
vMobiDesk: Desktop Virtualization for Mobile
Operating System

Kui Su, Pengfei Jiang, Zonghui Wang, Wenzhi Chen

College of Computer Science
Zhejiang University, Hangzhou, 310027, China

Email: sukuias12@zju.edu.cn

Abstract—With the rapid adoption of smartphones and
tablets, virtual desktop infrastructure (VDI) for mobile devices
emerges as one of the key concept in mobile cloud computing
(MCC). However, existing VDI products are originally designed
for personal computer operating systems (e.g. Windows, Mac OS,
Ubuntu, etc.). The user experience is greatly degraded while
viewing and operating a PC desktop from a smartphone or a
tablet. In this paper, we propose techniques to virtualize the
desktop of mobile operating systems (e.g. Android, iOS,
Winphone, etc.) for mobile users and we have implemented a
prototype system on Android which is one of the most popular
mobile operating systems. The experimental results show that
our system enables mobile users to achieve almost the same
experience as in the local while viewing and operating the remote
mobile desktops.

Keywords—Mobile Operating System; Virtual Desktop; Remote
Computing; Virtualization

I. INTRODUCTION

As an emerging trend, virtualization [1, 2, 3] has been
widely used in cloud computing [4, 5, 6] over the past decade.
Among those virtualization applications, desktop virtualization
has become an important branch [7, 8, 9]. In desktop
virtualization environment, all applications and operating
system codes are executed in a server which lies in a remote
data center. End user only needs a thin client which handles
display, keyboard and mouse combined with adequate
processing power for graphical rendering and network
communication. The client no longer has to keep user state and
communicate with the server by using a remote protocol. The
protocol allows graphical displays to be virtualized, and
transmits user input from the client to the server [10]. Many
productive desktop virtualization systems have been developed
and applied to various commercial applications since they
provide a lot of advantages for IT enterprises such as reducing
maintenance and operating costs and improving resource
utilization efficiency.

With the rapid adoption of smartphones and tablets, virtual
Desktop Infrastructure (VDI) for mobile devices emerges as
one of the key concept in Mobile Cloud Computing (MCC)
[11]. At the same time, the increasingly popular BYOD
[12,13,14] policy has enabled more and more IT enterprises to
encourage employees accessing VDIs with their own devices
(the most people prefer smartphones and tablets due to
convenience) anytime and anywhere, which greatly reduces IT
costs and improves productivity.

However, existing VDI products are originally designed for
personal computer operating systems (e.g. Windows, Mac OS,
Ubuntu, etc.). They can only provide mobile users with PC
desktops which are not perfectly compatible with mobile
devices. The user experience is greatly degraded while
accessing and operating a PC desktop from a smartphone or a
tablet. In this paper, we introduce vMobiDesk, a system to
virtualize the desktop of mobile operating systems (Android,
iOS, windows phone, etc.) for mobile users. We have
implemented a prototype system of vMobiDesk on Android
which is one of the most popular mobile operating systems.
The experimental results show that our system enables mobile
users to achieve almost the same experience as in the local
while accessing and operating the remote mobile desktops.

This paper presents the design and implementation of
vMobiDesk. Section 2 presents the motivation of vMobiDesk
system in detail. Section 3 describes the overall architecture
and implementation of vMobiDesk system. Section 4 presents
experimental results measuring vMobiDesk system
performance. Section 5 discusses related work. Finally, we
present some concluding remarks.

II. MOTIVATION

In this section, we introduce the motivation of vMobiDesk
system which performs better than traditional VDI products for
mobile devices and brings many important benefits to mobile
cloud computing.

Firstly, traditional VDI products only provide PC desktops,
which leads to bad user experience for mobile users. Because
the screen size of mobile devices is so small that it cannot well
display the whole PC desktop. what is worse, applications
running on PC operating systems are often designed for 13
inch or bigger screen, which makes it difficult to use these
applications in 5 inch screen of mobile devices.

Secondly, in vMobiDesk system, the mobile operating
systems are running on virtual machines, mobile users can
suspend, hung up, delete and stop the virtual desktop through
the hypervisor anytime and anywhere. Most mobile devices
are not equipped with the above functions.

 Furthermore, there are a variety of mobile devices such as
Apple, Samsung, Huawei, etc. and many mobile operating
systems such as iOS, Android, Winphone, etc. Nowadays. For
one application, programmers have to develop it multiple
times for different mobile OS and devices. But in vMobiDesk
system, one mobile OS desktop can run on all of the mobile
devices. Apps programmers don’t need to do cross-platform

development any more. Of course, the vMobiDesk client is necessary for each mobile platform.

III. DESIGN AND IMPLEMENTATION

In this paper, we propose vMobiDesk, a prototype system
which provides mobile users with remote access to virtual
mobile desktop such as Android desktop. In vMobiDesk,
mobile users can experience a virtual Android desktop as the

same as in the local. In this section, we first introduce the
overall architecture of vMobiDesk system, then we describe
the core modules of vMobiDesk system in detail, respectively.

Fig. 1. The system architecture of vMobiDesk

A. Overview of System Architecture

vMobiDesk is architected as a Client-Server system. It is
implemented on Android system which is one of the most
popular mobile operating system. As shown in figure 1, the
vMobiDesk client is an application running on Android
devices (smartphones or tablets). The client is composed of
four parts. The display module is designed to display the
virtual android desktop on the mobile devices. The multi-
touch module mainly handle the mobile users’ input events.
The camera and audio modules are designed to provide
mobile users with good experience of multimedia.
Meanwhile, the server of vMobiDesk which is running on an
Android-x86 virtual machine provides the corresponding
services to the mobile client. The client is connected to the
server through the remote access protocol with security
authentication.

B. Display Virtualization

To make vMobiDesk a viable replacement to the
traditional desktop computing model, it needs to be able to
deliver the look and feel of all unmodified desktop
applications end-users expect. vMobiDesk must work within
the framework of existing display systems, intercepting
display content from unmodified applications and redirecting
these content to remote clients. In order to provide good
performance, the virtualization must intercept display
content at an appropriate abstraction layer so that it provide
sufficient information to optimize the processing of display
content in a latency sensitive manner. Furthermore, to
support transparent user mobility and eliminate client

administration complexity, vMobiDesk should support the
use of thin, stateless clients, by ensuring that all persistent
display state is stored in the server infrastructure.

There are many remote display protocols for mobile VDI
system, such as VNC [15], RDP [16], SPICE [17], etc.
However, only VNC can be utilized as an Android server.
Because VNC is platform-independent – there are clients and
servers for many GUI-based operating systems. The primary
drawback of VNC for vMobiDesk server is that it mainly
read pixel data from framebuffer. The framebuffer is only
updated after the system executes drawing functions, saves
data to buffer of graphic card and display on the screen.
Therefore, the reading at framebuffer layer takes more delay
and the server must consume much CPU to display the pixel
data on server’s screen. What is worse, as the increasing
number of mobile VDI users, the overall performance of the
mobile VDI system will be greatly degraded.

vMobiDesk does not intercept the display content at
framebuffer layer because it consumes much server’s CPU
and causes respond delay. vMobileDesk intercepts the
display content of Android virtual desktop at the system
service layer. Surfaceflinger is a core service for Android
display system, it is mainly responsible for composing all the
surfaces from the applications, then generates a complete
desktop surface and write it to the hardware framebuffer for
displaying on the screen. vMobiDesk intercept the complete
desktop content before it is written to the framebuffer. For
security and efficiency, the intercepted content is temporarily
written to a shared memory region, then the display thread of

vMobiDesk reads it and transmits the content to the client’s
display module through the network. On the server side,
because it is unnecessary to display the desktop on server’s
screen, the desktop content will not be written to the
hardware framebuffer. The above design of display solution
for vMobiDesk can significantly reduce server’s CPU
consumption and improve the respond speed, which provides
mobile users with good visual experience for virtual mobile
desktops.

C. Input Redirection

With the advent of smartphones and tablets, interactions
through keyboard and mouse are no longer relevant as
majority of smartphones are equipped with multi-touch
screens. However, there is no remote computing protocol
specifically designed for touch screen input devices. Existing
VNC smartphone client and server applications are designed
assuming the other end of communication is a desktop that
can be controlled through keyboard and mouse operations.
However, vMobiDesk provide mobile users with remote
access to an Android desktop, the touch input events from
mobile users should be seamlessly redirected to the server.

In vMobiDesk, touch input events are loosely classified
into two types: single-touch events and multi-touch events.
On the client side, user’s touch input events are intercepted
at the device driver layer to ensure that the input events are
original and application-independent. This is because that the
server and client may be running Android system of different
versions, but at the driver layer, the input events are
consistent. If it is a single-touch event, the client just
forwards its coordinate to the server and re-execute it. But if
it is a multi-touch event, for example, mobile users prefer to
use multiple fingers to scale up and down the web pages on
the screen, there will be three steps. First, the event is
identified as a multi-touch event. The multiple coordinates
are combined into a new event. Then this event is forward to
the server. Lastly, the event will be injected into the input
system. In practice, because the server is running Android-
x86 system on a virtual machine, this is no real touch screen
device. A virtual device must be created to receive the multi-
touch events and execute it.

D. Audio Support

For mobile users, listening to popular music and making
voice communications with family or friends are
indispensable parts in life. To make it widely accepted by
mobile users, mobile VDI system must provide users with
good experience for audio redirection.

In vMobiDesk, when an user play a music in the virtual
mobile desktop, the audio data will be intercepted by server’s
audio thread and then transmitted to the client in real time.
On the client, audio data is received and replayed by audio
module. In practice, to reduce server’s CPU usage, audio
data is prevented to be written in server’s audio device,
which means that we are unable to hear the music sound on
the server side. For voice communication, the way is to the
contrary, user’s voice is captured and transmitted to the
server’s voice communication applications for post-
processing. In order to ensure real-time, audio data is
buffered on both the server and client sides. In our

experiments, mobile users can listening to music and make
voice communications in their virtual mobile desktops in
almost real-time.

E. Remoting Camera

Camera is one of the most important modules in
smartphones or tablets. With a camera, mobile users can take
photos and record videos anytime and anywhere to record
and share their lives with family and friends. In order to
provide good experience for mobile users in mobile VDI
system, it is necessary to implement camera redirection so
that mobile users can use the camera in the virtual mobile
desktop as the same as in the local.

In vMobiDesk, camera redirection is designed as a core
module. A mobile user’s any action on camera application in
the virtual mobile desktop will be redirected to the mobile
device’s local camera in real-time. For example, when an
user opens a camera application in a virtual mobile desktop,
it is detected by server’s camera thread immediately. Then
the camera thread delivers the message to the client’s camera
module to open the mobile device’s local camera. In this way,
mobile users can use their cameras as in the local. To
completely implement the camera redirection, virtual camera
devices must be created on vMobiDesk’s server side. The
number of camera devices may be one or more, which is
determined by the camera number of user’s mobile device.
The virtual camera devices are created to receive and process
the camera data from the client’s physical cameras, then
return the results to the camera applications.

In camera redirection, the biggest challenge is how to
handle the recording videos which often carry a large amount
of video data. Generally, recording video data is transmitted
to the server’s virtual camera devices by the client. After
handled on the server, the video must be displayed on the
client’s screen. In the above processes, video data are
transmitted two times in total, but due to the limited mobile
network bandwidth in mobile VDI system, the transfer of
recording video data will cause high delay and terrible
experience for camera application such as poor video quality
and dropped frames. To address the above problems, we
propose to only do the first transfer which is for processing
the camera data on the server, the second transfer is
prevented because it is just for displaying or previewing on
the client, its local camera data can be utilized for displaying
or previewing. By this means, the vMobiDeskt system can
definitely reduce delay and improve user experience for
camera applications in mobile VDI system.

F. Remote File System

Nowadays, cloud storage is widely used, it is a model of
data storage in which the digital data is stored in logical
pools, the physical storage spans multiple servers (and often
locations), and the physical environment is typically owned
and managed by a hosting company such as Smugmug,
Dropbox, Synaptop and Pinterest. People and organizations
buy or lease storage capacity from the providers to store user,
organization, or application data. Therefore, it is
indispensable to provide a remote file system for mobile

users to upload and download resources conveniently in a
mobile VDI system.

In vMobiDesk, a samba [22] server is running as a
thread in the client application and a samba client is running
on the server side. While the client is connected to the server,
the samba client also connects to the samba server
immediately. Then the samba client will mount the mobile
device’s SD card on the server. After that, the user is able to
view the content of the SD card in the virtual mobile desktop.
At anytime and anywhere, mobile users can upload the local
files such as photos and videos to the server through the file
manager in the virtual desktop. In addition, mobile users can
also download movies or documents in the virtual desktops
and then copy them to the SD cards of their mobile devices.

IV. PERFORMANCE EVALUATION

We have implemented a prototype vMobiDesk system
for serving Android desktop computing environments. In this
section, we present the performance evaluation of our
implementation of vMobiDesk with a series of experiments.

In our experimental setup, the server machine which
hosts Xen 4.2 hypervisor has a 2.66 GHz Intel Core i7 − 920
processor and 8 GB of RAM. The server system Android-
x86-5.1.1 is running in a virtual machine created by Xen
hypervisor. The client machine is a 16GB Nexus 9 tablet
which runs Andorid-5.1.1 system. We use a 100 Mbps, 1ms
latency LAN network to build local Wifi environment for the
client to connect to the server. We mainly evaluate the
performance of vMobiDesk in terms of respond time,
network bandwidth consumption and system overhead.

Fig. 2. The response time of running different applications in vMobiDesk
system.

A. Response Time

In vMobiDesk, the server provides mobile users with
remote access to the virtual mobile desktop through the local
Wifi. Respond time is one of the most important metric for
users’ experience on applications such as File Manager,
Office software (e.g. Word, Excel, PowerPoint), Music
Player and Camera application. We have measured the
average response time for different applications in

vMobiDesk. For example, the average response time of
Office softwares are computed from the response time of
opening a Word document, typing several words, inserting a
picture, etc..

 As shown in figure 2, all the applications take less than
one second while running in the virtual mobile desktop. The
File Manager performs the best because it only contains
simple operations such as opening and closing a file. The
Office contains much complex operations, for example
inserting an animation to the PowerPoint, which is CPU and
memory intensive. The Music Player takes only
150 milliseconds because we have buffered audio data both
on the server and the client side. The Camera also performs
well, users can take photos and record videos as the same as
in the local. Though the recording may produce large
amounts of video data, our optimization of reducing the
twice transfer of video data to only once makes it still clear
and fluent.

Fig.3. The bandwidth consumption of running different applications in
vMobiDesk system.

B. Bandwidth Consumption

This experiment is designed to measure the detailed
bandwidth consumption of each application in vMobiDesk
system. The network environment is a 100 Mbps LAN Wifi.
As shown in figure 3, the File Manage and Office consume
almost the same bandwidth because they both produce only
static display data. The Music Player consumes more
bandwidth because the music contains audio data which is
complicated. The Camera takes up the most bandwidth since
it refers to redirecting recording video data. Fortunately, we
have optimized vMobiDesk to only transfer the video data
one time, the bandwidth consumption is greatly reduced.

C. System Overhead

We now present a CPU and memory usage profiling of
vMobiDesk. We collect the CPU and memory statistics

TABLE 1: THE OVERHEAD OF THE VMOBIDESK CLIENT

Overhead CPU
usage
(%)

Memory usage
(MB) Application

Idle 5 20

File Manager 8 22

Office 12 45

Music Player 11 60

Camera 15 177

while executing the server and the client application of
vMobiDesk system. As shown in table 1, on the client side,
the idle state consumes about 5% CPU and 20MB memory.
While a mobile user is launching different applications in the
virtual mobile desktop, the CPU usage rises to about 8%,
12%, 11% and 15%, accordingly. The memory usage also
rises to 22MB, 45MB, 60Mb and 177MB. The table 2 gives
the CPU and memory consumption on of vMobDesk on the
server side. Because vMobiDesk has modified the Android-
x86’s system services such as Surfaceflinger service, Media
Server, and even the Linux kernel to support desktop
virtualization, the most of the overhead is the data transfer
from Android system to the server application.

TABLE 2: THE OVERHEAD OF THE VMOBIDESK SERVER

Overhead CPU
usage
(%)

Memory usage
(MB) Application

Idle 4 13

File Manager 10 24

Office 14 58

Music Player 15 66

Camera 19 194

 As described in table 2, when it is idle, vMobiDesk only
consume 4% CPU and very little memory. Even running
different applications, the CPU usage is always under 20%
and the memory usage is less than 200MB. In general,
vMobiDesk takes up less resource and provide good
performance.

V. RELATED WORK

Many productive desktop virtualization systems have
been developed and applied to various commercial
applications since they provide a lot of advantages for IT
enterprises such as reducing maintenance and operating costs
and improving resource utilization efficiency. VNC [15] and
THINC [18] are famous thin-client systems proposed in
academic research while in industry there are Microsoft
Remote Desktop [16], Citrix XenDesktop [19], VMware
View [18], Sun Ray and HP Remote Graphics and so on.

VNC (Virtual Network Computing) is a popular remote
display system with RFB protocol. It uses a virtual driver to
maintain local copy of the framebuffer state used to refresh
its display and forward user input directly to the server. VNC

provides a good performance for office applications but does
not support multi-touch, audio and camera. Therefore it is
not suitable for mobile VDI systems.

THINC and its portable version pTHINC intercepts
lowlevel video driver commands and adopts a push mode to
interact with client. Its codec is efficient for UI compression
but suffers from compression performance degradation over
multimedia content encoding. As a result, it can achieve a
great multimedia playback performance with sufficient
bandwidth but not for network environments with low
bandwidth.

RDP (Remote Desktop Protocol) is widely used in
desktop virtualization products such as Microsoft RDS and
VMvare view. For office applications, such as a text editor or
a spread-sheet, RDP is highly optimized and the display
changes are quite small and have a sufficiently low
frequency to cope with. However, it is proprietary and only
supports Windows operating system. For mobile VDI system,
RDP protocol is not a good choice.

MobiDesk [20] proposes a thin client solution for mobile
devices by optimizing the WAN traffic involved in
performing remote computing. The solution is primarily
meant for mobile laptops and is similar in principle to other
remote computing approaches. PCoIP [21] is another product
that optimizes remote computing traffic, especially video
over IP networks.

However, all these solutions assume the server is a PC
(Windows 7, Ubuntu, Mac OS, etc.) desktop, as discussed in
section 2, they don’t address the problems of the bad user
experience while displaying and operating a PC desktop
from a mobile device such as smartphone or tablet.

VI. CONCLUSION AND FUTURE WORK

With the rapid adoption of smartphones and tablets,
virtual desktop infrastructure (VDI) for mobile devices
emerges as one of the key concept in mobile cloud
computing (MCC). However, existing VDI products are
originally designed for personal computer operating systems
(e.g. Windows, Mac OS, Ubuntu, etc.). The user experience
is greatly degraded while displaying and operating a PC
desktop from a smartphone or a tablet. In this paper, we
introduce vMobiDesk which provides mobile users with
good experience on remote access of mobile OS desktop. We
have implemented a prototype system on Android which is
one of the most popular mobile operating systems. The
experimental results show that our system enables mobile
users to achieve almost the same experience as in the local
while accessing and operating the remote mobile desktops.

However, though vMobiDesk performs well while
running several applications such as File Manager, Office,
Music Play and Camera Apps, it is still a experimental
system. There are many other important applications such as
Video Player and 3D games should be supported better.
Furthermore, in the future work, we plan to utilize container
techniques to virtualize the operating system on the server in
order to improve the overall performance of vMobiDesk
system.

ACKNOWLEDGMENT

This work is supported by the National Science and
Technology Major Project of the Ministry of Science and
Technology of China under grant 2013ZX03003010-002.

REFERENCES

[1] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and
the art of virtualization. ACM SIGOPS Operating Systems Review,
37(5):164–177, 2003.

[2] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L Santoni, Fernando
CM Martins, Andrew V Anderson, Steven M Bennett, Alain Kagi,
Felix H Leung, and Larry Smith. Intel virtualization technology.
Computer, 38(5):48–56, 2005.

[3] Irfan Habib. Virtualization with kvm. Linux Journal, 2008(166):8,
2008.

[4] Peter Mell and Tim Grance. The nist definition of cloud computing.
National Institute of Standards and Technology, 53(6):50, 2009.

[5] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel
Rabkin, Ion Stoica, et al. A view of cloud computing.
Communications of the ACM, 53(4):50–58, 2010.

[6] Ajay Gulati, Ganesha Shanmuganathan, Anne Holler, and Irfan
Ahmad. Cloud-scale resource management: challenges and
techniques. In Proceedings of the 3rd USENIX conference on Hot
topics in cloud computing, pages 3–3. USENIX Association, 2011.

[7] Karissa Miller and Mahmoud Pegah. Virtualization: virtually at the
desktop. In Proceedings of the 35th annual ACM SIGUCCS fall
conference, pages 255– 260. ACM, 2007.

[8] Xiaofei Liao, Hai Jin, Liting Hu, and Haikun Liu. Towards
virtualized desktop environment. Concurrency and Computation:
Practice and Experience, 22(4):419–440, 2010.

[9] Su K, Wang Z, Lu X, et al. An original-stream based solution for
smoothly replaying high-definition videos in desktop virtualization
systems[J]. Journal of Visual Languages & Computing, 2014, 25(6):
676-683.

[10] Jiewei Wu, Jiajun Wang, Zhengwei Qi, and Haibing Guan. Sridesk: A
streaming based remote interactivity architecture for desktop
virtualization system. In Computers and Communications (ISCC),
2013 IEEE Symposium on, pages 000281–000286. IEEE, 2013.

[11] Gupta P, Gupta S. Mobile cloud computing: The future of cloud[J].
International Journal of Advanced Research in Electrical, Electronics
and Instrumentation Engineering, 2012, 1(3): 134-145.

[12] Ballagas R, Rohs M, Sheridan J G, et al. Byod: Bring your own
device[C]//Proceedings of the Workshop on Ubiquitous Display
Environments, Ubicomp. 2004, 2004.

[13] Miller K W, Voas J M, Hurlburt G F. BYOD: Security and Privacy
Considerations[J]. It Professional, 2012, 14(5): 53-55.

[14] Ghosh A, Gajar P K, Rai S. Bring your own device (BYOD): Security
risks and mitigating strategies[J]. Journal of Global Research in
Computer Science, 2013, 4(4): 62-70.

[15] Tristan Richardson, Quentin Stafford-Fraser, Kenneth R
Wood, and Andy Hopper. Virtual network computing.
Internet Computing, IEEE, 2(1):33–38, 1998.

[16] Windows remote desktop protocol (RDP),
http://msdn.microsoft.com/en-us/library

[17] Lureau, Marc-André (11 March 2016). "ANNOUNCE: spice-
protocol release 0.12.11". spice-devel (Mailing list).

[18] Ricardo A Baratto, Leonard N Kim, and Jason Nieh. Thinc: a
virtual display architecture for thin-client computing. In ACM
SIGOPS Operating Systems Review, volume 39, pages 277–
290. ACM, 2005.

[19] Hdx of citrix xendesktop, http://hdx.citrix.com/hdx.

[20] R. A. Baratto, S. Potter, G. Su, and J. Nieh, “MobiDesk : Mobile
Virtual Desktop Computing Categories and Subject Descriptors,” in
MobiCom,2004.

[21] “PC-over-IP,” http://www.teradici.com/.

[22] https://www.samba.org/

