Improving Host Swapping Using Adaptive Prefetching and
Paging Notifier

Wenzhi Chen, Huijun Chen, Wei Huang, Xiaogin Chen, Dapeng Huang
College of Computer Science
Zhejiang University, Hangzhou, 310027, China
Email: chenwz@zju.edu.cn

ABSTRACT

In a virtualized system, the hypervisor may be forced to
reclaim memory by swapping out pages of guest operating
systems (OSes) when the regular memory balancing mech-
anisms, such as page sharing and ballooning, fail to revoke
enough memory for reallocation purpose, which always leads
to serious performance degradation. In this paper, we in-
troduce Adaptive Swap Prefetcher (ASP) and Host Swap-
ping Notifier (HSN), the effective and lightweight solutions
to gracefully reduce the degradation in system performance
when host swapping is triggered. ASP smartly prefetches
more pages from the host swap file as long as the good spa-
tial locality persists so as to reduce disk transfers. The guest
OS will be notified by HSN when the hypervisor evicts pages,
which then hides those pages from its memory reclamation
routines to eliminate unnecessary guest swapping and to pre-
vent the occurrence of double paging anomaly. Currently
ASP and HSN are implemented in KVM, experimental re-
sults show that guest performance can be improved by a
factory of 1.4x and 2x respectively using ASP and HSN.

Categories and Subject Descriptors

D.4.2 [Operating Systems]: Storage Management—swap-
ping; C.4 [Performance of Systems]: Design studies

General Terms

Design, Performance

Keywords

Virtualization, Prefetching, Host Swapping, Double Paging,
KVM

1. INTRODUCTION

Memory overcommitment [7], by which means the total
memory of all guest operating systems (OSes) can exceed the
maximum available memory of the hypervisor, is commonly

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

HPDC'10, June 20-25, 2010, Chicago, Illinois, USA.

Copyright 2010 ACM 978-1-60558-942-8/10/06 ...$10.00.

300

adopted to increase the utilization of hardware resources and
to run more guest OSes concurrently. Technologies, such as
ballooning [9] and page sharing [9], are normally used to help
balance memory usage. A premise to take full advantage of
these assistive technologies is that there is enough memory
in system to reclaim and redistribute, otherwise the hyper-
visor has to resort to the expensive swapping operations to
force memory recycling. Theoretically, host swapping has
shorter code path and fewer privilege changes to achieve
better performance than guest swapping. However, deeper
investigation explores some performance issues about host
swapping, one is that it could result in the pages for guest
OS scattering all over the swap file and degrade the spatial
locality, which increases the IO seek time and IO amount
and consequently decreases system performance [8]. An-
other problem is the so-called double paging anomaly [4], in
which case the host OS has swapped out a page in the first
place while the guest OS happens to pick on the same one
to evict, resulting in an anomaly that this page gets faulted
in and then paged out again immediately.

In this paper, we propose Adaptive Swap Prefetcher (ASP)
and Host Swapping Notifier (HSN) to address the problems
respectively.

2. RELATED WORK

Double paging anomaly was studied a long time ago, when
Goldberg et al. revealed that an increase in the memory
size of a virtual machine without a corresponding increase
in real memory size can lead to this anomaly [4]. Then
Ohmachi et al. proposed a new page replacement algorithm,
PAWP/VMS, to prevent this anomaly and reduce the num-
ber of page fault interrupts [6]. Their method was based on
the assumption that the size of LRU stacks are fixed and
that both host and guest see the same LRU page sequences,
which can not be satisfied by today’s virtual machine sys-
tems. Chew et al. argued that a maximal-pool system can
avoid the double paging anomaly [1], but their method is
not well evaluated. A balanced approach, called Collabo-
rative Memory Management (CMM) [7], that reaped the
benefits of ballooning and host swapping, was introduced
by Schwidefsky et al. to reduce overhead when memory is
overcommitted. CMM basically maintains page states in
both host and guest, and the host can readily discard pages
that is not used or can be reconstructed from the guest, and
then redistribute them. CMM requires a large effort to mod-
ify the guest code and coordinate host and guest, and the
system wide overhead is not well studied.

The literature on OS level prefetching is comparatively

Entry 0 PID Entry 0 PID

Entry 1 Pri Entry 1 Pri
Base Slot Base
Entry Cgps -1 End Entry Cgp¢ -1 Slot 0 End
Entry Cgpt Pre Entry Cgpt Slot 1 Pre

Track Buffer Entry Structure Track Buffer

(a) Simple Track Buffer

Entry Structure Slot Structure

(b) Buffer with Double Slots

Figure 1: A design of ASP track buffer and its im-
proved variant.

very rich. Wu et al. redesigned the Linux readahead frame-
work [2] by simplifying the legacy prefetching algorithm,
which enjoys great performance improvements. By carefully
studying the IO switch time of individual disks, the compet-
itive prefetching can determine a most suitable prefetching
depth to allow performance boost [5]. There are also adap-
tive asynchronous prefetching mechanisms [3, 10] that dy-
namically adjust the trigger distcance and prefetching depth
to achieve better performance. Approaches that can signif-
icantly increase the predictive accuracy of prefetching by
letting applications or compilers disclose hints are available
as well, which due to page limits are not cited.

Despite the abundance of research on file system prefetch-
ing, no attention has been focused on swap prefetching due
to its poor data organization. In this paper, the spatial
locality of swap space is studied first before a prefetching
policy is applied, which we will discuss in Section 3.1.2.

3. DESIGN AND IMPLEMENTATION

In this section, we present the design decisions and cur-
rent implementation of Adaptive Swap Prefetcher (ASP)
and Host Swapping Notifier (HSN) in KVM.

3.1 Adaptive Swap Prefetcher

3.1.1 Track Buffer

The key idea of our design of ASP is to keep track of
each process/guest’s swap-in activity. Each time the host
OS (host for short) has to fault in pages for a guest OS
(guest for short) or a process, ASP will first consult an en-
try in a track buffer (BUF') to determine how many pages
to prefetch. The structure of BUF with maximum C.,; en-
tries are shown in Figure la, where Base and End are the
locations in the swap partition of the last read, Pri is the
priority of this entry, and Pre denotes the number of pages
prefetched last time. Once an entry is picked up, a function
is applied to figure out how many pages to prefetch.

3.1.2 Prefetching Function

The principle behind our prefetcher is that let the prefetch-
ing window grow smoothly when the good locality remains
until a predefined limit is reached, and shrink quickly to
the default prefetching size when the locality becomes poor.
We define locality as the distance between two consecutive
swap-in operations. More specifically, let Base and End be
the starting and ending point in the swap partition of last
prefetching respectively, T'ar be the place where the page
needs to be faulted in locates, then the distance (DIS) of two
successive swap-ins can be calculated as DIS = Min(|Base—

301

Tar|,|End—Tar|). If DIS < MDIS, which is a predefined
threshold, it is recognized as a good locality. In our current
implementation, M DIS is set to 8, identical to the mini-
mum number of prefetching pages. Ideally, the minimum
prefetching size would be 0 or a small number to minimize
disk transfer time, but considering the mechanical proper-
ties of magnetic disks, the minimum window size is adhered
to the default Linux policy, which is 8 currently.

Providing the definition of locality, ASP can calculate
how many pages to prefetch this time. 8 more pages are
prefetched than last time when there shows a good local-
ity, until a maximum prefetching limit (M PF) is reached,
which is 32 pages as a good balance of prefetching and mem-
ory sharing. On the contrary, if the desired page content is
located outside the M DIS region, or no track entry can be
found, we simply read ahead minimum number of pages.

3.1.3 Double Sot Prediction

Further investigation shows that when a guest is domi-
nated by one process, the anonymous pages of those peri-
odically waked up service routines may get swapped in and
out thrashingly. Since the kernel threads share the PIDs
of user space processes, ASP mistakes them for the regular
processes, resulting in the confusion of entry information.
Besides, as a guest is simply a regular process in the view of
KVM, the sparsely spreading swapping activities make our
prediction of locality less accurate.

So we improve the original proposal with double slot pre-
diction as shown in Figure 1b, that is, each entry is split
into two slots, each has its own Base and End pointers, yet
share the same PID and Pri. Another field, slot, is added
to make ASP aware of which slot was used the last time.
When calculating the locality, ASP tries first with the slot’s
information, and then the other one. If neither indicates a
good locality, both slots’ parameters are reset to the default
ones, and the default number of pages are prefetched, oth-
erwise the corresponding slot’s record is updated and more
pages is prefetched until M PF is reached.

3.2 Host Swapping Notifier

The design of Host Swapping Notifier (HSN) is straight-
forward: A shared memory is established to notify the guest
of guest frame numbers (GFNs) whose corresponding phys-
ical page frames have been swapped out or faulted in by the
host. The guest periodically checks the shared memory and
hides the pages that have been swapped out by the host, or
rescues pages when they are faulted in from the host’s swap
space. By this cooperation between the host and the guest,
the double paging anomaly can be eliminated.

3.21 Shared Memory

More precisely, when a guest boots up, it sets up a piece
of shared memory, and then tells the host the start GFN
and the size of the shared memory through a hypercall. The
shared memory is depicted by Figure 2, which consists of
three parts; first one is the notifier header, and the other
two are the swap-out GFN buffer (OB) and the swap-in
GFN buffer (IB) respectively. The header contains the in-
formation needed to manipulate the buffers, including the
offsets of the buffers to the beginning of the shared memory,
the size of each buffer, and the head and tail pointers, which
the host updates the former and the guest the latter. The
host answers the hypercall by mapping the shared memory

Shared Memory

S| header

GFN buffer 1

head

4—/_

tai GFN buffer 2

Figure 2: A design of shared memory. When the
host produces a GFN in the buffer, it increases the
head pointer by 1, while the guest increases the tail
pointer by 1 when it consumes one. The buffer is
empty when the head pointer equals tail pointer.

to a contiguous virtual address.

3.2.2 GFN Tracking and Notifying

Once the shared memory is established, the host and guest
continue to execute as usual, making their own decisions
to select victim pages and do swapping, with addition that
HSN will examine every paging operation and guest will
regularly check the shared memory. When host swapping
happens, HSN has to tell whether the page belongs to some
guest. If it does, HSN then puts the guest frame number
(GFN) into one of the buffers in the shared memory. When
the guest gets scheduled, it will notice that there are pend-
ing GFNs in the buffers, and starts to handle them. For
pages that have been paged out by the host, the guest will
check their states to make sure that they can be hidden
from memory reclamation procedures. If nothing is wrong,
the guest hides the corresponding page, otherwise the guest
just continues to handle the next one. By this means, the
memory reclamation procedures of the guest OS will not see
the pages that have already been evicted by the host, and
have to choose other pages to steal, which probably still exist
in physical memory. As a result, the double paging anomaly
can be avoided. As for the pages that are faulted in by the
host, all the guest needs to do is simply unhide them.

It should be noted that since the hidden pages are not
backed up by physical memory while still occupy it from the
guest’s sight of view, processes may get killed brutally when
the guest is out of memory (OOM). However, considering
the performance gain and the controllability of OOM, we
still believe it is worth adopting HSN.

4. EVALUATION

For our test we use a server equipped with 4-core Intel
Q9300 CPU, 4GB of memory and 320GB 7200RPM SATA
disk. Memory of both host and guest is limited to simply
the tests, and it is overcommitted as well to better evaluate
our approaches.

4.1 Evaluation of ASP

To evaluate ASP, we turn off the swapping in the guest OS
to exclude the influence of double paging, which is evaluated
separately. Then we deploy the SpecJBB benchmark on
three guests, each of 320MB of memory and 230MB Java
heap. The result is shown in Table 1, from which we can
conclude that the performance increase can be obtained by
around 18% using our ASP. Table 1 also indicates that the

302

Table 1: Impact of ASP and Disk Scheduler on Sys-
tem Performance in Terms of SpecJBB Score

H . Disk scheduler
ypervisot CFQ | Anticipatory | Impr.
KVM 3417 3632 6.3%
ASP patched | 4045 4287 6.0%
Impr. 18.3% 18.0% -

Table 2: Impact of Prefetching Size on Swap Cache
Hit Rate

Page No. of prefetching pages Hit
Cluster 8 16 24 32 Total rate
3 15642 - - - 15642 | 92.2%
4 - 18031 - - 18031 | 83.3%
5 - - - 21852 | 21852 | 71.2%

ASP 7490 | 6296 | 2021 | 2963 | 18770 | 90.6%

disk scheduler has an impact on system performance. By
changing the default CFQ scheduler to Anticipatory, system
performance increases by 6%.

To explain how ASP works, we implement a tracing tool,
MMTRACE, to record some useful information when bench-
marks are running, including the number of pages swapped
out and in, swap cache hits, etc. Swap cache hit rate is
an important indicator of prefetching effectiveness, and is
NL where Ni,, and Ny, de-
> PN~ Nig
note the number of swap-in activities and swap cache hits
respectively, and PN denotes the number of pages swapped
in each time. As indicated by Table 2, swap cache hit rate
is inversely proportional to the prefetching size (which can
be modified by changing the value of /proc/sys/vm/page —
cluster and is evaluated as 2P*9°~¢!¥ste") " and more irrel-
evant pages are faulted in as the prefetching size increases.
By using ASP, only those pages related to the faulted ones
are likely to be prefetched, leading to less IO transfers and
higher swap cache hit rates.

4.2 Evaluation of HSN

We first illustrate how HSN solves the double paging anomaly
by assigning a same workload on different system setups,

which we abbreviate as follows:
KvM-1200 a 1200-MB guest running on a 512-MB

host with guest swapping disabled.
KvM-768 a 768-MB guest running on a 512-MB
host with guest swapping enabled.
Hs~n-768 a 768-MB guest running on a 512-MB
host with guest swapping enabled and
HSN patched.

Each guest runs a Sysbench benchmark with BLOCK_SIZE
set to 1GB; host swapping is enabled in all cases.

The breakdown of disk transfers recorded on the host side
are shown in Figure 3, from which we can have a deep in-
sight of how HSN works. Because system memory is over-
committed in all cases, a minimum number of pages need
to be swapped out to successfully execute the benchmark.
This minimum number can be expressed as the total blocks
written out when only the host swapping is enabled, that
is, the value of Disk-out in the case of KvM-1200. When
guest memory is reduced and guest swapping is enabled, the

calculated using

B Disk-out
1200000 = Swap-out]
o Disk-in
B 1000000 Swap-in
L
Z 800000
&
— 600000
)
Q
2 400000 —
m
200000 —
0
KVM-1200 KVM-768 HSN-768

Figure 3: A comparison of disk transfers recorded on
the host side for the Sysbench workload in different
system setups. Blocks swapped out and in by the
guest can be expressed approximately as Disk-out —
Swap-out and Disk-in — Swap-in respectively.

Table 3: Impact of HSN on Benchmark Performance
[Running Sysbench and SpecJBB separately |

Sysbench (seconds) | SpecJBB (score)
KVM 51.4 4364
HSN 32.6 5492
[Running Sysbench on two guests concurrently |
Guest 1 Guest 2
KVM 96.9s 99.2s
HSN 44.8s 49.6s

amount of host swapping, namely Swap-out, should reduce
as well since the guest will help reclaim memory. However,
despite the help provided by guest (which can be calculated
as Disk-out — Swap-out), Swap-out is not significantly re-
duced in the case of KvM-768, which is a good indicator of
double paging. On the contrary, the close values of Disk-
out in KvM-1200 and HsN-768 imply that double paging is
mostly eliminated at the help of HSN, since no more disk
transfers are involved. However, although HSN can guide
the guest not to select the pages that have been evicted by
the host, the guest still needs to steal from other pages to re-
claim memory to run the benchmark, that is why KvM-768
and HsSN-768 have the same differences between Disk-out
and Swap-out.

We evaluate HSN by first running Sysbench and SpecJBB
separately to trigger double paging, the performance boost
is around 36% and 26% respectively, as indicated by the
first part of Table 3. To further explore the potential of
HSN, we design a workload with heavier double paging. In
this experiment, two guests, each with 300MB of memory,
are hosted by hypervisors with 512MB of memory. Both
guests run a Sysbench benchmark with BLOCK_SIZE set
to 500MB concurrently to trigger double paging. The exe-
cution time is record in the second part of Table 3. As the
result shows, HSN can cut the runtime by half, which means
a much graceful performance degradation when the system
is under heavy memory pressure.

S. CONCLUSIONS AND FUTURE WORK

To gracefully reduce the performance degradation in vir-
tualized environments, we propose the adaptive prefetcher
and GFN notifier to help relieve the pain caused by host

303

swapping. Experimental results based on our KVM imple-
mentation show that both solutions can reduce the perfor-
mance degradation when the system is busy host swapping.

There are several ways we can improve our design. The
kernel and KVM module will be studied more carefully to
simply the implementation of HSN so that the guest kernel
won’t be affected. The impact of ASP will be examined
further to eliminate cache pollution and prefetch wastage,
which are common problems of prefetching.

6. ACKNOWLEDGMENTS

This work is supported by National Natural Science Foun-
dation of China under grant no. 60970125 and National
Grand Fundamental Research 973 Program of China under
grant no. 2007CB310900.

7. REFERENCES

[1] K. Chew and A. Silberschatz. On the avoidance of the
double paging anomaly in virtual memory systems.
1992.

[2] W. Fengguang, X. Hongsheng, and X. Chenfeng. On
the design of a new linux readahead framework.
SIGOPS Oper. Syst. Rev., 42(5):75-84, 2008.

[3] B.S. Gill and L. A. D. Bathen. Amp: Adaptive
multi-stream prefetching in a shared cache. In FAST
07: 5th USENIX Conference on File and Storage
Technologies, pages 185 198, Berkeley, CA, USA,
2007. USENIX.

R. P. Goldberg and R. Hassinger. The double paging

anomaly. In AFIPS *7/: Proceedings of the May 6-10,

1974, national computer conference and exposition,

pages 195-199, New York, NY, USA, 1974. ACM.

C. Li, K. Shen, and A. E. Papathanasiou. Competitive

prefetching for concurrent sequential i/o. In EuroSys

’07: Proceedings of the 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007,
pages 189-202, New York, NY, USA, 2007. ACM.

K. OHMACHI, T. NISHIGAKI, and S. TAKASAKI.

Analysis of pawp/vms: Paging algorithm to prevent

double paging anomaly in virtual machine systems.

Journal of information processing, 4(2):55-60,

19810715.

[7] M. Schwidefsky, H. Franke, R. Mansell, H. Raj,

D. Osisek, and J. Choi. Collaborative memory
management in hosted linux environments. In OLS
06: 2006 Ottawa Linuz Symposium, pages 313 328,
2006.

[8] D. Su, W. Chen, W. Huang, H. Shan, and Y. Jiang.
Smartvisor: towards an efficient and compatible
virtualization platform for embedded system. In IIES
’09: Proceedings of the Second Workshop on Isolation
and Integration in Embedded Systems, pages 37-41,
New York, NY, USA, 2009. ACM.

[9] C. A. Waldspurger. Memory resource management in
vmware esx server. SIGOPS Oper. Syst. Rev.,
36(SI):181-194, 2002.

[10] Z. Zhang, A. Kulkarni, X. Ma, and Y. Zhou. Memory
resource allocation for file system prefetching: from a
supply chain management perspective. In EuroSys ’09:
Proceedings of the 4th ACM European conference on
Computer systems, pages 75—88, New York, NY, USA,
2009. ACM.

[4

[5

(6

