
Improving Host Swapping Using Adaptive Prefetching and
Paging Notifier

Wenzhi Chen, Huijun Chen, Wei Huang, Xiaoqin Chen, Dapeng Huang
College of Computer Science

Zhejiang University, Hangzhou, 310027, China

Email: chenwz@zju.edu.cn

ABSTRACTIn a virtualized system, the hypervisor may be fored torelaim memory by swapping out pages of guest operatingsystems (OSes) when the regular memory balaning meh-anisms, suh as page sharing and ballooning, fail to revokeenough memory for realloation purpose, whih always leadsto serious performane degradation. In this paper, we in-trodue Adaptive Swap Prefether (ASP) and Host Swap-ping Noti�er (HSN), the e�etive and lightweight solutionsto graefully redue the degradation in system performanewhen host swapping is triggered. ASP smartly prefethesmore pages from the host swap �le as long as the good spa-tial loality persists so as to redue disk transfers. The guestOS will be noti�ed by HSNwhen the hypervisor evits pages,whih then hides those pages from its memory relamationroutines to eliminate unneessary guest swapping and to pre-vent the ourrene of double paging anomaly. CurrentlyASP and HSN are implemented in KVM, experimental re-sults show that guest performane an be improved by afatory of 1.4x and 2x respetively using ASP and HSN.
Categories and Subject DescriptorsD.4.2 [Operating Systems℄: Storage Management|swap-ping ; C.4 [Performane of Systems℄: Design studies
General TermsDesign, Performane
KeywordsVirtualization, Prefething, Host Swapping, Double Paging,KVM
1. INTRODUCTIONMemory overommitment [7℄, by whih means the totalmemory of all guest operating systems (OSes) an exeed themaximum available memory of the hypervisor, is ommonly

adopted to inrease the utilization of hardware resoures andto run more guest OSes onurrently. Tehnologies, suh asballooning [9℄ and page sharing [9℄, are normally used to helpbalane memory usage. A premise to take full advantage ofthese assistive tehnologies is that there is enough memoryin system to relaim and redistribute, otherwise the hyper-visor has to resort to the expensive swapping operations tofore memory reyling. Theoretially, host swapping hasshorter ode path and fewer privilege hanges to ahievebetter performane than guest swapping. However, deeperinvestigation explores some performane issues about hostswapping, one is that it ould result in the pages for guestOS sattering all over the swap �le and degrade the spatialloality, whih inreases the IO seek time and IO amountand onsequently dereases system performane [8℄. An-other problem is the so-alled double paging anomaly [4℄, inwhih ase the host OS has swapped out a page in the �rstplae while the guest OS happens to pik on the same oneto evit, resulting in an anomaly that this page gets faultedin and then paged out again immediately.In this paper, we propose Adaptive Swap Prefether (ASP)and Host Swapping Noti�er (HSN) to address the problemsrespetively.
2. RELATED WORKDouble paging anomaly was studied a long time ago, whenGoldberg et al. revealed that an inrease in the memorysize of a virtual mahine without a orresponding inreasein real memory size an lead to this anomaly [4℄. ThenOhmahi et al. proposed a new page replaement algorithm,PAWP/VMS, to prevent this anomaly and redue the num-ber of page fault interrupts [6℄. Their method was based onthe assumption that the size of LRU staks are �xed andthat both host and guest see the same LRU page sequenes,whih an not be satis�ed by today's virtual mahine sys-tems. Chew et al. argued that a maximal-pool system anavoid the double paging anomaly [1℄, but their method isnot well evaluated. A balaned approah, alled Collabo-rative Memory Management (CMM) [7℄, that reaped thebene�ts of ballooning and host swapping, was introduedby Shwidefsky et al. to redue overhead when memory isoverommitted. CMM basially maintains page states inboth host and guest, and the host an readily disard pagesthat is not used or an be reonstruted from the guest, andthen redistribute them. CMM requires a large e�ort to mod-ify the guest ode and oordinate host and guest, and thesystem wide overhead is not well studied.The literature on OS level prefething is omparativelyPermission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPDC'10, June 20–25, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-60558-942-8/10/06 ...$10.00.

300

(a) Simple Trak Bu�er (b) Bu�er with Double SlotsFigure 1: A design of ASP trak bu�er and its im-proved variant.very rih. Wu et al. redesigned the Linux readahead frame-work [2℄ by simplifying the legay prefething algorithm,whih enjoys great performane improvements. By arefullystudying the IO swith time of individual disks, the ompet-itive prefething an determine a most suitable prefethingdepth to allow performane boost [5℄. There are also adap-tive asynhronous prefething mehanisms [3, 10℄ that dy-namially adjust the trigger distane and prefething depthto ahieve better performane. Approahes that an signif-iantly inrease the preditive auray of prefething byletting appliations or ompilers dislose hints are availableas well, whih due to page limits are not ited.Despite the abundane of researh on �le system prefeth-ing, no attention has been foused on swap prefething dueto its poor data organization. In this paper, the spatialloality of swap spae is studied �rst before a prefethingpoliy is applied, whih we will disuss in Setion 3.1.2.
3. DESIGN AND IMPLEMENTATIONIn this setion, we present the design deisions and ur-rent implementation of Adaptive Swap Prefether (ASP)and Host Swapping Noti�er (HSN) in KVM.
3.1 Adaptive Swap Prefetcher

3.1.1 Track BufferThe key idea of our design of ASP is to keep trak ofeah proess/guest's swap-in ativity. Eah time the hostOS (host for short) has to fault in pages for a guest OS(guest for short) or a proess, ASP will �rst onsult an en-try in a trak bu�er (BUF) to determine how many pagesto prefeth. The struture of BUF with maximum Cent en-tries are shown in Figure 1a, where Base and End are theloations in the swap partition of the last read, Pri is thepriority of this entry, and Pre denotes the number of pagesprefethed last time. One an entry is piked up, a funtionis applied to �gure out how many pages to prefeth.
3.1.2 Prefetching FunctionThe priniple behind our prefether is that let the prefeth-ing window grow smoothly when the good loality remainsuntil a prede�ned limit is reahed, and shrink quikly tothe default prefething size when the loality beomes poor.We de�ne loality as the distane between two onseutiveswap-in operations. More spei�ally, let Base and End bethe starting and ending point in the swap partition of lastprefething respetively, Tar be the plae where the pageneeds to be faulted in loates, then the distane (DIS) of twosuessive swap-ins an be alulated asDIS =Min(jBase�

Tarj; jEnd�Tarj). If DIS < MDIS, whih is a prede�nedthreshold, it is reognized as a good loality. In our urrentimplementation, MDIS is set to 8, idential to the mini-mum number of prefething pages. Ideally, the minimumprefething size would be 0 or a small number to minimizedisk transfer time, but onsidering the mehanial proper-ties of magneti disks, the minimum window size is adheredto the default Linux poliy, whih is 8 urrently.Providing the de�nition of loality, ASP an alulatehow many pages to prefeth this time. 8 more pages areprefethed than last time when there shows a good loal-ity, until a maximum prefething limit (MPF) is reahed,whih is 32 pages as a good balane of prefething and mem-ory sharing. On the ontrary, if the desired page ontent isloated outside the MDIS region, or no trak entry an befound, we simply read ahead minimum number of pages.
3.1.3 Double Slot PredictionFurther investigation shows that when a guest is domi-nated by one proess, the anonymous pages of those peri-odially waked up servie routines may get swapped in andout thrashingly. Sine the kernel threads share the PIDsof user spae proesses, ASP mistakes them for the regularproesses, resulting in the onfusion of entry information.Besides, as a guest is simply a regular proess in the view ofKVM, the sparsely spreading swapping ativities make ourpredition of loality less aurate.So we improve the original proposal with double slot pre-dition as shown in Figure 1b, that is, eah entry is splitinto two slots, eah has its own Base and End pointers, yetshare the same PID and Pri. Another �eld, slot, is addedto make ASP aware of whih slot was used the last time.When alulating the loality, ASP tries �rst with the slot'sinformation, and then the other one. If neither indiates agood loality, both slots' parameters are reset to the defaultones, and the default number of pages are prefethed, oth-erwise the orresponding slot's reord is updated and morepages is prefethed until MPF is reahed.
3.2 Host Swapping NotifierThe design of Host Swapping Noti�er (HSN) is straight-forward: A shared memory is established to notify the guestof guest frame numbers (GFNs) whose orresponding phys-ial page frames have been swapped out or faulted in by thehost. The guest periodially heks the shared memory andhides the pages that have been swapped out by the host, orresues pages when they are faulted in from the host's swapspae. By this ooperation between the host and the guest,the double paging anomaly an be eliminated.
3.2.1 Shared MemoryMore preisely, when a guest boots up, it sets up a pieeof shared memory, and then tells the host the start GFNand the size of the shared memory through a hyperall. Theshared memory is depited by Figure 2, whih onsists ofthree parts; �rst one is the noti�er header, and the othertwo are the swap-out GFN bu�er (OB) and the swap-inGFN bu�er (IB) respetively. The header ontains the in-formation needed to manipulate the bu�ers, inluding theo�sets of the bu�ers to the beginning of the shared memory,the size of eah bu�er, and the head and tail pointers, whihthe host updates the former and the guest the latter. Thehost answers the hyperall by mapping the shared memory

301

������

���

	�
�

����

�����������

�����������

�������������

Figure 2: A design of shared memory. When thehost produes a GFN in the bu�er, it inreases thehead pointer by 1, while the guest inreases the tailpointer by 1 when it onsumes one. The bu�er isempty when the head pointer equals tail pointer.to a ontiguous virtual address.
3.2.2 GFN Tracking and NotifyingOne the shared memory is established, the host and guestontinue to exeute as usual, making their own deisionsto selet vitim pages and do swapping, with addition thatHSN will examine every paging operation and guest willregularly hek the shared memory. When host swappinghappens, HSN has to tell whether the page belongs to someguest. If it does, HSN then puts the guest frame number(GFN) into one of the bu�ers in the shared memory. Whenthe guest gets sheduled, it will notie that there are pend-ing GFNs in the bu�ers, and starts to handle them. Forpages that have been paged out by the host, the guest willhek their states to make sure that they an be hiddenfrom memory relamation proedures. If nothing is wrong,the guest hides the orresponding page, otherwise the guestjust ontinues to handle the next one. By this means, thememory relamation proedures of the guest OS will not seethe pages that have already been evited by the host, andhave to hoose other pages to steal, whih probably still existin physial memory. As a result, the double paging anomalyan be avoided. As for the pages that are faulted in by thehost, all the guest needs to do is simply unhide them.It should be noted that sine the hidden pages are notbaked up by physial memory while still oupy it from theguest's sight of view, proesses may get killed brutally whenthe guest is out of memory (OOM). However, onsideringthe performane gain and the ontrollability of OOM, westill believe it is worth adopting HSN.
4. EVALUATIONFor our test we use a server equipped with 4-ore IntelQ9300 CPU, 4GB of memory and 320GB 7200RPM SATAdisk. Memory of both host and guest is limited to simplythe tests, and it is overommitted as well to better evaluateour approahes.
4.1 Evaluation of ASPTo evaluate ASP, we turn o� the swapping in the guest OSto exlude the inuene of double paging, whih is evaluatedseparately. Then we deploy the SpeJBB benhmark onthree guests, eah of 320MB of memory and 230MB Javaheap. The result is shown in Table 1, from whih we anonlude that the performane inrease an be obtained byaround 18% using our ASP. Table 1 also indiates that the

Table 1: Impat of ASP and Disk Sheduler on Sys-tem Performane in Terms of SpeJBB SoreHypervisor Disk shedulerCFQ Antiipatory Impr.KVM 3417 3632 6.3%ASP pathed 4045 4287 6.0%Impr. 18.3% 18.0% -Table 2: Impat of Prefething Size on Swap CaheHit RatePageCluster No. of prefething pages Hitrate8 16 24 32 Total3 15642 - - - 15642 92.2%4 - 18031 - - 18031 83.3%5 - - - 21852 21852 71.2%ASP 7490 6296 2021 2963 18770 90.6%disk sheduler has an impat on system performane. Byhanging the default CFQ sheduler to Antiipatory, systemperformane inreases by 6%.To explain how ASP works, we implement a traing tool,MMTRACE, to reord some useful information when benh-marks are running, inluding the number of pages swappedout and in, swap ahe hits, et. Swap ahe hit rate isan important indiator of prefething e�etiveness, and isalulated using NhitPNini=1 PNi �Nin , where Nin and Nhit de-note the number of swap-in ativities and swap ahe hitsrespetively, and PN denotes the number of pages swappedin eah time. As indiated by Table 2, swap ahe hit rateis inversely proportional to the prefething size (whih anbe modi�ed by hanging the value of =pro=sys=vm=page�luster and is evaluated as 2page�luster), and more irrel-evant pages are faulted in as the prefething size inreases.By using ASP, only those pages related to the faulted onesare likely to be prefethed, leading to less IO transfers andhigher swap ahe hit rates.
4.2 Evaluation of HSNWe �rst illustrate how HSN solves the double paging anomalyby assigning a same workload on di�erent system setups,whih we abbreviate as follows:Kvm-1200 a 1200-MB guest running on a 512-MBhost with guest swapping disabled.Kvm-768 a 768-MB guest running on a 512-MBhost with guest swapping enabled.Hsn-768 a 768-MB guest running on a 512-MBhost with guest swapping enabled andHSN pathed.Eah guest runs a Sysbenh benhmark with BLOCK SIZEset to 1GB; host swapping is enabled in all ases.The breakdown of disk transfers reorded on the host sideare shown in Figure 3, from whih we an have a deep in-sight of how HSN works. Beause system memory is over-ommitted in all ases, a minimum number of pages needto be swapped out to suessfully exeute the benhmark.This minimum number an be expressed as the total blokswritten out when only the host swapping is enabled, thatis, the value of Disk-out in the ase of Kvm-1200. Whenguest memory is redued and guest swapping is enabled, the

302

1200000

1000000

800000

600000

400000

200000

0

B
lo

ck
s

T
ra

ns
fe

rr
ed

KVM-1200 KVM-768 HSN-768

Disk-out
Swap-out
Disk-in
Swap-in

Figure 3: A omparison of disk transfers reorded onthe host side for the Sysbenh workload in di�erentsystem setups. Bloks swapped out and in by theguest an be expressed approximately as Disk-out�Swap-out and Disk-in� Swap-in respetively.Table 3: Impat of HSN on Benhmark PerformaneRunning Sysbenh and SpeJBB separatelySysbenh (seonds) SpeJBB (sore)KVM 51.4 4364HSN 32.6 5492Running Sysbenh on two guests onurrentlyGuest 1 Guest 2KVM 96.9s 99.2sHSN 44.8s 49.6samount of host swapping, namely Swap-out, should redueas well sine the guest will help relaim memory. However,despite the help provided by guest (whih an be alulatedas Disk-out � Swap-out), Swap-out is not signi�antly re-dued in the ase of Kvm-768, whih is a good indiator ofdouble paging. On the ontrary, the lose values of Disk-out in Kvm-1200 and Hsn-768 imply that double paging ismostly eliminated at the help of HSN, sine no more disktransfers are involved. However, although HSN an guidethe guest not to selet the pages that have been evited bythe host, the guest still needs to steal from other pages to re-laim memory to run the benhmark, that is why Kvm-768and Hsn-768 have the same di�erenes between Disk-outand Swap-out.We evaluate HSN by �rst running Sysbenh and SpeJBBseparately to trigger double paging, the performane boostis around 36% and 26% respetively, as indiated by the�rst part of Table 3. To further explore the potential ofHSN, we design a workload with heavier double paging. Inthis experiment, two guests, eah with 300MB of memory,are hosted by hypervisors with 512MB of memory. Bothguests run a Sysbenh benhmark with BLOCK SIZE setto 500MB onurrently to trigger double paging. The exe-ution time is reord in the seond part of Table 3. As theresult shows, HSN an ut the runtime by half, whih meansa muh graeful performane degradation when the systemis under heavy memory pressure.
5. CONCLUSIONS AND FUTURE WORKTo graefully redue the performane degradation in vir-tualized environments, we propose the adaptive prefetherand GFN noti�er to help relieve the pain aused by host

swapping. Experimental results based on our KVM imple-mentation show that both solutions an redue the perfor-mane degradation when the system is busy host swapping.There are several ways we an improve our design. Thekernel and KVM module will be studied more arefully tosimply the implementation of HSN so that the guest kernelwon't be a�eted. The impat of ASP will be examinedfurther to eliminate ahe pollution and prefeth wastage,whih are ommon problems of prefething.
6. ACKNOWLEDGMENTSThis work is supported by National Natural Siene Foun-dation of China under grant no. 60970125 and NationalGrand Fundamental Researh 973 Program of China undergrant no. 2007CB310900.
7. REFERENCES[1℄ K. Chew and A. Silbershatz. On the avoidane of thedouble paging anomaly in virtual memory systems.1992.[2℄ W. Fengguang, X. Hongsheng, and X. Chenfeng. Onthe design of a new linux readahead framework.SIGOPS Oper. Syst. Rev., 42(5):75{84, 2008.[3℄ B. S. Gill and L. A. D. Bathen. Amp: Adaptivemulti-stream prefething in a shared ahe. In FAST'07: 5th USENIX Conferene on File and StorageTehnologies, pages 185{198, Berkeley, CA, USA,2007. USENIX.[4℄ R. P. Goldberg and R. Hassinger. The double paginganomaly. In AFIPS '74: Proeedings of the May 6-10,1974, national omputer onferene and exposition,pages 195{199, New York, NY, USA, 1974. ACM.[5℄ C. Li, K. Shen, and A. E. Papathanasiou. Competitiveprefething for onurrent sequential i/o. In EuroSys'07: Proeedings of the 2nd ACM SIGOPS/EuroSysEuropean Conferene on Computer Systems 2007,pages 189{202, New York, NY, USA, 2007. ACM.[6℄ K. OHMACHI, T. NISHIGAKI, and S. TAKASAKI.Analysis of pawp/vms: Paging algorithm to preventdouble paging anomaly in virtual mahine systems.Journal of information proessing, 4(2):55{60,19810715.[7℄ M. Shwidefsky, H. Franke, R. Mansell, H. Raj,D. Osisek, and J. Choi. Collaborative memorymanagement in hosted linux environments. In OLS'06: 2006 Ottawa Linux Symposium, pages 313{328,2006.[8℄ D. Su, W. Chen, W. Huang, H. Shan, and Y. Jiang.Smartvisor: towards an eÆient and ompatiblevirtualization platform for embedded system. In IIES'09: Proeedings of the Seond Workshop on Isolationand Integration in Embedded Systems, pages 37{41,New York, NY, USA, 2009. ACM.[9℄ C. A. Waldspurger. Memory resoure management invmware esx server. SIGOPS Oper. Syst. Rev.,36(SI):181{194, 2002.[10℄ Z. Zhang, A. Kulkarni, X. Ma, and Y. Zhou. Memoryresoure alloation for �le system prefething: from asupply hain management perspetive. In EuroSys '09:Proeedings of the 4th ACM European onferene onComputer systems, pages 75{88, New York, NY, USA,2009. ACM.

303

