 for

erformance comparison. Fig. 10 shows the overall performance re-

ults. We conclude that JAGBP outperforms NAGA the HPCC ap-

lication performance metrics, i.e., HPL improves 28.3%, PTRANS

6.3%, MPIFFT 87.6%, and AvgPingPong 19.7%, respectively, and Av-

rage Throughput metric of RUBiS benchmark application improves

5.2%. These results demonstrate the effectiveness of the JAGBP

ethod.

. Conclusion and future work

In this paper, we have studied the affinity aware VM place-

ent problem. The contribution we made is as follows. (1) We

J. Chen et al. / Microprocessors and Microsystems 52 (2017) 365–380 377

Table 5

The metric results of benchmarks in all VCs under JAGBP and NAGA scheme.

Benchmark (Metric) Deploy. Scheme VC1 VC2 VC3 VC4 VC5 VC6 VC7 Total

HPL(Tflop/s) JAGBP 0 .0087 0 .0094 0 .0026 0 .0046 0 .0045 0 .0060 0 .0358

NAGA 0 .0078 0 .0059 0 .0010 0 .0054 0 .0017 0 .0061 0 .0279

PTRANS(GB/s) JAGBP 0 .3648 0 .3711 0 .0497 0 .1621 0 .0594 0 .4659 1 .4731

NAGA 0 .3959 0 .2454 0 .0100 0 .2793 0 .0135 0 .3662 1 .3103

MPIFFT(Gflop/s) JAGBP 0 .5606 0 .4468 0 .3198 0 .5565 0 .5859 0 .1478 2 .6174

NAGA 0 .3944 0 .4014 0 .0623 0 .5363 0 .0249 0 .3226 1 .7419

AvgPingPong(Gbyte/s) JAGBP 0 .3208 0 .1679 0 .2673 0 .2931 0 .3826 0 .1316 1 .5634

NAGA 0 .2166 0 .2682 0 .1763 0 .2999 0 .1048 0 .2399 1 .3056

AverageThroughput(req/s) JAGBP 273 273

NAGA 218 218

Fig. 10. The overall system performance for each benchmark under JAGBP and

NAGA method.

h

d

m

l

m

t

(

l

g

a

a

w

p

J

m

r

a

d

t

t

A

a

s

s

N

R

[

[

[

[

[

[
[
ave made a case study of evaluating application performance un-

er distinct VM placement patterns and the results give us our

otivation. (2) We have introduced affinity of VMs, affinity re-

ations between VMs, associated the VM placement patterns to

inimize the application performance reduction, and identified

he affinity relationships across VMs from real application cases.

3) We have proposed the JAGBP method to solve the AAP prob-

em. The JAGBP method includes an affinity grouping algorithm to

roup the VMs given that there are known affinity relationships

cross VMs and bin packing heuristic algorithms. The algorithms

re integrated into an affinity aware resource scheduling frame-

ork for cloud system. (4) We have conducted comprehensive ex-

eriments to demonstrate the effectiveness and efficiency of the

AGBP method.

For our next study, a closely related direction is to investigate

any other techniques to find, quantify and identify the affinity

elationships from a list of VMs running practical cloud computing

pplications. Another direction is to study how to use the affinity

egree value to advance the VM placement based resource alloca-

ion and handle the case when the capacity of a PM is less than

he resource demand of an co-affinity VM group.

cknowledgments

The authors thank anonymous referees for helpful comments

nd suggestions to improve the presentation of this paper. This re-

earch is supported partly by the National Science and technology

upport program of China under Grant (No. 2012BAH94F00), and

SF of China under grant (No. 61472359 , 11671355).

eferences

[1] J. Y. Arrasjid, B. Lin, R. Veeramraju, S. Kaplan, D. Epping, M. Haines, Cloud com-

puting with vmware vcloud director(2011).

[2] M.D. Assunção , R.N. Calheiros , S. Bianchi , M.A. Netto , R. Buyya , Big data com-
puting and clouds: trends and future directions, J. Parallel Distrib. Comput. 79

(2015) 3–15 .
[3] D. Carrera , M. Steinder , I. Whalley , J. Torres , E. Ayguadé, Utility-based place-

ment of dynamic web applications with fairness goals, in: Proceedings of 2008
IEEE Network Operations and Management Symposium (NOMS 2008), IEEE,

2008, pp. 9–16 .
[4] H. Chen , H. Jin , K. Hu , Affinity-aware proportional share scheduling for virtual

machine system, in: Proceedings of the 9th International Conference on Grid
and Cooperative Computing (GCC 2010), Nanjing, China, 2010, pp. 75–80 .

[5] A. Corradi , M. Fanelli , L. Foschini , Vm consolidation: a real case based on open-

stack cloud, Future Gener. Comput. Syst. 32 (2014) 118–127 .
[6] C. Delimitrou , C. Kozyrakis , Quasar: resource-efficient and qos-aware cluster

management, ACM SIGPLAN Not. 49 (4) (2014) 127–144 .
[7] W. Depoorter , K. Vanmechelen , J. Broeckhove , Advance reservation, co-allo-

cation and pricing of network and computational resources in grids, Future
Gener. Comput. Syst. 41 (2014) 1–15 .

[8] M. García-Valls , T. Cucinotta , C. Lu , Challenges in real-time virtualization and

predictable cloud computing, J. Syst. Archit. 60 (9) (2014) 726–740 .
[9] S.K. Garg , A.N. Toosi , S.K. Gopalaiyengar , R. Buyya , Sla-based virtual machine

management for heterogeneous workloads in a cloud datacenter, J. Netw. Com-
put. Appl. 45 (2014) 108–120 .

[10] G. Gonçalves, P. Endo, T. Damasceno, A. Cordeiro, D. Sadok, J. Kelner, B. Me-
lander, J. Mångs, Resource allocation in clouds: concepts, tools and research

challenges, XXIX SBRC-Gramado-RS (2011).

[11] A. Greenberg , J.R. Hamilton , N. Jain , S. Kandula , C. Kim , P. Lahiri , D.A. Maltz ,
P. Patel , S. Sengupta , Vl2: a scalable and flexible data center network, in: ACM

SIGCOMM Computer Communication Review, 39, ACM, 2009, pp. 51–62 .
[12] A . Gulati , A . Holler , M. Ji , G. Shanmuganathan , C. Waldspurger , X. Zhu ,

Vmware distributed resource management: design, implementation, and
lessons learned, VMware Tech. J. 1 (1) (2012) 45–64 .

[13] I. Gurobi Optimization, Gurobi optimizer reference manual2014, URL http:
//www.gurobi.com (2014).

[14] C.-H. Hong , Y.-P. Kim , H. Park , C. Yoo , Synchronization support for parallel ap-

plications in virtualized clouds, J. Supercomput. 72 (9) (2016) 3348–3365 .
[15] V. Ishakian , A. Bestavros , Morphosys: Efficient Colocation of qos-Constrained

Workloads in the Cloud, Tech. Rep. BUCS-TR-2011-002, CS Dept., Boston Uni-
versity, 2011 .

[16] D. Johnson , M. Garey , Computers and Intractability: A Guide to the Theory of
np-Completeness, Freeman&Co, San Francisco, 1979 .

[17] C. Krintz , The appscale cloud platform: enabling portable, scalable web appli-

cation deployment, IEEE Internet Comput. 17 (2) (2013) 72–75 .
[18] R. Kumar , K. Jain , H. Maharwal , N. Jain , A. Dadhich , Apache cloudstack:

open source infrastructure as a service cloud computing platform, Int.
J.Adv.Eng.Technol. Manage. Appl. Sci. 1 (2) (2014) 111–116 .

[19] X. Li , H. Wang , B. Ding , X. Li , D. Feng , Resource allocation with multi-factor
node ranking in data center networks, Future Gener. Comput. Syst. 32 (2014)

1–12 .

20] Y. Li , X. Tang , W. Cai , Dynamic bin packing for on-demand cloud resource al-
location, Parallel Distrib. Syst. IEEE Trans. 27 (1) (2016) 157–170 .

[21] P. Luszczek , D. Bailey , J. Dongarra , J. Kepner , R. Lucas , R. Rabenseifner , D. Taka-
hashi , The hpc challenge (hpcc) benchmark suite, in: Proceedings of the 2006

ACM/IEEE Conference on Supercomputing (SC 20 06), Citeseer, 20 06, pp. 11–17 .
22] P. Luszczek, J. Dongarra, D. Koester, R. Rabenseifner, B. Lucas, J. Kepner, J. Mc-

Calpin, D. Bailey, D. Takahashi, Introduction to the hpc challenge benchmark

suite(2005).
23] K. Maruyama , S. Chang , D. Tang , A general packing algorithm for multidimen-

sional resource requirements, Int. J. Parallel Program. 6 (2) (1977) 131–149 .
[24] S. McCanne, C. Leres, V. Jacobson, Tcpdump and libpcap, 2012.

25] X. Meng , V. Pappas , L. Zhang , Improving the scalability of data center networks
with traffic-aware virtual machine placement, in: Proceedings of IEEE INFO-

COM (INFOCOM 2010), 2010, pp. 1–9 .

26] B. Narasimhan , R. Nichols , State of cloud applications and platforms: the cloud
adopters’ view, Computer 44 (3) (2011) 24–28 .

[27] R. Niranjan Mysore , A. Pamboris , N. Farrington , N. Huang , P. Miri , S. Radhakr-
ishnan , V. Subramanya , A. Vahdat , Portland: a scalable fault-tolerant layer 2

data center network fabric, in: ACM SIGCOMM Computer Communication Re-
view, 39, ACM, 2009, pp. 39–50 .

28] O. Ore , Theory of equivalence relations, Duke Math. J. 9 (3) (1942) 573–627 .
29] R. Panigrahy, K. Talwar, L. Uyeda, U. Wieder, Heuristics for vector bin packing,

research. microsoft. com (2011).

http://dx.doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0001
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0002
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0003
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0004
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0005
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0005
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0005
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0006
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0006
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0006
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0006
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0007
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0007
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0007
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0007
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0008
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0008
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0008
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0008
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0008
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0009
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0010
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0010
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0010
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0010
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0010
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0010
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0010
http://www.gurobi.com
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0011
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0011
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0011
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0011
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0011
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0012
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0012
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0012
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0013
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0014
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0014
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0015
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0015
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0015
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0015
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0015
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0015
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0016
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0016
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0016
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0016
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0016
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0016
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0017
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0017
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0017
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0017
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0018
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0018
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0018
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0018
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0018
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0018
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0018
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0018
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0019
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0019
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0019
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0019
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0020
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0020
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0020
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0020
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0021
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0021
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0021
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0022
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0022
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0022
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0022
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0022
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0022
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0022
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0022
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0022
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0023
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0023

378 J. Chen et al. / Microprocessors and Microsystems 52 (2017) 365–380

[

[30] M. Sindelar , R. Sitaraman , P. Shenoy , Sharing-aware algorithms for virtual ma-
chine colocation, in: Proceedings of the 23th ACM Symposium on Parallelism

in Algorithms and Architectures. San Jose, California, USA, (SPAA 2011), 2011 .
[31] J. Smith , A .A . Maciejewski , H.J. Siegel , Maximizing stochastic robustness of

static resource allocations in a periodic sensor driven cluster, Future Gener.
Comput. Syst. 33 (2014) 1–10 .

[32] J. Sonnek , A. Chandra , Virtual putty: Reshaping the physical footprint of vir-
tual machines, in: Proceedings of Workshop on Hot Topics in Cloud Computing

(HotCloud 2009), 2009 .

[33] J. Sonnek , J. Greensky , R. Reutiman , A. Chandra , Starling: minimizing com-
munication overhead in virtualized computing platforms using decentralized

affinity-aware migration, in: Proceedings of the 39th IEEE International Con-
ference on Parallel Processing (ICPP 2010), IEEE, 2010, pp. 228–237 .

[34] M. Stillwell , D. Schanzenbach , F. Vivien , H. Casanova , Resource allocation algo-
rithms for virtualized service hosting platforms, J. Parallel Distrib. Comput. 70

(9) (2010) 962–974 .

[35] S. Sudevalayam , P. Kulkarni , Affinity-aware modeling of cpu usage for provi-
sioning virtualized applications, in: Proceedings of the IEEE International Con-

ference on Cloud Computing (CLOUD 2011), IEEE, 2011, pp. 139–146 .
[36] S. Sudevalayam , P. Kulkarni , Affinity-aware modeling of cpu usage with com-

municating virtual machines, J. Syst. Softw. 86 (10) (2013) 2627–2638 .
[37] T.H. Cormen , C.E. Leiserson , R.L.. Rivest , C. Stein , Introduction to Algorithms,

Second Edition, MIT Press and McGraw-Hill, 2001 .

[38] J. Tordsson , R.S. Montero , R. Moreno-Vozmediano , I.M. Llorente , Cloud broker-
ing mechanisms for optimized placement of virtual machines across multiple

providers, Future Gener. Comput. Syst. 28 (2) (2012) 358–367 .
[39] N. Vasic , D. Novakovic , S. Miucin , D. Kostic , R. Bianchini , Dejavu: accelerating

resource allocation in virtualized environments, in: Proceedings of the 17th
International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS 2012), 12, 2012 .
[40] D. Wilcox , A. McNabb , K. Seppi , Solving virtual machine packing with a re-
ordering grouping genetic algorithm, in: Proceedings of IEEE Congress on Evo-

lutionary Computation (CEC 2011)„ IEEE, 2011, pp. 362–369 .
[41] T. Wood , P. Shenoy , A. Venkataramani , M. Yousif , Sandpiper: black-box and

gray-box resource management for virtual machines, Comput. Netw. 53 (17)
(2009) 2923–2938 .

[42] J. Xu , J. Fortes , Multi-objective virtual machine placement in virtualized data
center environments, in: Proceedings of the IEEE/ACM Int’l Conference on &

Int’l Conference on Green Computing and Communications (GreenCom 2010),

2010, pp. 179–188 .
[43] C. Yan , M. Zhu , X. Yang , Z. Yu , M. Li , Y. Shi , X. Li , Affinity-aware virtual clus-

ter optimization for mapreduce applications, in: Proceedings of 2012 IEEE
International Conference on Cluster Computing (CLUSTER 2012), IEEE, 2012,

pp. 63–71 .
44] D. Ye , J. Chen , Non-cooperative games on multidimensional resource allocation,

Future Gener. Comput. Syst. 29 (6) (2013) 1345–1352 .

[45] K. Ye , X. Jiang , D. Huang , J. Chen , B. Wang , Live migration of multiple virtual
machines with resource reservation in cloud computing environments, in: Pro-

ceedings of the IEEE International Conference on Cloud Computing (CLOUD
2011), 2011, pp. 267–274 .

[46] K. Ye , Z. Wu , C. Wang , B.B. Zhou , W. Si , X. Jiang , A.Y. Zomaya , Profiling-based
workload consolidation and migration in virtualized data centers, IEEE Trans.

Parallel Distrib. Syst. 26 (3) (2015) 878–890 .

[47] W. Zhang , S. Rajasekaran , S. Duan , T. Wood , M. Zhuy , Minimizing interference
and maximizing progress for hadoop virtual machines, ACM SIGMETRICS Per-

form. Eval. Rev. 42 (4) (2015) 62–71 .

http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0024
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0024
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0024
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0024
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0025
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0025
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0025
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0025
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0026
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0026
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0026
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0027
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0027
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0027
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0027
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0027
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0028
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0028
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0028
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0028
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0028
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0029
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0029
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0029
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0030
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0030
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0030
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0031
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0031
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0031
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0031
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0031
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0032
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0032
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0032
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0032
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0032
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0033
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0033
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0033
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0033
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0033
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0033
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0034
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0034
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0034
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0034
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0035
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0035
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0035
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0035
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0035
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0036
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0036
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0036
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0037
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0037
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0037
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0037
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0037
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0037
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0037
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0037
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0038
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0038
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0038
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0039
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0039
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0039
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0039
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0039
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0039
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0040
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0040
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0040
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0040
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0040
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0040
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0040
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0040
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0041
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0041
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0041
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0041
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0041
http://refhub.elsevier.com/S0141-9331(16)30413-6/sbref0041

J. Chen et al. / Microprocessors and Microsystems 52 (2017) 365–380 379

.D. candidate of college of Computer Science, Zhejiang University. He got his B.S. degree

nd M.E. degree in Computer Science and Technology from Zhejiang University in 2006.
g, performance evaluation & modeling,design and analysis of algorithms, scheduling and

 member of the IEEE and the ACM.

ter Science & Technology at Zhejiang University, P. R. China. He received his B.S., MS and

ity, P. R. China in 1985, 1988 and 20 0 0 respectively. His research interests include data

f Computer Science at Zhejiang University. He got his B.S. degree and Ph.D. degree in

d 2005, respectively. His research interests include design and analysis of algorithms,
mputing, scheduling and bin packing, and performance evaluation.

in computer science and technology from Zhejiang University, Hangzhou, China. He is
d Technology at Zhejiang University. His areas of research include computer architecture,

. He is a member of the IEEE and the ACM.

e from Deakin University, Australia. He is currently a Full Professor at School of Informa-
e Network Security and Computing Lab (NSCLab). His research interests include network

 In particular, he is currently leading his team developing active defense systems against
vestigator of several projects in network and system security, funded by the Australian

esearch papers in many international journals and conferences, such as IEEE Transactions
ed Systems, IEEE Transactions on Information Security and Forensics, and IEEE Journal on

rogram/general chair for many international conferences such as ICA3PP 12/11, IEEE/IFIP

DS 08, NSS 11/10/09/08/07. He has been the PC member for more than 60 international
ty. He serves as the associate editor of the IEEE Transactions on Computers, IEEE Trans-

Communication Networks (Wiley), and the editor of Journal of Network and Computer
r Society Technical Committee on Distributed Processing (TCDP). He is a senior member

 Technological University in Singapore, currently Kevin Chiew is R&D Lead with Handal

lated to big data analysis. Prior to this, he had been an Assistant and Associate Professor

 research in various areas such as data mining, information systems and security, and
0 papers published by internationally reputable journals (e.g., IEEE Trans., KAIS, and ORIJ)

.
Jianhai Chen is currently a Lecturer and an on-the-job Ph

in Applied Mathematics from Hunan University in 1997 a
His research interests cover virtualization, cloud computin

bin packing, and network communication. He is a student

Qinming He is currently a Professor in College of Compu

Ph.D. degree in Computer Science from Zhejiang Univers
mining and computing virtualization.

Deshi Ye is currently an Associate Professor in College o

Mathematics from Zhejiang University, China, in 1999 an
algorithmic game theory, wireless network and mobile co

Wenzhi Chen received the B.S., MS, and Ph.D. degrees
currently a Professor at the School of Computer Science an

system software, embedded system, and network security

Yang Xiang received the Ph.D. degree in computer scienc
tion Technology, Deakin University. He is the director of th

and system security, distributed systems, and networking.
large-scale distributed network attacks. He is the chief in

Research Council (ARC). He has published more than 170 r
on Computers, IEEE Transactions on Parallel and Distribut

Selected Areas in Communications. He has served as the p

EUC 11, IEEE TrustCom 13/11, IEEE HPCC 10/09, IEEE ICPA
conferences in distributed systems, networking,and securi

actions on Parallel and Distributed Systems,Security and
Applications. He is the coordinator, Asia for IEEE Compute

of the IEEE.

Kiew Chiew Holding a Ph.D. degree awarded by Nanyang

Indah Company in Singapore, working on R&D projects re

with Asian and Australian universities. He has conducted
autonomous and intelligent systems, and has got nearly 6

and conferences (e.g., ACM SIGIR, ICDE, SDM, and PAKDD)

380 J. Chen et al. / Microprocessors and Microsystems 52 (2017) 365–380

d computing Co., Ltd., working on the researches on cloud computing and virtualization

mputer Science from Nanjing University Of Information Science & technology in 2011 and
ejiang University in 2014. His research interests cover virtualization and cloud computing,
Liangwei Zhu is currently a software engineer in Ali clou

technology and development. He got his B.S. degree in Co
M.E. degree in Computer Science and Technology from Zh

performance evaluation, scheduling algorithms.

	Joint affinity aware grouping and virtual machine placement
	1 Introduction
	2 Related work
	2.1 Affinity and virtualization performance studies
	2.2 Resource allocation, scheduling for virtual machine placement

	3 Background and motivation
	3.1 VM placement pattern
	3.2 Benchmarking cloud application
	3.2.1 Traffics between VMs on running HPCC
	3.2.2 HPCC performance

	3.3 Motivation

	4 Problem statement
	4.1 Definition
	4.2 Affinity aware VM placement problem
	4.2.1 The GP problem and IP-GP model
	4.2.2 The AAP problem and IP-AAP model

	5 Solve the problem
	5.1 Scheduling framework
	5.2 Obtaining and identifying affinity
	5.2.1 General principles and methods
	5.2.2 Colocation placement affinity

	5.3 Joint affinity aware grouping and placement
	5.3.1 Affinity aware grouping
	5.3.2 Affinity VM group placement

	5.4 Scheduling algorithms
	5.4.1 Affinity aware grouping
	5.4.2 Affinity-VM-group packing
	5.4.3 Discussion

	6 Evaluation
	6.1 Evaluate affinity from traffics
	6.1.1 Traffics on running RUBiS
	6.1.2 Traffics on running hadoop
	6.1.3 Result analysis

	6.2 Evaluate algorithms in simulation
	6.3 Evaluate performance of the JAGBP method
	6.3.1 Experimental environment
	6.3.2 Placement schemes
	6.3.3 Running and results analysis

	7 Conclusion and future work
	 Acknowledgments
	 References

