Computer Architecture

Chapter 5
Memory - Hierarchy Design

LR EANL BRSCH
chenwz@zju.edu.cn

20:12

Computer Architecture

Chapter 5 Memory - Hierarchy Design

5.1 Introduction 390
5.2 Review of the ABCs of Caches 392
5.3 Cache Performance 406
5.4 Reducing Cache Miss Penalty 413
5.5 Reducing Miss Rate 423
5.6 Reducing Cache Miss Penalty or

Miss Rate via Parallelism 435
5.7 Reducing Hit Time 443
5.8 Main Memory and Organizations for

Improving Performance 448
5.9 Memory Technology 454

52

5.1 Introduction

- ARE THERE ANY PROBLEM IN THE MEMORY

- Processor-Memory Performance Gap

C
CPU a Mebnl]gry \ 1/0 bus
_ ck | Viemory ~1/Odevices
Registers h
e Disk
: Memory
Register Cache Memory reference
reference reference reference
Size: 500B 64KB 512MB 100GB
Speed: 0.25ns 1ns 100ns 5ms

20:12

53

Who Cares About the Memory

Hierarchy?
LO00 | ~ uProc
0
q) “I\/Ioore’s LaW” 60 /O/yr.
Q CPU-DRAM Gap 1
% 100 ... PFOCESSOF—MemOFy
é Performance Gap:
O | (grows 50% / year)
= 10 “Less’ Law?” ~— DRAM
&) p—a—=8
oRaM 700/,
1 O NM IO~ OdN®mIOHON~0RO
R R EEEE R EEEEE RS
S B e B e B O O o O o O o I o O O o O e O o O e O o O o O o O o B s IO o R QN
+ 1980: no cache in pproc: 1995 2-level cache on chip
(1989 first Intel pproc with a cache on chip)

20:12 5.4

HHLBREN

RERR S %

three classes of computers have different concerns in
memory hierarchy.

Desktop computers:
-are primarily running one application for single user
-are concerned more with average latency from the memory hierarchy.
Servers computers:
‘May typically have hundreds of users running potentially dozens of
applications simultaneously.
Are concerned about memory bandwidth.
embedded computers:
-are often use real-time applications.
*Worst-case performance vs Best case performance

-are concerned more about power and battery life.
* Hardware vs software

*Running one app & use simple os
*The protection role of the memory hierachy is often diminished.

*Main memory very small
-of ten no disk storage

20:12 55

Enhance speed of memory

Component character of hardware:
» Smaller hardware is faster and more expensive
- Bigger memories are lower and cheaper

The goal
‘There are speed of smallest memory and capacity
of biggest memory
*To provide cost almost as low as the cheapest
level of memory and speed almost as fast as the
fastest level.

20:12 56

By

' The method enhance speed of memory

taking advantage of the principle of locality:

- most programs do not access all code or data uniformly

— Temporal Locality (Locality in Time):

— If an item is referenced, the same item will tend to be referenced again soon
— Keep most recently accessed data items closer to the processor

— Spatial Locality (Locality in Space):

— If an item is referenced, nearby items will tend to be referenced soon

— Move recently accessed groups of contiguous words(block) closer to
processor.

The method

20:12

- Hierarchies bases on memories of different

speeds and size
- The more closely CPU the level is,the faster the one is.
+ The more closely CPU the level is,the smaller the one is.
+ The more closely CPU the level is,the more expensive.

57

Memory Hierarchy of a Modern
Computer System

By taking advantage of the principle of locality:

. Present the user with as much memory as is available in the cheapest technology.
. Provide access at the speed offered by the fastest technology.

Processor

Control \

Secondary
: stors
Second Main (I.,l:: _::""}E
-~ Level Memory ’
e Cache {DRAM)
s (SRAM)

Speed (ns): 15 10s 1 (s 10.000.,000s {105 ms)
Size (bytes): 100s Ks Ms Cs

20:12 5.8

What is a cache?

Small, fast storage used to improve average access
time to slow memory.

* In computer architecture, almost everything is a cachel
- Registers "a cache” on variables - software managed
- First-level cache a cache on second-level cache
- Second-level cache a cache on memory
- Memory a cache on disk (virtual memory)
- TLB a cache on page table
- Branch-prediction a cache on prediction information?

Registers

v Biager /" MainMemory DRAM) N\,
/ Disk ,Tape, ect. \
20:12 5.9

Cache full associative
Virtual memory dirty bit
Memory stall cycles block

misses per instruction direct mapped
Valid bit data cache
Block address hit time

Write through cache miss
Instruction cache page fault
random replacememt index field
Average memory access time page

n-way set associative
Least-recently used

20:12

no-write allocate
write buffer

510

5.2 Review of the ABCs of Caches

36 terms of Cache

write allocate
unified cache
block offset
write back
locality
address trace
set

miss rate
cache hit

tag field

miss penalty
write stall

Four Questions for Memory
Hierarchy Designers

CCIChi ng is a general concept used in processors, operating
systems, file systems, and applications.

There are Four Questions for Memory Hierarchy Designers
* Q1: Where can a block be placed in the upper level?
(Block placement)
- Fully Associative, Set Associative, Direct Mapped

* Q2: How is a block found if it is in the upper level?
&/ock identification)

- Tag/Block

- Q3: Which block should be replaced on a miss?
(Block replacement)

- Random, LRU,FIFO

* Q4: What happens on a write?
(Write strategy)

- Write Back or Write Through (with Write Buffer)

20:12 511

Q1: Block Placement

* Direct mapped
- Block can only go in one place in the cache

aa___ 0. . _ 0 __ AAA AN AL L _fFf o ML e

" «Note that direct mapped is the same as 1-way set
associative, and fully associative 1Is m-way set-
* associative (for a cache with m blocks).

- A set is a group of blocks in the cache.
Block address MOD Number of sets in the cache

- If sets have n blocks, the cache is said to be n-
way set associative.

20:12 5.12

HHILERES

Figures.4 8-32 Block Placement

Direct Mapped Fully-associative 2-way Set-associative
block 12 can go only into block 12 can go anywhere block 12 can go anywhere in set 0
Block block 4 (12 mod 8) (12 mod 4)
Numbern1z3455; 01 2 3 456 7 0012 3 45 67
Cache
Set Set Set Set
o 1 2 3
Blan i1t 1111 11 11 2 & 2 2 2 2 % % @ 2 %1}
Numbero + 2 s a5 6 78 90 1 2 34 5 6789 01 2345467680901

Memory

20:12 513

Q2: Block Identification

- Every block has an address tag that stores the

main memory address of the data stored in the
block.

* When checking the cache, the processor will

compare the requested memory address to the
cache tag -- if the two are equal, then there is
a cache hit and the data is present in the cache

- Often, each cache block also has a valid bit that

20:12

tells if the contents of the cache block are valid

514

The Format of the Physical Address

TAG Index Byte Offset

- The Index field selects ‘ |:|:|

- The set, in case of a set-associative cache

Block Address

Offset
Tag Index
. : | Selects data within the
Stored in cache and used Selects set
incomparison with CI'U address

}_'!- lOCk

g
set or I% the cache

- Has as many bits as Address_size - Index_size -
Byte_Offset_Size

20:12 515

Direct-mapped Cache Example (1-word Blocks)

LOAD

MEMORY

Address _Data

0x00 0x00000000
0x04 0x12345678
0x08 0x87654321
0Ox0C Ox11111111
0x10 0x22222222
0x14 0x33333333
0x18 0x44444444
0x1C 0x55555555
0x20 0x10101010

20:12

R1, 0x04

TAG Index Byte Offset
4 32 1 0

0000...000 ‘ 01 | 00 ‘

Index Tag Data Valid Bit
0
1 | 0x0000000 0x12345678 1
2 0
3 0

: ()

5.16

i Fully-Associative Cache example (1-word Blocks)
e Assume cache has 4 blocks

31 2 1 0
TAG |Bbﬂ8\
Offset
Block Tag ~ Data alid Bi
0
1
2
3 |

|
> é > HIT/MISS
v

>© ¥ » HITIMISS
-

@ B HIT/MISS
O —Ir HITIMISS

20:12 5 17

2-Way Set-Associative Cache

. Assume cache has 4 blocks and each block is 1 word
« 2 blocks per set, hence 2 sets per cache , Index

31 3 2/ 1 0
‘Byﬂe
TAG ‘\L Offset

Block Tag Data Valid Bit

g | = e e [
> Set 1

[
i = > HIT/MISS
‘ ><=’_> —h HIT/MISS

20:12 518

HHILERES

BT R S

| Q3: Block Replacement

- Ina direct-mapped cache, there is only one block that can be replaced

In set-associative and fully-associative caches, there are N blocks (where
N is the degree of associativity

Block 001 2 3 45 & 1 01 23 4 5 6 7
Number
Fully- 2-way Set-
Cache Cache
Set Set Set Set
0 1 2 3
Block
Number 11 1t 1t 11 11 11 2 ¢ 2 ¢ 2 2 2 ! 2 2 3 3
o 1 2 3 4 5 &« 7T ¢ 9 0 1 2 3 4 5 6 7 & 9% 0 1 2 3 45 6 7T 8 9 0 1
Memory

20:12 519

#######

llllll

Strategy of block Replacement

+ Several different replacement policies can be used
- Random replacement - randomly pick any block
» Easy to implement in hardware, just requires a
random number generator
» Spreads allocation uniformly across cache
» May evict a block that is about to be accessed
- Least-recently used (LRU) - pick the block in the
set which was least recently accessed
» Assumed more recently accessed blocks more
likely to be referenced again
» This requires extra bits in the cache to keep
track of accesses.
- First in,first out(FIFO)-Choose a block from the
set which was first came intfo the cache

20:12 5.20

Q4: Write Strategy

- When data is written into the cache (on a store), is the data
also written to main memory?
- If the data is written to memory, the cache is called a

write-through cache
» Can always discard cached data - most up-to-date data is in memory
» Cache control bit: only a valid bit
» memory (or other processors) always have latest data

- If the data is NOT written fo memory, the cache is

called a write-back cache
» Can't just discard cached data - may have to write it back to memory

» Cache control bits: both valid and dirty bits
» much lower bandwidth, since data often overwritten multiple times

 Write-through adv: Read misses don't result in writes,
memory hierarchy is consistent and it is simple to implement.

- Write back adv: Writes occur at speed of cache and main
memory bandwidth is smaller when multiple writes occur to
the same block.

20:12 521

Write stall

- Write stall ---When the CPU must wait for
writes to complete during write through
- Write buffers
- A small cache that can hold a few values
waiting to go to main memory.
- To avoid stalling on writes, many CPUs use a
write buffer.

- This buffer helps when writes are clustered.
- I't does not entirely eliminate stalls since it is
possible for the buffer to fill if the burst is

larger than the buffer.

20:12 5.22

Write buffers

e

Deasdmmie buler

Write Buffer

|

Dya

DRAM
(or lower mem)

20:12 5.23

Write misses

- Write misses
- If a miss occurs on a write (the block is not
present), there are two options.

- Write allocate

» The block is loaded into the cache on a miss
before anything else occurs.

- Write around (no write allocate)
» The block is only written to main memory
» It is not stored in the cache.

- In general, write-back caches use write-allocate
, and write-through caches use write-around .

20:12 524

Example

- Assume a fully associative wtrie-back cache with
many cache entries that starts empty.below is a
sequence of five memory operations(the address
is in square brackets):

20:12

write Mem[100];
write Mem[100];
Read Mem[200];
write Mem[200];
write Mem[100];

O, WN N

Answer :
for no-write allocate

for write allocate

5.25

What are the number of
hits and misses when using
no-write allocate versus
write allocate?

misses: 12,3,5
hit 4
misses: 1,3

hit 2,45

Split vs. unified caches

* Unified cache
- All memory requests go through a single cache.
- This requires less haradware, but also has lower
performance
- Split I & D cache
- A separate cache is used for instructions and data.
- This uses additional hardware, though there are some
simplifications (the I cache is read-only).

Proc

Unified I-Cache-1 Proc D-Cache-1
Cache-1 Unified

Cache-2
Unified ache

Cache-2

20:12 5.26

#######

llllll

Bl An example :the Alpha 21264 data cache

Step4 If one tag does mach, CPU loads the proper
_ data from the cache, else from main memory.
The 21264 allows 3 clock cycles for these four steps,so
the instructions in the following 2 clock cycles would
¢12 wait if they tried to use the result of the load.

Stepl Cache is divided into 2 fields: the 38 bit block
address and the 6-bit block offset(64=2%and 38+6=44).

Lindex Cache size

Block size x Set associativity

—

rrrrr i

Step2 Index selection ,Be reading the two

Step3 tags from cache. 5
selected. I ag contains valid bit,else the results ot the

comparion are ignored.

20:12 5.27

llll

5.3 Cache performance

emor‘y System Performance

+ CPU Execution time
CPU Execution time=
=(CPV clock cycles + Memory stall cycles)XClock cycle time

sl cyls - My 1o ey

Memory stall cyeles = IC x Mem refs per instruction x Miss rate x Miss penalty

p
CPUtime = IC x| CPI .+ MemAccessx MissRate x MissPenalty [x CycleTime
\ Execution Inst
p .
CPUtime = IC x| CPI 4 MemMisses MissPenaIty)nycleTime
\ Execution Inst

CPIg,.cution includes ALU and Memory instructions

20:12 5.28

Average Memory Access Time

- Average Memory Access Time

Whole accesses time

All memory accesses in program
Accesses time on hitting+ Accesses time on miss

All memory accesses in program
= Hit time + (Miss Rate X Miss Penalty)

Average Memory Access Time=

= (HitTime,, + MissRate, , x MissPenalty, .) Inst%
(HitTime,,, + MissRate,,,, x MissPenalty,,,,) x Data%
CPUtime = IC x(A'IUOtpS xCPI,__ + META:CGSS x AI\/IAT) x CycleTime
ns ns

20:12 5.29

ﬁﬁﬁﬁﬁﬁﬁ

RERR S %

Examplel: Impact on Performance

~Slppose a processor executes at
- Clock Rate = 200 MHz (5 ns per cycle), Ideal (no misses) CPT = 1.1
- 50% arith/logic, 30% |d/st, 20% control

* Suppose that 10% of memory operations get 50 cycle
miss penalty

» Suppose that 1% of instructions get same miss penalty

* What is the CPUtime and the AMAT ?

‘Answer:CPI = ideal CPT + average stalls per instruction
= 1.1(cycles/ins) +
[0.30 (DataMops/ins)
x 0.10 (miss/DataMop) x 50 (cycle/miss)] +
[1 (InstMop/ins)
x 0.01 (miss/InstMop) x 50 (cycle/miss)]
=(1.1+ 1.5+ .5)cycle/ins = 3.1
*AMAT=(1/1.3)x[1+0.01x50]+(0.3/1.3)x[1+0.1x50]=2.54

20:12 5.30

Example2: Impact on Performance

Assume (p395): Ideal CPI=1 (no misses)
- L/S's structure . 50% of instructions are data accesses
* Miss penalty is 25 clock cycles

* Miss rate is 2%
- | The total performance is thus:

¢ CPU execution time cache =(IC X1.0+IC X0.75) XClock cycle
=1.75 XIC XClock cycle

(\"

e The performance ratio is the inverse of the execution times
CPU execution time _ . 1.75 XIC XClock cycle
g CPU execution time 1.0 X IC Xclock cycle
=1.75

The computer with no cache misses is 1.75 time faster.

20:12 5.31

- _ 1 - 4 @ o> rYy o
H Since every instruction access has exactly one memory

— access to fetch the instruction, according to Figure 5.8 the
instruction cache miss rate is

3.82/1000

Miss rate 16KB instruction 10 =OOO4

Since 36% of the instructions are data transfers, according to
Figure 5.8 the data miss rate is

40.9/1000
Miss rate j¢ep data™ =0.114

VAN _a °_ oD ___°_ _ _a . L ____

Basing on Figure 2.32 on page 138 there is 74% instruction
references in split cache. The average miss rate for the split
cache is:

(74%X0.004)+(26% X 0.114)=0.0324

Thus ,a 32KB unified cache has a slightly lower effective miss
rate than two 16KB caches.

20:12 5.32

Example3-2: Impact on
Performance

*+ The average memory access time can be divided into
instruction and data accesses:

Average memory access time

Hence, this Sp|I1' cache in this example—whlch offer
two memory ports per clock cycle,thereby avoiding
the structural hazard—have a better average
memory access time than the single-ported unified

cache despite having a worse effective miss rate.
=747 X (L+U.UU4 X LUU)+ €07 X(1+U.114X 1UU)

=(747%X1.38)+(267%%X12.36)=1.023+3.214=4 24

Average memory access time, i.q
=74%X(1+0.0318X100)+ 267% %X (1+1+0.0318X100)
=(747%%X4.18)+(267%%X5.18)=3.096+1.348=4 .44

20:12 5.33

Example4: Impact on Performance

Assume(408): in-order execution combuter. such as the Ultra SPARC TIT.
* The clock cycles time and instruction count are the
same, with or without a cache. Thus, CPU time
increases fourfold, with CPI from 1.00 a “perfect
cache” to 4.00 with a cache that can miss.
Without any memory hierarchy at all the CPI would
increase again to 1.0+100X 1.5 or 151—factor of
almost 40 time longer than a system with a cache.

Wi,

Now caculating performance using miss rate:

CPU time with cache —

C =ICX(1.0+(1.5X2%X100)) X Clock cycle time
=IC X 4.00 X Clock cycle time

20:12 534

llllll

Example5: Impact on Performance

Assume(p409): CPI=2(perfect cache) clock cycle time=1.0 ns
* MPI(memory reference per instruction)=1.5
- Size of both caches is 64K and size of both block is 64 bytes

* One cache is direct mapped and other is two-way set associative.
+hoe FAanman hae mice natn Af 1 AY +hoe laddan hac mice nat+as 1 N

Relative performance is

CPUtimezway _ 3.63xInstructioncount 3.63

_ — = =1.01
CPUtime-way 3.58xInstructioncount 3.58

In contrast to the results of average memory access
time, the direct-mapped lesds to slighly better average
performance. Since CPU time is our bottom-line
evaluation.

CPU time,_,,, =ICX(2X1.0+(1.5 X0.014 X75))=3.58 XIC

CPU fime,_,., =ICX(2X1.0X1.25+(1.5 X0.010 X75))=3.63 XIC
20:12 5.35

How to Improve
AMAT = HitTime + MissRate x MissPenalty

Hence,we organize 17 cache optimizations
into four categories:

1.Reduce the miss penalty--5
——multilevel caches,critical word first,read miss before write
miss,merging write buffers,and victim caches

2. Reduce the miss rate--5
——Ilarger block size,large cache size higher associativity,way
prediction and pseudoassociativity,and compiler optimizations

3. Reduce the miss penalty and miss rate via parallelism
——non-blocking caches hardware prefetching,and compiler
prefetching

4. Reduce the time to hit in the cache.--4
——small and simple caches,avoiding address translation,pipelined
cache access,and trace caches

20:12 5.36

5.4 Reducing Cache miss penalty

Be continued

1.Reduce the miss penalty —5
2. Reduce the miss rate
3. Reduce the miss penalty and miss rate via parallelism

4. Reduce the time to hit in the cache.

20:12 5.37

