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• ARE THERE ANY PROBLEM IN THE MEMORY 
– Processor-Memory Performance Gap 
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    CPU-DRAM Gap 
 
 
 
 
 
 
 
 
 

• 1980: no cache in µproc; 1995 2-level cache on chip 
(1989 first Intel µproc with a cache on chip) 

Who Cares About the Memory 
Hierarchy? 
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Processor-Memory 

Performance Gap: 

(grows 50% / year) 
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“Less’ Law?” 
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    Desktop computers: 

•are primarily running one application for single user 
•are concerned more with average latency from the memory hierarchy. 

    Servers computers: 
•May typically have hundreds of users running potentially dozens of 
applications simultaneously. 
•Are concerned about memory bandwidth. 

    embedded computers: 
•are often use real-time applications. 

•Worst-case performance vs Best case performance 
•are concerned more about power and battery life. 

• Hardware vs software    
•Running one app & use simple os 

•The protection role of the memory hierachy is often diminished. 

•Main memory very small 
•often no disk storage 

 
 

three classes of computers have different concerns in 
memory hierarchy. 
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Enhance speed of memory  

Component character of hardware: 
• Smaller hardware is faster and more  expensive 
• Bigger memories are lower and cheaper 

The goal 
•There are speed of smallest memory and capacity 
of biggest memory  
•To provide cost almost as low as the cheapest 
level of memory and speed almost as fast as the 
fastest level. 
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The method enhance speed of memory  

The method  
• Hierarchies bases on memories of different 

speeds and size 
• The more closely CPU the level is,the faster the one is. 
• The more closely CPU the level is,the smaller the one is. 
• The more closely CPU the level is,the more  expensive.  

By taking advantage of the principle of locality: 
– most programs do not access all code or data uniformly 
– Temporal Locality (Locality in Time): 

– If an item is referenced, the same item will tend to be referenced again soon 

– Keep most recently accessed data items closer to the processor 

– Spatial Locality (Locality in Space): 

– If an item is referenced, nearby items will tend to be referenced soon 

– Move recently accessed groups of contiguous words(block) closer to 
processor. 
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Memory Hierarchy of a Modern 
Computer System 

By taking advantage of the principle of locality: 

. Present the user with as much memory as is available in the cheapest technology. 

. Provide access at the speed offered by the fastest technology. 
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What is a cache? 
• Small, fast storage used to improve average access 

time to slow memory. 

• In computer architecture, almost everything is a cache! 
– Registers ―a cache‖ on variables – software managed 

– First-level cache a cache on second-level cache 

– Second-level cache a cache on memory 

– Memory a cache on disk (virtual memory) 

– TLB a cache on page table 

– Branch-prediction a cache on prediction information? 
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5.2 Review of the ABCs of Caches 

36 terms of Cache  

Cache    full associative write allocate 
Virtual memory  dirty bit  unified cache 
Memory stall cycles  block     block offset 
misses per instruction direct mapped write back  
Valid bit   data cache  locality 
Block address  hit time  address trace 
Write through  cache miss  set 
Instruction cache  page fault  miss rate 
random replacememt index field  cache hit 
Average memory access time page  tag field 
n-way set associative  no-write allocate miss penalty 
Least-recently used  write buffer  write stall 
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Four Questions for Memory 
Hierarchy Designers 

Caching is a general concept used in processors, operating  
       systems, file systems, and applications. 

There are Four Questions for Memory Hierarchy Designers 
• Q1: Where can a block be placed in the upper level?  
       (Block placement) 

– Fully Associative, Set Associative, Direct Mapped 
• Q2: How is a block found if it is in the upper level? 

       (Block identification) 
– Tag/Block 

• Q3: Which block should be replaced on a miss?  
      (Block replacement) 
– Random, LRU,FIFO 

• Q4: What happens on a write?  
      (Write strategy) 
– Write Back or Write Through (with Write Buffer) 
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Q1: Block Placement 
 

• Direct mapped  
– Block can only go in one place in the cache  

Usually address MOD Number of blocks in cache 

• Fully associative  
Block can go anywhere in cache.  

• Set associative  
– Block can go in one of a set of places in the cache.  

– A set is a group of blocks in the cache. 
Block address MOD Number of sets in the cache 

– If sets have n blocks, the cache is said to be n-
way set associative.   

 

•Note that direct mapped is the same as 1-way set 

associative, and fully associative is m-way set-

associative (for a cache with m blocks).  
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Figure5.4  8-32 Block Placement 
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• Every block has an address tag that stores the 
main memory address of the data stored in the 
block. 

• When checking the cache, the processor will 
compare the requested memory address to the 
cache tag -- if the two are equal, then there is 
a cache hit and the data is present in the cache 

• Often, each cache block also has a valid bit that 
tells if the contents of the cache block are valid 

 

Q2: Block Identification 
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• The Index field selects 
–  The set, in case of a set-associative cache 
– The block, in case of a direct-mapped cache 
– Has as many bits as log2(#sets) for set-associative 
caches, or log2(#blocks) for direct-mapped caches 

• The Byte Offset field selects 
–  The byte within the block 
– Has as many bits as log2(size of block) 

• The Tag is used to find the matching block within a 
set or in the cache 
– Has as many bits as Address_size – Index_size – 
Byte_Offset_Size 

The Format of the Physical Address 
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Direct-mapped Cache Example (1-word Blocks) 
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• Assume cache has 4 blocks 

Fully-Associative Cache example (1-word Blocks) 



5.18 20:12 

• Assume cache has 4 blocks and each block is 1 word 

• 2 blocks per set, hence 2 sets per cache 

2-Way Set-Associative Cache 
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• In a direct-mapped cache, there is only one block that can be replaced 
• In set-associative and fully-associative caches, there are N blocks (where 

N is the degree of associativity 

Q3: Block Replacement 
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• Several different replacement policies can be used 
– Random replacement - randomly pick any block 

»  Easy to implement in hardware, just requires a 
random number generator 

» Spreads allocation uniformly across cache 
» May evict a block that is about to be accessed 

– Least-recently used (LRU) - pick the block in the 
set which was least recently accessed 

» Assumed more recently accessed blocks more 
likely to be referenced again 

» This requires extra bits in the cache to keep 
track of accesses.  

– First in,first out(FIFO)-Choose a block from the 
set which was first came into the cache 

Strategy of block Replacement 
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• When data is written into the cache (on a store), is the data 
also written to main memory? 
– If the data is written to memory, the cache is called a 
write-through cache 

» Can always discard cached data - most up-to-date data is in memory 

» Cache control bit: only a valid bit 

» memory (or other processors) always have latest data 

– If the data is NOT written to memory, the cache is 
called a write-back cache 

» Can’t just discard cached data - may have to write it back to memory 

» Cache control bits: both valid and dirty bits 
» much lower bandwidth, since data often overwritten multiple times 

• Write-through adv: Read misses don't result in writes, 
memory hierarchy is consistent and it is simple to implement. 

• Write back adv: Writes occur at speed of cache and main 
memory bandwidth is smaller when multiple writes occur to 
the same block.  

Q4: Write Strategy 
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• Write stall ---When the CPU must wait for 
writes to complete during write through 

• Write buffers  
– A small cache that can hold a few values 

waiting to go to main memory.  
– To avoid stalling on writes, many CPUs use a 

write buffer.  
 

– This buffer helps when writes are clustered.  
– It does not entirely eliminate stalls since it is 

possible for the buffer to fill if the burst is 
larger than the buffer.  

 

Write stall 
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Write buffers 
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• Write misses  
– If a miss occurs on a write (the block is not 

present), there are two options.  
– Write allocate  

» The block is loaded into the cache on a miss 
before anything else occurs.  

– Write around (no write allocate)  
» The block is only written to main memory  
» It is not stored in the cache.  

  
– In general, write-back caches use write-allocate 

, and write-through caches use write-around .  

Write misses  
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• Assume a fully associative wtrie-back cache with 
many cache entries that starts empty.below is a 
sequence of five memory operations(the address 
is in square brackets):   

1   write Mem[100]; 
2  write Mem[100]; 
3  Read Mem[200]; 
4  write Mem[200]; 
5  write Mem[100]; 

 
 
 

Example   

What are the number of 
hits and misses when using 
no-write allocate versus 
write allocate? 

Answer : 
for no-write allocate  misses: 1,2,3,5 
        hit    : 4 
for write allocate  misses: 1,3 
    hit    : 2,4,5 
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• Unified cache  
– All memory requests go through a single cache.  
– This requires less hardware, but also has lower 

performance 
• Split I & D cache  

– A separate cache is used for instructions and data.  
– This uses additional hardware, though there are some 

simplifications (the I cache is read-only).  
 

Split vs. unified caches  

Proc I-Cache-1 

Proc 

Unified 
Cache-1 

Unified 
Cache-2 

D-Cache-1 

Proc 

Unified 
Cache-2 
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An example :the Alpha 21264 data cache  

Step1   Cache is divided into 2 fields: the 38 bit block 
address and the 6-bit block offset(64=26and 38+6=44). 

 
 
 
 
 

Step3 the two tags are compared and the winner is 
selected.Tag contains valid bit,else the results of the 
comparion are ignored. 

Step2 Index selection ,Be reading the two 
tags from cache. 

Step4 If one tag does mach, CPU loads the proper 
data from the cache, else from main memory. 
The 21264 allows 3 clock cycles for these four steps,so 
the instructions in the following 2 clock cycles would 
wait if they tried to use the result of the load. 
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Memory System Performance 

• CPU Execution time 
CPU Execution time= 

=(CPU clock cycles + Memory stall cycles)×Clock cycle time 

 

 

 

 

 

 

 

 
CPIExecution includes ALU and Memory instructions 

 

5.3  Cache performance 
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• Average Memory Access Time 

 

Average Memory Access Time 

Average Memory Access Time＝ 
Whole accesses time 

All memory accesses in program 
Accesses time on hitting+ Accesses time on miss  

All memory accesses in program 
＝ 

＝ Hit time + (Miss Rate × Miss Penalty) 
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Inst Inst Inst

Data Data Data
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Example1: Impact on Performance 
• Suppose a processor executes at  

– Clock Rate = 200 MHz (5 ns per cycle), Ideal (no misses) CPI = 1.1  
– 50% arith/logic, 30% ld/st, 20% control 

• Suppose that 10% of memory operations get 50 cycle 
miss penalty 

• Suppose that 1% of instructions get same miss penalty 
• What is the CPUtime and the AMAT ? 

•Answer:CPI = ideal CPI + average stalls per instruction
   = 1.1(cycles/ins)  + 
 [ 0.30 (DataMops/ins)  
  x 0.10 (miss/DataMop) x 50 (cycle/miss)]  +
 [ 1 (InstMop/ins)  
  x 0.01 (miss/InstMop) x 50 (cycle/miss)]  
 = (1.1 +  1.5 + .5) cycle/ins = 3.1  
•AMAT=(1/1.3)x[1+0.01x50]+(0.3/1.3)x[1+0.1x50]=2.54 
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(1 0.5) 0.02 25 0.75

Memory accesses
Memory stall cycles IC Missrate Miss penalty

Instruction

IC IC

   

      

Example2: Impact on Performance 
Assume (p395): Ideal CPI=1 (no misses)  

• L/S’s structure . 50% of instructions are data accesses 

• Miss penalty is 25 clock cycles 

• Miss rate is 2% 

• How faster would the computer be if all instructions were 
cache hits? 

• Answer: first compute the performance for always hits: 

CPUexecution time =(CPU clock cycles+memory stall cycles)×clock cycle 

    =(IC ×CPI+0) ×Clock cycle 

    =IC ×1.0 ×clock cycle 

 Now for the computer with the real cache,first compute memory 
stall cycles: 

  

The total performance is thus: 

 CPU execution time cache =(IC ×1.0+IC ×0.75) ×Clock cycle 

          =1.75 ×IC ×Clock cycle 

The performance ratio is the inverse of the execution times 

 CPU execution time cache       1.75 ×IC ×Clock cycle 

    CPU execution time     1.0 × IC ×clock cycle   

    ＝1.75 

The computer with no cache misses is 1.75 time faster. 

＝ 
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Example3-1: Impact on 
Performance 

Assume(406) : unified caches: 32K unified cache 
• Split cache: 16K D-cache and 16K I-cache  
• 36% of the instructions are data transfer instructions 
• A hit takes 1 colck cycle  
• The miss penalty is 100 clock cycles 
• A load/store take 1 extra clock cycle on a unified cache  
• Write-through with a write-buffer  
   and ignore stalls due to the write buffer 
• What is the miss rate in each case? 
• What is the average memory access time in each case? 

 
 

Answer : first let’s convert misses per 1000 
instructions into miss rate. 

Since every instruction access has exactly one memory 
access to fetch the instruction, according to Figure 5.8 the 
instruction cache miss rate is 

 

 

Since 36% of the instructions are data transfers, according to 
Figure 5.8 the data miss rate is  

 

 

Miss rate 16KB instruction＝ 
3.82/1000 

1.0 
＝0.004 

Miss rate 16KB data＝ 
40.9/1000 

0.36 
＝0.114 

Misses  
1000Instruction /1000  

Memoryaccesses 
Instructions 

Miss rate=  

From Figure 5.8 The unified miss rate needs to account for 
instruction and data accesses: 

 

 
Miss rate 32KB unified＝ 

43.3/1000 

1.00+0.36 
＝0.0318 

Basing on Figure 2.32 on page 138 there is 74% instruction 

references in split cache. The average miss rate for the split 

cache is: 

(74%×0.004)+(26% × 0.114)=0.0324 

Thus ,a 32KB unified cache has a slightly lower effective miss 

rate than two 16KB caches. 
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Example3-2: Impact on 
Performance 

• The average memory access time can be divided into 
instruction and data accesses: 

 
 

  %data

% Inst Inst Inst

Data Data Data

Average memory access time

HitTime MissRate MissPenalty

HitTime MissRate MissPenalty

instructions  

   



• Therefore,the time for each organization is  
Average memory access timesplit 

=74%×(1+0.004×100)+ 26%×(1+0.114×100) 
=(74%×1.38)+(26%×12.36)=1.023+3.214=4.24 

Average memory access timeunified 

=74%×(1+0.0318×100)+ 26%×(1+1+0.0318×100) 

=(74%×4.18)+(26%×5.18)=3.096+1.348=4.44 

Hence,this split cache in this example—which offer 
two memory ports per clock cycle,thereby avoiding 
the structural hazard—have a better average 
memory access time than the single-ported unified 
cache despite having a worse effective miss rate. 
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Example4: Impact on Performance 

Assume(408): in-order execution computer, such as the Ultra SPARC Ⅲ. 
Miss penalty: 100 clock cycles 
Miss rate : 2% 
Memory references Per instruction: 1.5 
Average cache misses per 1000 instructions: 30 
CPI ＝1.0(ignoring memory stalls) 

What is the impact on performance when behavior of the cache is 
included (Calclate the impact using both misses per instruction and 
miss rate.)? 

Answer : The performance, including cache misses, is 

 

 
 

timecycleClock
nInstructio

cyclesclockstallMem
CPIICCPU exexutiontime 










CPU time with cache ＝ 

  ＝IC×(1.0+(30/1000×100)) × Clock cycle time 
    ＝IC × 4.00 × Clock cycle time  

Now caculating performance using miss rate: 

 

 
 

timecycleClockpenaltyMiss
nInstructio

accessesMem
MissrateCPIICCPU exexutiontime 










CPU time with cache ＝ 

  ＝IC×(1.0+(1.5×2%×100)) × Clock cycle time 
    ＝IC × 4.00 × Clock cycle time  
 
 

• The clock cycles time and instruction count are the 
same, with or without a cache. Thus, CPU time 
increases fourfold, with CPI from 1.00 a ―perfect 
cache‖ to 4.00 with a cache that can miss. 

• Without any memory hierarchy at all the CPI would 
increase again to 1.0+100×1.5 or 151—factor of 
almost 40 time longer than a system with a cache.  
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Answer : Average memory access time is  

Average memory access time＝Hit time+Miss rate×miss penalty 

 Thus, the time for each organization is 

Average memory access time1-way＝1.0+(0.014 ×75)＝2.05 ns 

Average memory access time2-way＝1.0×1.25 +(0.01 ×75)＝2.00 ns 

Example5: Impact on Performance 

Assume(p409):  CPI=2(perfect cache) clock cycle time＝1.0 ns 
• MPI(memory reference per instruction)＝1.5 
• Size of both caches is 64K and size of both block is 64 bytes 
• One cache is direct mapped and other is two-way set associative. 

the former has miss rate of 1.4%, the latter has miss rate 1.0% 
• The selection multiplexor forces CPU clock cycle time to be 

stretched 1.25 times   
• Miss penalty is 75ns,and hit time is 1 clock cycle 

• What is the impact of two diffect cache organizations on 
performance of CPU (first,calculate the average memory 
access time and then CPU performance.)? The average memory access time is better 

for the 2-way set-associative cache. 

CPU performance is 
 
 
 
 
 
Substituting 75 ns for (miss penalty×Clock cycle time), the 

performance of each cache organization is 

CPU time1-way＝IC×(2×1.0+(1.5 ×0.014 ×75))＝3.58 ×IC 

CPU time2-way＝IC×(2×1.0×1.25+(1.5 ×0.010 ×75))＝3.63 ×IC 
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execution
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Relative performance is 

 

 

 

In contrast to the results of average memory access 
time, the direct-mapped lesds to slighly better average 
performance. Since CPU time is our bottom-line 
evaluation. 
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How to Improve 

Hence,we organize 17 cache optimizations  
      into four categories: 
1.Reduce the miss penalty--5 
 ——multilevel caches,critical word first,read miss before write 

miss,merging write buffers,and victim caches           

2. Reduce the miss rate--5 
 ——larger block size,large cache size,higher associativity,way 

prediction and pseudoassociativity,and compiler optimizations 

3. Reduce the miss penalty and miss rate via parallelism 
 ——non-blocking caches,hardware prefetching,and compiler 

prefetching        

4. Reduce the time to hit in the cache.--4 
 ——small and simple caches,avoiding address translation,pipelined 

cache access,and trace caches    

yMissPenaltMissRateHitTimeAMAT 
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5.4 Reducing Cache miss penalty 
 Be continued 

1.Reduce the miss penalty ——5 
            
2. Reduce the miss rate 
 
3. Reduce the miss penalty and miss rate via parallelism 
      
4. Reduce the time to hit in the cache. 
   


