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Abstract. The development of distributed, concurrent software in embedded 
systems is becoming increasingly complex and error-prone. Model-based 
integration of reusable components is advocated as the method of choice. To 
this end, we propose a framework to support component-based model 
integration, hierarchical functionality composition, and reconfiguration of 
systems with continuous and discrete dynamics. In this framework, components 
are designed and used as building blocks for integration, each of which is 
modeled with abstract ports, reactions, and communication schemes. It uses 
hierarchical composition to hide the implementation details of components, and 
keeps the components at the same level of hierarchy interacting under a well-
defined model of computation. Code generation takes the design decisions 
down to the final running system. Within this framework, embedded software 
can be constructed by selecting and then connecting components in a 
functionality repository, specifying models and transforming them to 
executable codes. 

1   Introduction 

The model-based approach has proven to be effective for fast and low-cost design and 
simulation of embedded systems, such as automotive systems. However, due to the 
lack of a common framework, the benefits of model-based approach are limited by 
the manual process of extracting information in one model for reuse in another. 
Furthermore, the current practice in embedded software development relies heavily on 
ad-hoc implementation to meet the various constraints of the underlying platform. 
Although component-based software development and integration are known to be 
efficient for software reusability, such an approach is neither well-defined nor well-
understood in the embedded system domain.  
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Embedded systems are intrinsically heterogeneous. It consists of various device 
drivers and various control algorithms, which usually exist as software components. 
The physical processes to be controlled are usually continuous but the algorithms are 
implemented using discrete software components. There are hybrid models that match 
different parts of a system, for example, continuous time(CT) models for ordinary 
differential equations, finite state machine(FSM) models for plant operations, discrete 
event(DE) models for network communication, and synchronous data flow(SDF) 
models for signal processing. Although each individual model is relatively well-
understood, it is difficult and complex to implement the integration of heterogeneous 
models. 

An effective solution is to construct a common component-based framework and 
use it for model integration. In this paper, we present a framework that supports the 
component-based model integration and implementation process. The framework 
provides a component repository and hierarchical models, and can be used to specify 
software structure, distributed functionality, and system constraints. Function 
definitions of a component are separated from non-functional aspects, especially 
timing and resource constraints. Components can be structurally integrated via their 
communication ports, through which the state transitions of the system can trigger 
reactions. The functionality of a component can be implemented using a different 
model and enables reconfiguration after structural composition. The framework 
provides a clean way to integrate different models by hierarchically composing 
heterogeneous components. This hierarchical composition allows one to manage the 
complexity of a design by information hiding and component reuse. The framework 
has been applied to the Pcanel operating system that we developed at Zhejiang 
University for cybernetic transport system. The model integration framework allows 
seamless composition of vehicle applications with distributed real-time functionality 
to enforce desired efficiency and safety.  

2   Component Repository 

A component-based embedded software design is modeled as a set of software 
components and their interactions. Components are pre-defined software modules and 
treated as building blocks in integration. The integrated embedded software can be 
viewed as a collection of communicating reusable components.  

The component repository contains the core software components for reusability 
and integrated descriptions about hardware and bus systems. The characteristics of the 
software components are also stored in the repository, e.g. test case, code size and 
worst case execution time. Interfaces must be part of the repository. In distributed 
embedded systems, the communication among software components can take place 
by data buses or internally on the processor.  

The interfaces of the software components are defined globally. A formal notion of 
component interface provides a way to describe the interaction between components, 
and to verify the compatibility between components automatically. The theory of 
timed interfaces [1] is used to specify both the timing of the inputs a component 
expect from the environment, and the timing of the outputs it can produce. The 
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formalism of resource interfaces [4] is used to specify component interfaces that 
expose component requirements on limited resources.  

The component structure defines the required information for components to 
cooperate with others in a system. Execution profiles define the execution 
environment or infrastructure of a component. Examples include scheduling policies, 
real-time constraints and resource demands. A component can be customized for use 
in different environments by selecting different execution profiles. Components have 
a collection of abstract input/output ports. Ports are shared states that allow 
components to communicate with each other via tokens. The number of ports needed 
for a component can be determined and customized by the system integrator. 
Different types of ports with different execution profiles can be selected to achieve 
different performance requirements.  

Reactions define the functionality of the component that can be invoked outside the 
component. In our model, reactions are represented as a set of triggers with actions. 
Triggers are guards of some meaningful system states, such as time, signals, and 
events. A component with other forms of reactions, such as function calls, can be 
integrated into the system by mapping each of them to a unique trigger. Using triggers 
enables actions to be scheduled and ordered adaptively in distributed and concurrent 
system, and enables components from different vendors to be integrated into the 
system without the source code modification. With such a component model, the 
system can be designed by connecting cooperating components through their ports, 
and the system execution can be done by having external state transitions like timer 
interrupts or sensors trigger a sequence of reactions in components.  

The semantics of reaction is designed to separate function definitions from state 
transition specifications, and support reconfiguration. Reactions of a component are 
specified in a table form [7]. When a trigger is activated at runtime, actions are 
invoked according to the state table. The table enables the control logic to be reused, 
and enables remote or runtime reconfiguration. The state table can be treated simply 
as data and passed around the system. This compactness of table is useful for 
embedded systems with limited resources and distributed environments, such as in-
vehicle control systems. Figure 1 shows a component-based design for continuous 
time(CT) model and the component structure of corresponding implementation. 

 

 
Fig. 1. Component-based design and implementation 

Component connection network(CCN) combines the software components with 
each other. The framework supports hierarchical composition to keep the systemic 
view. The communication among components is carried out on token basis. The token 
flows are scheduled within models. In a hybrid system, hierarchical heterogeneous 
models cooperatively direct the token flows. Based on the CCN, token flow network 
is constructed to analysis and verify concurrent and real-time functionality of 
complete embedded software. 
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The complete software can not independently from the hardware. The execution of 
software depends on the underlying processor architecture, memory mapping, data 
bus, or device register. For reuse of components, hardware platform descriptions are 
also stored in the repository.  

3   Distributed Functionality 

More and more embedded systems consist of a network of electronic control units 
(ECU) connected via a bus. As the platform architecture shown in Fig. 2, each ECU 
consists of the controller, an operating system, a dedicated communication layer, and 
one or many application reactions. The functionality of a component is modeled as 
component structure. The functionality of a system is modeled as component 
connection network. The communication among components is modeled as token 
flow network. The distribution of functionality among ECUs is transparent in a high-
level systemic view. The communication between reactions of spatially separated 
ECUs is wrapped by the communication layer. The integrated system model may span 
hybrid bus systems, such as Controller Area Network and Local Interconnect 
Network. 

 

 
Fig. 2. Platform architecture 

The composition model defines how software can be integrated with given 
components. Since each reusable component is implemented with a set of reactions 
that uniquely define its functionality, components can be selected based on the match 
of their reactions and design specifications. The integration of reusable components 
can be viewed as linking the components with their reactions.  

A composite is an integration of reusable components. The model of the composite 
links the components with their reactions, allowing for the observation and 
manipulation of the runtime states and behaviors internal of components. 
Furthermore, to facilitate modularity, a composite itself, together with the components 
within its model, can be treated as a integrated component at a higher level of 
hierarchy, which means that a composite can be encapsulated to a component. The 
member component behaviors determine the reactions and states of the integrated 
component. When applied formal models, the composite maintains assurance of 
diversified non-functional aspect, such as timing and deadlock.  
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Models are independent of implementation of components. Thus, Reusable 
components in integrated software are organized hierarchically to support integration 
with different models. A complete system configuration is a set of hierarchical 
compositions of models and reusable components. 

4   Code Generation 

The integrated software obtained from the composition model cannot be executed 
directly on a platform since the composition model only deals with distributed 
functionality. Code generation approach is a migration path from  design-time models 
to runtime models. A typical code generation process assumes a flat operating system 
support and generates a stand-alone program that is then compiled into an application. 
Our framework provides a runtime system natively supporting executable models and 
distributed deployment. It greatly helps code generation and improves the quality of 
final software. The runtime system can utilize hardware support (such as SMP) and 
communication systems (such as CAN). In addition, there are certain assumptions, 
like resource reservation and timing predictability, can only be achieved by OS-level 
runtime systems, but not easily by stand-along programs. 

To obtain and deploy complete software, components have to be transformed to 
reactions, which are basic schedulable units of the runtime infrastructure. A reaction 
is synthesized by code generator from a sequence of actions associated with an 
external trigger, which represents physical process such as interrupt, signal, and event. 
The code generator generates a runtime implementation that consists of a network of 
computing blocks communicating through a publisher-subscriber service. 

A synthesized reaction has access rights on internal states of all components that 
own the actions. Such access rights are constructed during reaction initialization to 
avoid concurrent data competition. On arrival of a trigger, the reaction executes the 
pre-compiled actions in static order. The reaction is not reentrant, that in each round 
of a reaction execution, exactly one trigger is processed.  

All reactions execute with statically assigned priorities in the runtime model. A 
reaction with high priority preempts lower-priority reactions. Actions within a 
reaction are executed at the same priority assigned to the reaction itself. The 
execution sequence of actions modeled at design-time to achieve functionality is 
preserved at runtime. Compared to other models requiring dynamic priority 
assignment [5], our implementation has low runtime overhead, lesser complexity and 
better support for massive concurrency. 

5   Related Work 

Since most embedded systems deal with safety-critical applications, model-based 
design and formal analysis are highly desired and widely used in software 
development. Ren et al developed an approach based on the Actor model for 
distributed real-time systems [6]. An Integrated Object-Oriented Environment is 
proposed for Real-Time Industrial Automation Systems [2]. Stewart et al used port-
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based objects to support dynamic reconfigurable real-time software [3]. All of these 
frameworks agree on modeling the components as autonomous self-contained 
software modules and using event mechanisms to describe the connection of 
components. However, Most of the previous research in the literature has focused on 
component model, while largely ignoring the heterogeneous properties of software for 
hybrid systems. Systematically integrating heterogeneous components is crucial to 
design complex embedded systems. It is difficult for engineers to reconfigure and 
analyze components and their integration. Lack of context and environment 
descriptions may further introduce mismatching problems of architecture and 
interface inconsistency. Out framework is inspired by practical applications like 
automotive control applications which are model heterogeneity. The component-
based model integrated framework we proposed is designed for re-usability of 
components with model heterogeneity. 

6   Conclusion 

In this paper, we presented a component-based model integrated framework for 
embedded software. A reusable component in our framework is modeled with 
communication ports, triggers, and reactions for separate functionality specification 
and reconfiguration. Component repository contains components for reusability and 
integrated descriptions for executing environment adaptation. Distributed 
functionality within hybrid models is designed by hierarchical composition of 
components. Code generator transforms the design to implementation by OS-level 
runtime support. Such a framework enables multi-granularity and vendor-neutral 
component integration, as well as functionality reconfiguration. Our future work will 
focus on the timing and resource analysis for integrated components. The framework 
presented in this paper makes it possible to separate the timing and resource analyses 
from the functional integration. 
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