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ABSTRACTIn a virtualized system, the hypervisor may be for
ed tore
laim memory by swapping out pages of guest operatingsystems (OSes) when the regular memory balan
ing me
h-anisms, su
h as page sharing and ballooning, fail to revokeenough memory for reallo
ation purpose, whi
h always leadsto serious performan
e degradation. In this paper, we in-trodu
e Adaptive Swap Prefet
her (ASP) and Host Swap-ping Noti�er (HSN), the e�e
tive and lightweight solutionsto gra
efully redu
e the degradation in system performan
ewhen host swapping is triggered. ASP smartly prefet
hesmore pages from the host swap �le as long as the good spa-tial lo
ality persists so as to redu
e disk transfers. The guestOS will be noti�ed by HSNwhen the hypervisor evi
ts pages,whi
h then hides those pages from its memory re
lamationroutines to eliminate unne
essary guest swapping and to pre-vent the o

urren
e of double paging anomaly. CurrentlyASP and HSN are implemented in KVM, experimental re-sults show that guest performan
e 
an be improved by afa
tory of 1.4x and 2x respe
tively using ASP and HSN.
Categories and Subject DescriptorsD.4.2 [Operating Systems℄: Storage Management|swap-ping ; C.4 [Performan
e of Systems℄: Design studies
General TermsDesign, Performan
e
KeywordsVirtualization, Prefet
hing, Host Swapping, Double Paging,KVM
1. INTRODUCTIONMemory over
ommitment [7℄, by whi
h means the totalmemory of all guest operating systems (OSes) 
an ex
eed themaximum available memory of the hypervisor, is 
ommonly

adopted to in
rease the utilization of hardware resour
es andto run more guest OSes 
on
urrently. Te
hnologies, su
h asballooning [9℄ and page sharing [9℄, are normally used to helpbalan
e memory usage. A premise to take full advantage ofthese assistive te
hnologies is that there is enough memoryin system to re
laim and redistribute, otherwise the hyper-visor has to resort to the expensive swapping operations tofor
e memory re
y
ling. Theoreti
ally, host swapping hasshorter 
ode path and fewer privilege 
hanges to a
hievebetter performan
e than guest swapping. However, deeperinvestigation explores some performan
e issues about hostswapping, one is that it 
ould result in the pages for guestOS s
attering all over the swap �le and degrade the spatiallo
ality, whi
h in
reases the IO seek time and IO amountand 
onsequently de
reases system performan
e [8℄. An-other problem is the so-
alled double paging anomaly [4℄, inwhi
h 
ase the host OS has swapped out a page in the �rstpla
e while the guest OS happens to pi
k on the same oneto evi
t, resulting in an anomaly that this page gets faultedin and then paged out again immediately.In this paper, we propose Adaptive Swap Prefet
her (ASP)and Host Swapping Noti�er (HSN) to address the problemsrespe
tively.
2. RELATED WORKDouble paging anomaly was studied a long time ago, whenGoldberg et al. revealed that an in
rease in the memorysize of a virtual ma
hine without a 
orresponding in
reasein real memory size 
an lead to this anomaly [4℄. ThenOhma
hi et al. proposed a new page repla
ement algorithm,PAWP/VMS, to prevent this anomaly and redu
e the num-ber of page fault interrupts [6℄. Their method was based onthe assumption that the size of LRU sta
ks are �xed andthat both host and guest see the same LRU page sequen
es,whi
h 
an not be satis�ed by today's virtual ma
hine sys-tems. Chew et al. argued that a maximal-pool system 
anavoid the double paging anomaly [1℄, but their method isnot well evaluated. A balan
ed approa
h, 
alled Collabo-rative Memory Management (CMM) [7℄, that reaped thebene�ts of ballooning and host swapping, was introdu
edby S
hwidefsky et al. to redu
e overhead when memory isover
ommitted. CMM basi
ally maintains page states inboth host and guest, and the host 
an readily dis
ard pagesthat is not used or 
an be re
onstru
ted from the guest, andthen redistribute them. CMM requires a large e�ort to mod-ify the guest 
ode and 
oordinate host and guest, and thesystem wide overhead is not well studied.The literature on OS level prefet
hing is 
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(a) Simple Tra
k Bu�er (b) Bu�er with Double SlotsFigure 1: A design of ASP tra
k bu�er and its im-proved variant.very ri
h. Wu et al. redesigned the Linux readahead frame-work [2℄ by simplifying the lega
y prefet
hing algorithm,whi
h enjoys great performan
e improvements. By 
arefullystudying the IO swit
h time of individual disks, the 
ompet-itive prefet
hing 
an determine a most suitable prefet
hingdepth to allow performan
e boost [5℄. There are also adap-tive asyn
hronous prefet
hing me
hanisms [3, 10℄ that dy-nami
ally adjust the trigger dist
an
e and prefet
hing depthto a
hieve better performan
e. Approa
hes that 
an signif-i
antly in
rease the predi
tive a

ura
y of prefet
hing byletting appli
ations or 
ompilers dis
lose hints are availableas well, whi
h due to page limits are not 
ited.Despite the abundan
e of resear
h on �le system prefet
h-ing, no attention has been fo
used on swap prefet
hing dueto its poor data organization. In this paper, the spatiallo
ality of swap spa
e is studied �rst before a prefet
hingpoli
y is applied, whi
h we will dis
uss in Se
tion 3.1.2.
3. DESIGN AND IMPLEMENTATIONIn this se
tion, we present the design de
isions and 
ur-rent implementation of Adaptive Swap Prefet
her (ASP)and Host Swapping Noti�er (HSN) in KVM.
3.1 Adaptive Swap Prefetcher

3.1.1 Track BufferThe key idea of our design of ASP is to keep tra
k ofea
h pro
ess/guest's swap-in a
tivity. Ea
h time the hostOS (host for short) has to fault in pages for a guest OS(guest for short) or a pro
ess, ASP will �rst 
onsult an en-try in a tra
k bu�er (BUF ) to determine how many pagesto prefet
h. The stru
ture of BUF with maximum Cent en-tries are shown in Figure 1a, where Base and End are thelo
ations in the swap partition of the last read, Pri is thepriority of this entry, and Pre denotes the number of pagesprefet
hed last time. On
e an entry is pi
ked up, a fun
tionis applied to �gure out how many pages to prefet
h.
3.1.2 Prefetching FunctionThe prin
iple behind our prefet
her is that let the prefet
h-ing window grow smoothly when the good lo
ality remainsuntil a prede�ned limit is rea
hed, and shrink qui
kly tothe default prefet
hing size when the lo
ality be
omes poor.We de�ne lo
ality as the distan
e between two 
onse
utiveswap-in operations. More spe
i�
ally, let Base and End bethe starting and ending point in the swap partition of lastprefet
hing respe
tively, Tar be the pla
e where the pageneeds to be faulted in lo
ates, then the distan
e (DIS) of twosu

essive swap-ins 
an be 
al
ulated asDIS =Min(jBase�

Tarj; jEnd�Tarj). If DIS < MDIS, whi
h is a prede�nedthreshold, it is re
ognized as a good lo
ality. In our 
urrentimplementation, MDIS is set to 8, identi
al to the mini-mum number of prefet
hing pages. Ideally, the minimumprefet
hing size would be 0 or a small number to minimizedisk transfer time, but 
onsidering the me
hani
al proper-ties of magneti
 disks, the minimum window size is adheredto the default Linux poli
y, whi
h is 8 
urrently.Providing the de�nition of lo
ality, ASP 
an 
al
ulatehow many pages to prefet
h this time. 8 more pages areprefet
hed than last time when there shows a good lo
al-ity, until a maximum prefet
hing limit (MPF ) is rea
hed,whi
h is 32 pages as a good balan
e of prefet
hing and mem-ory sharing. On the 
ontrary, if the desired page 
ontent islo
ated outside the MDIS region, or no tra
k entry 
an befound, we simply read ahead minimum number of pages.
3.1.3 Double Slot PredictionFurther investigation shows that when a guest is domi-nated by one pro
ess, the anonymous pages of those peri-odi
ally waked up servi
e routines may get swapped in andout thrashingly. Sin
e the kernel threads share the PIDsof user spa
e pro
esses, ASP mistakes them for the regularpro
esses, resulting in the 
onfusion of entry information.Besides, as a guest is simply a regular pro
ess in the view ofKVM, the sparsely spreading swapping a
tivities make ourpredi
tion of lo
ality less a

urate.So we improve the original proposal with double slot pre-di
tion as shown in Figure 1b, that is, ea
h entry is splitinto two slots, ea
h has its own Base and End pointers, yetshare the same PID and Pri. Another �eld, slot, is addedto make ASP aware of whi
h slot was used the last time.When 
al
ulating the lo
ality, ASP tries �rst with the slot'sinformation, and then the other one. If neither indi
ates agood lo
ality, both slots' parameters are reset to the defaultones, and the default number of pages are prefet
hed, oth-erwise the 
orresponding slot's re
ord is updated and morepages is prefet
hed until MPF is rea
hed.
3.2 Host Swapping NotifierThe design of Host Swapping Noti�er (HSN) is straight-forward: A shared memory is established to notify the guestof guest frame numbers (GFNs) whose 
orresponding phys-i
al page frames have been swapped out or faulted in by thehost. The guest periodi
ally 
he
ks the shared memory andhides the pages that have been swapped out by the host, orres
ues pages when they are faulted in from the host's swapspa
e. By this 
ooperation between the host and the guest,the double paging anomaly 
an be eliminated.
3.2.1 Shared MemoryMore pre
isely, when a guest boots up, it sets up a pie
eof shared memory, and then tells the host the start GFNand the size of the shared memory through a hyper
all. Theshared memory is depi
ted by Figure 2, whi
h 
onsists ofthree parts; �rst one is the noti�er header, and the othertwo are the swap-out GFN bu�er (OB) and the swap-inGFN bu�er (IB) respe
tively. The header 
ontains the in-formation needed to manipulate the bu�ers, in
luding theo�sets of the bu�ers to the beginning of the shared memory,the size of ea
h bu�er, and the head and tail pointers, whi
hthe host updates the former and the guest the latter. Thehost answers the hyper
all by mapping the shared memory
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Figure 2: A design of shared memory. When thehost produ
es a GFN in the bu�er, it in
reases thehead pointer by 1, while the guest in
reases the tailpointer by 1 when it 
onsumes one. The bu�er isempty when the head pointer equals tail pointer.to a 
ontiguous virtual address.
3.2.2 GFN Tracking and NotifyingOn
e the shared memory is established, the host and guest
ontinue to exe
ute as usual, making their own de
isionsto sele
t vi
tim pages and do swapping, with addition thatHSN will examine every paging operation and guest willregularly 
he
k the shared memory. When host swappinghappens, HSN has to tell whether the page belongs to someguest. If it does, HSN then puts the guest frame number(GFN) into one of the bu�ers in the shared memory. Whenthe guest gets s
heduled, it will noti
e that there are pend-ing GFNs in the bu�ers, and starts to handle them. Forpages that have been paged out by the host, the guest will
he
k their states to make sure that they 
an be hiddenfrom memory re
lamation pro
edures. If nothing is wrong,the guest hides the 
orresponding page, otherwise the guestjust 
ontinues to handle the next one. By this means, thememory re
lamation pro
edures of the guest OS will not seethe pages that have already been evi
ted by the host, andhave to 
hoose other pages to steal, whi
h probably still existin physi
al memory. As a result, the double paging anomaly
an be avoided. As for the pages that are faulted in by thehost, all the guest needs to do is simply unhide them.It should be noted that sin
e the hidden pages are notba
ked up by physi
al memory while still o

upy it from theguest's sight of view, pro
esses may get killed brutally whenthe guest is out of memory (OOM). However, 
onsideringthe performan
e gain and the 
ontrollability of OOM, westill believe it is worth adopting HSN.
4. EVALUATIONFor our test we use a server equipped with 4-
ore IntelQ9300 CPU, 4GB of memory and 320GB 7200RPM SATAdisk. Memory of both host and guest is limited to simplythe tests, and it is over
ommitted as well to better evaluateour approa
hes.
4.1 Evaluation of ASPTo evaluate ASP, we turn o� the swapping in the guest OSto ex
lude the in
uen
e of double paging, whi
h is evaluatedseparately. Then we deploy the Spe
JBB ben
hmark onthree guests, ea
h of 320MB of memory and 230MB Javaheap. The result is shown in Table 1, from whi
h we 
an
on
lude that the performan
e in
rease 
an be obtained byaround 18% using our ASP. Table 1 also indi
ates that the

Table 1: Impa
t of ASP and Disk S
heduler on Sys-tem Performan
e in Terms of Spe
JBB S
oreHypervisor Disk s
hedulerCFQ Anti
ipatory Impr.KVM 3417 3632 6.3%ASP pat
hed 4045 4287 6.0%Impr. 18.3% 18.0% -Table 2: Impa
t of Prefet
hing Size on Swap Ca
heHit RatePageCluster No. of prefet
hing pages Hitrate8 16 24 32 Total3 15642 - - - 15642 92.2%4 - 18031 - - 18031 83.3%5 - - - 21852 21852 71.2%ASP 7490 6296 2021 2963 18770 90.6%disk s
heduler has an impa
t on system performan
e. By
hanging the default CFQ s
heduler to Anti
ipatory, systemperforman
e in
reases by 6%.To explain how ASP works, we implement a tra
ing tool,MMTRACE, to re
ord some useful information when ben
h-marks are running, in
luding the number of pages swappedout and in, swap 
a
he hits, et
. Swap 
a
he hit rate isan important indi
ator of prefet
hing e�e
tiveness, and is
al
ulated using NhitPNini=1 PNi �Nin , where Nin and Nhit de-note the number of swap-in a
tivities and swap 
a
he hitsrespe
tively, and PN denotes the number of pages swappedin ea
h time. As indi
ated by Table 2, swap 
a
he hit rateis inversely proportional to the prefet
hing size (whi
h 
anbe modi�ed by 
hanging the value of =pro
=sys=vm=page�
luster and is evaluated as 2page�
luster ), and more irrel-evant pages are faulted in as the prefet
hing size in
reases.By using ASP, only those pages related to the faulted onesare likely to be prefet
hed, leading to less IO transfers andhigher swap 
a
he hit rates.
4.2 Evaluation of HSNWe �rst illustrate how HSN solves the double paging anomalyby assigning a same workload on di�erent system setups,whi
h we abbreviate as follows:Kvm-1200 a 1200-MB guest running on a 512-MBhost with guest swapping disabled.Kvm-768 a 768-MB guest running on a 512-MBhost with guest swapping enabled.Hsn-768 a 768-MB guest running on a 512-MBhost with guest swapping enabled andHSN pat
hed.Ea
h guest runs a Sysben
h ben
hmark with BLOCK SIZEset to 1GB; host swapping is enabled in all 
ases.The breakdown of disk transfers re
orded on the host sideare shown in Figure 3, from whi
h we 
an have a deep in-sight of how HSN works. Be
ause system memory is over-
ommitted in all 
ases, a minimum number of pages needto be swapped out to su

essfully exe
ute the ben
hmark.This minimum number 
an be expressed as the total blo
kswritten out when only the host swapping is enabled, thatis, the value of Disk-out in the 
ase of Kvm-1200. Whenguest memory is redu
ed and guest swapping is enabled, the

302



1200000

1000000

800000

600000

400000

200000

0

B
lo

ck
s 

T
ra

ns
fe

rr
ed

KVM-1200 KVM-768 HSN-768

Disk-out
Swap-out
Disk-in
Swap-in

Figure 3: A 
omparison of disk transfers re
orded onthe host side for the Sysben
h workload in di�erentsystem setups. Blo
ks swapped out and in by theguest 
an be expressed approximately as Disk-out�Swap-out and Disk-in� Swap-in respe
tively.Table 3: Impa
t of HSN on Ben
hmark Performan
eRunning Sysben
h and Spe
JBB separatelySysben
h (se
onds) Spe
JBB (s
ore)KVM 51.4 4364HSN 32.6 5492Running Sysben
h on two guests 
on
urrentlyGuest 1 Guest 2KVM 96.9s 99.2sHSN 44.8s 49.6samount of host swapping, namely Swap-out, should redu
eas well sin
e the guest will help re
laim memory. However,despite the help provided by guest (whi
h 
an be 
al
ulatedas Disk-out � Swap-out), Swap-out is not signi�
antly re-du
ed in the 
ase of Kvm-768, whi
h is a good indi
ator ofdouble paging. On the 
ontrary, the 
lose values of Disk-out in Kvm-1200 and Hsn-768 imply that double paging ismostly eliminated at the help of HSN, sin
e no more disktransfers are involved. However, although HSN 
an guidethe guest not to sele
t the pages that have been evi
ted bythe host, the guest still needs to steal from other pages to re-
laim memory to run the ben
hmark, that is why Kvm-768and Hsn-768 have the same di�eren
es between Disk-outand Swap-out.We evaluate HSN by �rst running Sysben
h and Spe
JBBseparately to trigger double paging, the performan
e boostis around 36% and 26% respe
tively, as indi
ated by the�rst part of Table 3. To further explore the potential ofHSN, we design a workload with heavier double paging. Inthis experiment, two guests, ea
h with 300MB of memory,are hosted by hypervisors with 512MB of memory. Bothguests run a Sysben
h ben
hmark with BLOCK SIZE setto 500MB 
on
urrently to trigger double paging. The exe-
ution time is re
ord in the se
ond part of Table 3. As theresult shows, HSN 
an 
ut the runtime by half, whi
h meansa mu
h gra
eful performan
e degradation when the systemis under heavy memory pressure.
5. CONCLUSIONS AND FUTURE WORKTo gra
efully redu
e the performan
e degradation in vir-tualized environments, we propose the adaptive prefet
herand GFN noti�er to help relieve the pain 
aused by host

swapping. Experimental results based on our KVM imple-mentation show that both solutions 
an redu
e the perfor-man
e degradation when the system is busy host swapping.There are several ways we 
an improve our design. Thekernel and KVM module will be studied more 
arefully tosimply the implementation of HSN so that the guest kernelwon't be a�e
ted. The impa
t of ASP will be examinedfurther to eliminate 
a
he pollution and prefet
h wastage,whi
h are 
ommon problems of prefet
hing.
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