
Lecture 3 for pipelining

• The control hazard

• How to solve the
control hazard

Pipelining Hazards

• Taxonomy of Hazards
– Structural hazards

 These are conflicts over hardware resources.

 OK, maybe add extra hardware resources;
 or full pipelined the functional units(split duble bump);
 otherwise still have to stall

– Data hazards
 Instruction depends on result of prior computation which is not

ready (computed or stored) yet
 OK, we did these, Double Bump, Forwarding path,
 software scheduling, otherwise have to stall

– Control hazards
 branch condition and the branch PC are not available in time

to fetch an instruction on the next clock

The Control hazard

• Cause
– branch condition and the branch PC are not

available in time to fetch an instruction on the
next clock

– The next PC takes time to compute
– For conditional branches, the branch direction

takes time to compute.

• Control hazards can cause a greater
greater performance loss for MIPS
pipeline than do data hazards.

Example: Branches

24

R0

R0

Recall: Basic Pipelined Datapath

数
据
存
储
器

M
U

X

 S
ig

n

ex
te

nd

M
U

X

M
U

X

0 ?

A
L

U

寄
存
器

32 16

 P

C

数
据
存
储
器

A
D

D

M
U

X

IF/ID

转移

发生

ID/EX EX/MEM MEM/WB

IR6..10

IR11..15

MEM/

WB .IR

4

IR

Control hazard

24

Dealing with the control hazard

• Four simple solutions
– Freeze or flush the pipeline

– Predict-not-taken (Predict-untaken)
 Treat every branch as not taken

– Predict-taken
 Treat every branch as taken

– Delayed branch

• Note:
– Fixed hardware

– Compile time scheme using knowledge of hardware
scheme and of branch behavior

Recall: solve the hazard by
inserting stalls

48 or 72

24

The pipeline status

Branch instruction IF ID EX MEM WB

Branch Successor IF stall stall idle idle

Branch successor+1 IF ID EX

Branch successor+2 IF ID

Branch successor+3 IF

Flushing the pipeline

• Simplest hardware:
– Holding or deleting any instruction after

branch until the branch destination is know.

– Penalty is fixed.

– Can not be reduced by software.

Stalls greatly hurt the
performance

• Problem:
– With a 30% branch frequency and an ideal

CPI of 1, how much the performace is by
inserting stalls ?

• Answer:
– CPI = 1+30%３＝1.9

– this simple solution achieves only about half
of the ideal performance.

Always Stalling Hurts the Not-
taken case

24

How about assume Branch Not
Taken

24

Predict –not-taken

• Hardware:
– Treat every branch as not taken (or as the

formal instruction)
When branch is not taken, the fetched instruction

just continues to flow on. No stall at all.
 If the branch is taken, then restart the fetch at

the branch target, which cause 3 stall.(should turn
the fetched instruction into a no-op)

• Compiler:
– Can improve the performance by coding the

most frequent case in the untaken path.

What If Branch Was Taken…?

24

How to do with the branch
taken ?

24

Alternative is assuming the
branch always taken

• Most branches(60%) are taken, so we should make the
taken branch more faster. Why not try assuming the
branch always taken?

数
据
存
储
器

M
U

X

 Si
gn

ex
te

nd

M
U

X
M

U
X

0 ?

A
LU

寄
存
器

32 16

 P

C

数
据
存
储
器

AD
D

M
U

X

IF/ID

转移

发生

ID/EX EX/MEM MEM/WB

IR6..10

IR11..15

MEM/

WB .IR

4

IR

AL U

Predict –taken

• Hardware
– Treat every branch as taken (evidence: more than

60% braches are taken)
– As soon as the branch target address is computed,

assume the branch to be taken and begin fetching
and executing at the target.

– Only useful when the target is known before the
branch outcome.

– No advantage at all for MIPS 5-stage pipeline.

• Compiler
– Can improve the performance by coding the most

frequent case in the taken path.

Pipeline status for predict-taken

44 BEQ R1, 24 IF ID EX MEM WB

48 AND R12, R2, R5 IF idle idle idle idle

72 LW R4, 50(R7) IF ID EX MEM WB

76 IF ID EX MEM

80 IF ID EX

Branch is not taken: 3 stall

44 BEQ R1, 24 IF ID EX MEM WB

48 AND R12, R2, R5 IF idle idle idle idle

72 LW R4, 50(R7) IF ID idle idle idle

76 IF idle idle idle

48 AND R12, R2, R5 IF ID EX

Branch is taken: 1 stall

Common Side-Effect in Pipelines

• Sometimes, you just have to guess what will
execute
– Often, we can do it right, and this saves cycles

– But, occasionally, we are wrong

• Consequences
– We mistakenly start executing the wrong

instructions

– To repair this, must make sure that they DO NOT
really execute

– In particular, must ensure they do not incorrectly
corrupt machine state

Move the Branch Computation
Forward

数
据
存
储
器

M
U

X

 Si
gn

ex
te

nd

M
U

X

M
U

X

0 ?

A
L

U

寄
存
器

32 16

 P

C

数
据
存
储
器

A
D

D

M
U

X

IF/ID

转移

发生

ID/EX EX/MEM MEM/WB

IR6..10

IR11..15

MEM/

WB .IR

4

IR

Move the Branch Computation
more Forward

store

load

Result: New & Improved MIPS
Datapath

•Need just 1 extra cycle after the BEQ branch to know
right address
•On MIPS, its called - the branch delay slot

48 or 72

24

Flushing : need only to insert one
stall to resolve control hazard

48 or 72

40 ADD R30,R30,R30 IF ID EX MEM WB

44 BEQ R1, 24 IF ID EX MEM WB

48 AND R12, R2, R5 IF idle idle idle idle

48 or 72 IF ID EX MEM

Why “waste” the fetched
instruction ?

• We have fetched the instruction 48, why
we fetch the second time if the branch
not taken at last ?

48 or 72

The pipeline status for predict-
not-taken

40 ADD R30,R30,R30 IF ID EX MEM WB

44 BEQ R1, 24 IF ID EX MEM WB

48 AND R12, R2, R5 IF ID EX MEM WB

52 OR R13, R6, R2 IF ID EX MEM

Branch is not taken: No stall

Branch is taken: 1 stall

40 ADD R30,R30,R30 IF ID EX MEM WB

44 BEQ R1, 24 IF ID EX MEM WB

48 AND R12, R2, R5 IF idle idle idle idle

72 LW R4, 50(R7) IF ID EX MEM

76 IF ID EX

Delayed branch

• Good news
– Just 1 cycle to figure out what the right

branch address is
– So, not 2 or 3 cycles of potential NOP or stall

• Strange news
– OK, it’s always 1 cycle, and we always have to

wait
– And on MIPS, this instruction always executes,

no matter whether the branch taken or not
taken. (hardware scheme)

Branch delay slot

• Hence the name: branch delay slot

– The instruction cycle after the branch is used for address
calculation , 1 cycle delay necessary

– SO…we regard this as a free instruction cycle, and we just DO
IT

• Consequence
– You (or your compiler) will need to adjust your code to put some

useful work in that “slot”, since just putting in a NOP is
wasteful (compiler scheme)

How to adjust the codes?

 ADD R1,R2,R3

 if R2=0 then

Delay slot

 if R2=0 then

ADD R1,R2,R3

 ADD R1,R2,R3

if R2=0 then

 OR R7,R8,R9

SUB R4,R5,R6

Delay slot

 ADD R1,R2,R3

if R2=0 then

OR R7,R8,R9

SUB R4,R5,R6

 SUB R4,R5,R6

 ADD R1,R2,R3

 if R2=0 then

Delay slot

 SUB R4,R5,R6

 ADD R1,R2,R3

 if R2=0 then

SUB R4,R5,R6

(a)From before (b)From target (c)From fall-through

Example: rewrite the code (a)

Example: rewrite the code (b-1)

Loop: LW R2, 0(R1)

 ADD R3, R2, R4

 SW R3, 0(R1)

 ……

 SUB R1, R1, #4

 BNEZ R1, Loop

 LW R2, 0(R1)

Loop: ADD R3, R2, R4

 SW R3, 0(R1)

 ……

 SUB R1,R1, #4

 BNEZ R1, Loop

 LW R2, 0(R1)

Example: rewrite the code (b-2)

Loop: LW R2, 0(R1)

 ADD R3, R2, R4

 SW R3, 0(R1)

 DIV …..

 ……

 SUB R1, R1, #4

 BNEZ R1, Loop

Loop: LW R2, 0(R1)

 ADD R3, R2, R4

 DIV …...

 …...

 SUB R1, R1, #4

 BNEZ R1, Loop

 SW R3, +4(R1)

Schedualing strategy vs.
performance improvement

 Scheduling

strategy

Requirements Improves performance

when?

 a. From

before

 branch

Branch must not depend on the

rescheduled instruction

Always

 b. From

 target

Must be OK to execute

rescheduled instruction if branch if

not taken. May need to duplicate

instructions.

When branch is taken. May

enlarge program if

instructions are duplicated.

 c. From

fall

 through

Must be OK to execute instruction

if branch is taken.

When branch is not taken.

 d. place a

 no-op

 No improvement.

Constrains of the delayed branch

• There are restrictions on the instructions that
are scheduled into the delay slots

• The compiler's ability to predict accurately
whether or not a branch is taken determines
how much useful work is actually done.

• For scheduling scheme b and c,
– It must be O.K. to execute the SUB instruction if

the prediction is wrong.

– Or the hardware must provide a way of cancelling
the instruction.

Cancelling function

• Includes the direction that the branch is
predicted to go.

• If branch is predicted incorrectly , CPU
turns the instruction in the branch delay
slot into a no-op.

• Can reduce the complexity for compiler
to select useful instructions into delay

slot.

Delayed branch with cancelling
(of case b)

预测出错时,由硬件取消延时槽指令(转换成一条空操作指令)

Untaken br. ins. IF ID EX MEM WB
Br. delay ins.(i+1) IF idle idle idle idle

Instruction i+2 IF ID EX MEM WB

Instruction i+3 IF ID EX MEM WB

Instruction i+4 IF ID EX MEM WB

预测正确,性能没有损失

taken br. ins. IF ID EX MEM WB

Br. delay ins.(i+1) IF ID EX MEM WB

Branch target IF ID EX MEM WB

Branch target +1 IF ID EX MEM WB

Branch target +2 IF ID EX MEM WB

Efficiency of delayed branch

 A B C D E = C D F = B + E

Banchmar

%
cond.
Br.

%cond.
Br. with
empty
slots

%cond.
br. That
are
canceling

%cancelling
br. That are
cancelled

%br. with
cancelled
delay slots

Total% Br.
with empty or
cancelled delay
slots

Compress 14% 18% 31% 43% 13% 31%

Eqntott 24% 24% 50% 24% 12% 36%

Espresso 15% 29% 19% 21% 4% 33%

Gcc 15% 16% 33% 34% 11% 27%

Li 15% 20% 55% 48% 26% 46%

Integer Ave. 17% 21% 38% 34% 13% 35%

Doduc 8% 33% 12% 62% 7% 40%

Ear 10% 37% 36% 14% 5% 42%

Hydro21 12% 0% 69% 24% 7% 17%

Mdljdp2 9% 0% 86% 10% 8% 8%

Su2cor 3% 7% 17% 57% 10% 17%

FP average 8% 16% 44% 34% 9% 25%

Overall Ave. 12% 18% 41% 34% 12% 30%

About delayed branch

• Delayed branch are adopted in most RISC
processors.

• In general, the length of branch delay is
more than 1 . However, always just one
slot is used due to the compiler
complexity.

Performance comparison
for four schemes

• MIPS R4000, deeper pipeline
– Takes at least three pipeline stages before

the branch target address is known

– An additional cycle before the branch
condition is evaluated.

– Assuming branch frequencies as followed
Unconditional branch 4%

 Conditional branch, untaken 6%

 Conditional branch, taken 10%

Pipeline status for various
schemes

uncond. L1 L2 L3 L4 L5 L6 2 stall

 L1 s L1(branch target)
Stall pipeline: L1 L2 L3 L4 L5 L6 3 stall
 L1 s s L1(branch target/i+1)
Predict taken:
 L1 L2 L3 L4 L5 L6
taken: L1 s L1 L2 L3 2 stall
untaken: L1 s L1 idle 3 stall
 L1(i+1)

Predict untaken:
 L1 L2 L3 L4 L5 L6
untaken: L1 L2 L3 L4 L5 0 stall
taken: L1 L2 L3 idle 3 stall
 L1 L2 idle
 L1 idle
 L1(branch target)

Resolution

Additiona to the CPI
Branch
scheme Unconditional

Branches(4%)
Taken cond.

Branches(10%)
Untaken cond.
Branches(6%)

All
branches

(20%)

Stall
pipeline

2 0.08 3 0.30 3 0.18 0.56

Predict
taken

2 0.08 2 0.20 3 0.18 0.46

Predict
untaken

2 0.08 3 0.30 0 0.00 0.38

Pipeline hazards

• Taxonomy of Hazards
– Structural hazards

 These are conflicts over hardware resources.

– Data hazards
 Instruction depends on result of prior computation which

is not ready (computed or stored) yet

– Control hazards
 branch condition and the branch PC are not

available in time to fetch an instruction on the
next clock

 OK, we did these, calculate the destination address and
condition asap, Flushing the pipeline, predict-not-taken,
predict-taken, delayed branch (with/without cancelling)

Summary for control hazard

• Control hazards can cause a greater
performance loss than do data hazards.

• In general, the deeper the pipeline, the worse
the branch penalty in clock cycles.

• A higher CPI processor can afford to have more
expensive branches.

• The efficiency of the three schemes greatly
depends on the branch prediction.

Branch prediction

• There are many different schemes
• static branch prediction

– Assume taken
 This is surprisingly effective since 85% of backward

branches and 60% of forward branches are taken.

– Assume not taken
– Predict by using profile information from previous

run

• dynamic branch prediction by hardware
– 1-bit Branch Prediction
– 2-bit Branch Prediction
– N-bit Branch Prediction
– Table-based Branch Prediction

Accuracy of prediction based on
profile

15%

9.00%10%9%
6%5%

25.0%

12%

18%

12%

22%

11%

0%

5%

10%

15%

20%

25%

30%
co

mp
re

ss

eq
nto

tt

es
pr

es
so gc

c li

Int
 av

e.

do
du

c

ea
r

hy
dr

o2
d

md
ljd

p

su
2c

or

FP
 av

e.

Mi
sp

re
di

ct
io

n
ra

te

96

141111
19141110

6
11

60 58

250
92

159 113
56

19
37

253

1

10

100

1000

co
m

pr
es

s

eq
nt

ot
t

es
pr

es
so gc
c li

do
du

c

ea
r

hy
dr

o2
d

m
dl

jdp

su
2c

or

i
n
s
t
.

B
e
t
w
e
e
n

m
i
s
p
r
e
d
i
c
t
i
o
n
s Predict taken Profile-based

0/1 转移指令

低位地址
预测行为

0：不转移

1：转移

预测失败取反

IF (aa == 2)

 aa = 0;

IF (bb == 2)

 bb = 0;

IF (aa !== bb) {

 ……

 }

If (d==0)

 d=1;

if (d==1){

 …...

}

• 设Reg[R1] = d

 BNEZ R1, L1 ; br b1, (d!=0)

 DADDIU R1, R0, #1 ; d==0, so d=1

L1: DADDIU R3, R1, # -1 ;

 BNEZ R3, L2 ; br b2, (d!=1)

 ……

L2:

d 的

初值

d==0? B1 在 b2 以前

的 d 值

d==1? b2

0 Yes Not taken 1 Yes Not taken

1 No Taken 1 Yes Not taken

2 No Taken 2 no Taken

d=? b1

预测

b1

动作

新的 b1

预测

b2

预测

b2

动作

新的 b2

预测
2 NT T T NT T T

0 T NT NT T NT NT

2 NT T T NT T T

0 T NT NT T NT NT

四种组合的含义：

预测

组合

上一次 Br 为 NT,预

测本次位(看第一位)

上一次 Br 为 T,预测

本次为(看第二位)

NT/NT NT NT

NT/ T NT T

 T /NT T NT

 T / T T T

• 注意：
– 这里体现了相关性

– 虽然上一次Br指令，并非一定是本次br指令，但在简单
的loop中是可能的，如简单loop中不含其它br指令。

T

T

Predict Taken

Predict Not

Taken

Predict Taken

Predict Not

Taken

11 10

01 00
T

NT

T

NT

NT

用这种相关预测器来预测上述例子。初值为NT/NT.（第一次
迭代预测错，其余均正确）

d=? b1 预

测

b1

动作
新的 b1

预测

b2 预

测

b2

动作
新的 b2

预测

2 NT/NT T T/NT NT/NT T NT/T

0 T/NT NT T/NT NT/T NT NT/T

2 T/NT T T/NT NT/T T NT/T

0 T/NT NT T/NT NT/T NT NT/T

粗体字表示本次预测

预测出错 b1动作与b2预测值选用关系

预测正确 b2动作与b1预测值选用关系

新预测值

