- The control hazard

- How to solve the
control hazard

Pipelining Hazards

« Taxonomy of Hazards
- Structural hazards
V These are conflicts over hardware resources.
\ OK, maybe add extra hardware resources;
or full pipelined the functional units(split duble bump);
otherwise still have to stall

- Data hazards

V Instruction depends on result of prior computation which is not
ready (computed or stored) yet

V OK, we did these, Double Bump, Forwarding path,
software scheduling, otherwise have to stall
- Control hazards

\ branch condition and the branch PC are not available in time
to fetch an instruction on the next clock

b, e =
m

The Control hazard

- Cause

- branch condition and the branch PC are not
available in time to fetch an instruction on the
next clock

- The next PC takes time to compute

- For conditional branches, the branch direction
takes time to compute.

» Control hazards can cause a greater
greater performance loss for MIPS
pipeline than do data hazards.

Example: Branches

Address Instruction

36 NOP

40 ADD.R30R30.R30

44 BEQR1,24 <- this branchs to address 72

48 AND R12, R2, R

52 OR R13, R6, R2
gg ADD R14, R2, R21% We execute all these if R1 =R

64 N @
68

} We execute just these if R1 == R3

Flow of instructions if branch is taken: 36, 40, 44,72, ...
Flow of instructions if branch is not taken: 36, 40, 44, 48, ...

MEM/WB

Control hazard

Flow of instructions if branch is taken: 36, 40, 44, 72, ...
Flow of instructions if branch is not taken: 36, 40, 44, 48, .
Clock | Clock |Clock (Clock | |Clock |Clock _|Clock |Clock
Cycle 1I Cycle 2|Cycle ’%Cycle 4| Cycle 5 ICycIe EiCycIe 7, Cycle §Cycle 9
| p—_L I I I I [
14 BEQR1, 24 #IM 4=REQ | i | | | I
|] | | | | I
I |+ ' I I I I
18 AND R12R2,R5 | | M HREQ| Reg | | I
| | T — | |
I I | tul I
520R R13,R6,R2 | 1My > o |1 Reg, |
I I I I I I :
| | | |
56 ADDR14, R2R2 | | | I IT| DM |1 Reg|
| | | L] | \ I :
I I I I §""_—|—B‘LU |
s R DM Re
50 or 72 (depending on | | | _I-:REEJ_Q | | 9
branch) ! ! ! | | |

Dealing with the control hazard

* Four simple solutions

- Freeze or flush the pipeline

- Predict-not-taken (Predict-untaken)
\ Treat every branch as not taken

- Predict-taken
\ Treat every branch as taken

- Delayed branch
* Note:
- Fixed hardware

- Compile time scheme using knowledge of hardware
scheme and of branch behavior

Recall: solve the hazard by
inserting stalls

Flow of instructions if branch is not taken: 36, 40, 44, 48, ...

Cycle 5, Cycle

Cycle 1| Cycle 2|Cycle |
I
I

ycle 4 |

ycle 7, Cycle 8|Cycle ¢
I

44 BEQR1, 24 | IM

Clock |Clock |Clock alElock |Clock Clockeﬁlock |Clock |Clock
[
I
|

|
|
| |
stall : :! I
stall - :I !
| ! |
stall i:i
48 or 72 -i_gRE__C_:J:@ i o i e

The pipeline status

Branch instruction IF |ID |EX |MEM |WB

Branch Successor IF |stall | stall idle idle
Branch successor+1 IF ID EX
Branch successor+2 IF ID
Branch successor+3 IF

Flushing the pipeline

+ Simplest hardware:

- Holding or deleting any instruction after
branch until the branch destination is know.

- Penalty is fixed.
- Can not be reduced by software.

Stalls greatly hurt the
performance

» Problem:

- With a 30% branch freguency and an ideal
CPI of 1, how much the performace is by
inserting stalls ?

- Answer:
- CPI = 1+30%x 3 =19

- this simple solution achieves only about half
of the ideal performance.

. |)m.') I

Always Stalling Hurts the Not-
taken case

Flow of instructions if branch is not taken; 36, 40, 44, 48, ...

Clock Clock lock (Clock Clc:-c:k Clock lock |Clock |Clock
Cycle1 CycleZ ycle ycle4 CycleS Cycle ycle?’ Cycle 8|(3},fc:le1E

.—

44 BEQR1, 24 | IM REG

48 AND R12, R2, RS

S D==oo
S e e
- o0 il b

I
:--- _I_ LU I R
I‘RE -J—B | DM €g
=

How about assume Branch MNot
Taken

Flow of instructions if branch is taken: 36, 40, 44, 72, ...
Flow of instructions if branch is not taken: 36, 40, 44, 48, ...

Clock | Clock [Clock (Clock | Clock Clock Clock |Clock [Clock
Cycle 1| Cycle 2|Cycle ycle 4| Cycle 5 ICycIe ycle ?|Cycle 8|Cycle 9

b6 ADD R14, R2, R2

| /L I I | | | I
14 BEQR1, 24 4 IM 4=REQ | {+ DM Reg | | | I
| G T I | | : :

S | |
48 AND R12, R2, R5 M REQ | % DM Red | | |
=] | | I I

| i~ W—aw] | I

IM REG DM Red

[| | |
R IJ I |
| |
I
I
|

I
|
I
|
620R R13,R6,R2 |
I
I
I
|
|

| |

I - h I DM Re

| EREQ | : y
| I | J

Predict -not-taken

- Hardware:

- Treat every branch as not taken (or as the
formal instruction)

v When branch is not taken, the fetched instruction
just continues to flow on. No stall at all.

VIf the branch is taken, then restart the fetch at
the branch target, which cause 3 stall.(should turn
the fetched instruction into a no-op)

» Compiler:
- Can improve the performance by coding the
most frequent case in the untaken path.

What If Branch Was Taken...?

..1.e., what if we guessed wrong on the branch?

Address Instruction

36 NOP
4n ADD._R30.R30.R30
i - BEQR1, 24 <- this branches to addresb 72
_"HB‘"‘ W‘R‘Tm
: 52 OR R13, RG R2 e already started some of these since

.06 ... ADQ B_1,4_,,R2, Rz we assumed NO branch taken
60

But a few clock cycles later,
We figure out these are right
Instructions to go next

Flow of instructions if branch is taken: 36, 40, 44, 72, ...
Flow of instructions if branch is not taken: 36, 40, 44, 48, ...

How to do with the branch
taken ?

Flow of instructions if branch is taken: 36, 40, 44, 72, ...

Clock | Clock |Clock Clock | Clock [Clock (Clock [Clock |Clock
Cycle 1I Cycle 2 ICycIe ycle 4| Cycle 5 ICycIe ycle ?|Cycle 8|Cycle 9

I - I I I I I

DM I_ Reg

: [
14BEQR1, 24 } IM |4=REd | 5" |—+ DM Reg | | | |
i | i | I I :
| | U | |
18 AND R12,R2,R5 | | M FREQ| >j Reg | | I
I | > | I | I : :
These 3 - I I
b2 OR R13,R6, R2 | incorrect to " I_IRE_G oM |I Regl |
Y execute-- I I I I : :
kill them 2N LU
56 ADD R14, R2, R2 L— b ™M RERRG [o) PV || Red
[I I I [: :
i | i T I [
IM |—SREd | AL
72 LW R4, 50(R7) I ! I [gf_ECJ_ :

Alternative is assuming the
branch always taken

+ Most branches(60%) are taken, so we should make the
taken branch more faster. Why not try assuming the

branch always taken?

>&

EX/MEM MEM/WB

Predict -taken

- Hardware

- Treat every branch as taken (evidence: more than
60% braches are taken)

- As soon as the branch target address is computed,
assume the branch to be taken and begin fetching
and executing at the target.

- Only useful when the target is known before the
branch outcome.

- No advantage at all for MIPS 5-stage pipeline.
+ Compiler
- Can improve the performance by coding the most
frequent case in the taken path.

Branch is taken: 1 stall

Pipeline status for predict-taken

44 BEQ R1, 24 IF |ID\ |EX |MEM\ |WB

48 AND R12, R2, R5 1)\ idle |idle \ |idle |idle

72 LW R4, 50(R7) TF [ID \[EX | MEM |we
76 IF |\ID |EX | MEM
80 IF |[ID |EX
Branch is not taken: 3 stall

44 BEQR1, 24 IF |ID |EX |MEM\ |WB

48 AND R12, R2, R5 (IF idle |idle | |idle |idle

72 LW R4, 50(R7) NJIF D \idle |idle [idle
76 JIFY idle [idle |idle
48 AND R12, R2, R5 'IF |ID |EX

Common Side-Effect in Pipelines

+ Sometimes, you just have to guess what will
execute
- Often, we can do it right, and this saves cycles
- But, occasionally, we are wrong

- Consequences

- We mistakenly start executing the wrong
instructions

- To repair this, must make sure that they DO NOT
really execute

- In particular, must ensure they do not incorrectly
corrupt machine state

Move the Branch Computation
Forward

MEM/WB

Move the Branch Computation
more Forward

Iy 1 B MEM/WB

CH

(X)

Instr
Mem

load

Result: New & Improved MIPS
Datapath

‘Need just 1 extra cycle after the BEQ branch to know
right address
*On MIPS, its called - the branch delay slot

Clock | Clock |Clc:u:k EICIDCk

Cycle 1: Cycle 2|Cycle Cycle 4: Cycle 5 | Cycle Cycle 7| Cycle § Cycle ¢

I I
—r— Reg |
I !

I

DM

14 BEQR1, 24 |} IM

48 AND R12, R2,R5

Clock |Clock éICIDck | Clock | Clock
|
I
|
I|
|
|
|

Red

48 or 72

Flushing : need only to insert one
stall to resolve control hazard

Clock | Clock |Clock Clock | Clock |Clock Clock | Clock |Clock
Cycle 1 I Cycle 2|Cycle EICycIe I CycleSICycle 4Cycle ?l Cycle § Cycle ¢
I I I
I I
|

14 BEQR1, R3, 24 IM

I
Red |
I

stall

]

l
I

5 I DM RegI |
GitCTH
I I I I
40 ADD R30,R30,R30 IF |[ID |EX |MEM |WB
44 BEQ R1, 24 IF |ID |EX MEM | WB
48 AND R12, R2, R5 IF |idle idle idle |idle
48 or 72 ID EX | MEM

Why “waste” the fetched
instruction ?

Clock | Clock |Clock Clock | Clock |Clock Clock | Clock |Clock
Cycle 1 | Cycle 2|Cycle Z{Cycle CycleS Cycle 4Cycle ?l Cycle § Cycle ¢

14 BEQR1, R3, 24 IM

stall

| DM I Re

H |

* We have fetched the instruction 48, why
we fetch the second time if the branch

not taken at last ?

48 or 72

3 1t W 5T %5 &

Branch is not taken: No stall

The pipeline status for predict-
not-taken

40 ADD R30,R30,R30 |IF |ID |EX |MEM |WB

44 BEQ R1, 24 IF |ID [EX |MEM |WB

48 AND R12, R2, R5 IF |ID EX | MEM |WB
52 OR R13, R6, R2 IF ID |EX |MEM
Branch is taken: 1 stall

40 ADD R30,R30,R30 |IF |ID |EX |MEM |WB

44 BEQ R1, 24 IF |ID |EX |MEM |WB

48 AND R12, R2, R5 I |idle |idle [idle |idle
72 LW R4, 50(R7) IF ID |EX |MEM
76 IF ID EX

Delayed branch

- Good hews

- Just 1 cycle to figure out what the right
branch address is

- So, not 2 or 3 cycles of potential NOP or stall

- Strange news
- OK, it's always 1 cycle, and we always have to
wait
- And on MIPS, this instruction always executes,

no matter whether the branch taken or not
taken. (hardware scheme)

Branch delay slot

+ Hence the name: branch delay slot

branch instruction
sequential successor,

sequential successor,

sequential successor,

Branch delay slots

branch target if taken

- The instruction cycle after the branch is used for address
calculation , 1 cycle delay necessary

- S0O..we regard this as a free instruction cycle, and we just DO

IT
- Consequence

- You (or your compiler) will need to adjust your code to put some
useful work in that "slot”, since just putting in a NOP is

wasteful (compiler scheme)

How to adjust the codes?
ADD R1,R2,R3 SUB R4,R5,R6 ADD R1,R2,R3
if R2=0 then — ADD R1,R2,R3 if R2=0 then
if R2=0 then Delay slot
Delay slot
| Delay slot OR R7,R8,R9

SUB R4,R5,R6 <

If R2=0 then —

ADD R1,R2,R3

<

(a)From before

SUB R4,R5,R6

4—
ADD R1,R2,R3
if R2=0 then

SUB R4.R5.R6

(b)From target

ADD R1,R2,R3
If R2=0 then

SUB R4,R5,R@eH

(c)From fall-through

Example: rewrite the code (a)

d Without Branch Delay Slot With Branch Delay Slot

Address Instruction Address Instruction

36 NOP 36 NOP

40 ADD R30,R30,R‘32:><;0 i BEQ R1, R3, 28
44 _BEQR1..24. 4 | ADDR30, R30. R30
48 AND R12, R2, R5 48 AND R12, R2, R5
52 OR R13, R6, R2 52 OR R13, R6, R2
56 ADD R14, R2, R2 56 ADD R14, R2, R2
60 60

64 64

68 68

72 LW R4, 50(R7) 72 LW R4, 50(R7)

76 76

< Flow of instructions if branch is taken: 36, 40, 44, 72, ...
< Flow of instructions if branch is not taken: 36, 40, 44, 48, ...

Example: rewrite the code (b-1)

LW R2, 0(R1)
Loopa LW R2, O(R1) Loop: ADD R3,R2, R4
ADD R3, R2, R4 SW R3,0(R1)
SW R3, OR1) W) .
...... SUB R1,R1, #4
SUB R1,R1, #4 BNEZ R1, Loop
BNEZ R1, Loop LW R2, 0(R1)

Example: rewrite the code (b-2)

Loop: LW R2, 0(R1) Loop: LW R2, 0(R1)
ADD R3, R2,R4 ADD R3, R2,R4
SW R3, 0(R1) DIV ...
DIV ... ‘
...... SUB R1,R1,#4
SUB R1,R1, #4 BNEZ R1, Loop
BNEZ R1, Loop SW R3, +4(R1)

Schedualing strategy vs.
performance improvement

Scheduling | Requirements Improves performance
strategy when?
a. From |Branch must not depend on the|Always
before |rescheduled instruction
branch
b. From |[Must be OK tfo execute|When branch is taken. May
target | rescheduled instruction if branch if | enlarge program if
not taken. May need to duplicate | instructions are duplicated.
instructions.
c. From|Must be OK to execute instruction | When branch is not taken.
fall if branch is taken.
through
d. place a No improvement.

no-op

Constrains of the delayed branch

- There are restrictions on the instructions that
are scheduled into the delay slots

* The compiler's ability to predict accurately
whether or not a branch is taken determines
how much useful work is actually done.

* For scheduling scheme b and c,

- T+ must be O.K. to execute the SUB instruction if
the prediction is wrong.

- Or the hardware must provide a way of cancelling
the instruction.

Cancelling function

- Includes the direction that the branch is
predicted to go.

» If branch is predicted incorrectly , CPU
turns the instruction in the branch delay
slot into a no-op.

» Can reduce the complexity for compiler
to select useful instructions into delay
slot.

(of case b)

N e A T S A (B P2 %

HIEIE2)

Delayed branch with cancelling

Untakenbr.ins. |IF {ID |EX |MEM |WB

Br. delay ins.(i+1) IF [idle |idle idle idle

Instruction i+2 IF |ID EX MEM |WB

Instruction i+3 IF ID EX MEM |WB
Instruction i+4 IF ID EX MEM |WB
IR REN R ZEE AN

taken br. ins. IF |ID [EX |[MEM |WB

Br. delay ins.(i+1) IF |[ID [EX MEM |WB

Branch target IF |ID EX MEM |WB

Branch target +1 IF ID EX MEM |WB
Branch target +2 IF ID EX MEM |WB

Efficiency of delayed branch

A B C D E=CxD F=B+E
%cond. | %cond. : .. | Total% Br.
Z‘én d. Br. with [br. That ‘t’)/c;-ca_lr_]rc];gllln;]re ((;/‘;?]';e"\’evgh with empty or
Br. L . cancelled delay slots cancelled delay
Banchmar slots canceling slots
Compress | 14% | 18% 31% 43% 13% 31%
Eqgntott 24% | 24% 50% 24% 12% 36%
Espresso 15% | 29% 19% 21% 4% 33%
Gce 15% | 16% 33% 34% 1% 27%
Li 15% | 20% 55% 48% 26% 46%
Integer Ave. [17% | 21% 38% 34% 13% 35%
Doduc 8% 33% 12% 62% % 40%
Ear 10% | 37% 36% 14% 5% 42%
Hydro21 12% | 0% 69% 24% % 17%
Mdljdp2 9% 0% 86% 10% 8% 8%
Su2cor 3% 7% 17% 57% 10% 17%
FP average |8% 16% 44% 34% 9% 25%
Overall Ave. | 12% | 18% 41% 34% 12% 30%

ﬁﬁﬁﬁﬁﬁﬁ

3 1t W 5T %5 &

About delayed branch

» Delayed branch are adopted in most RISC
processors.
* In general, the length of branch delay is

more than 1. However, always just one
slot is used due to the compiler

complexity.

Performance comparison
A for four schemes

+ MIPS R4000, deeper pipeline

- Takes at least three pipeline stages before
the branch target address is known

- An additional cycle before the branch
condition is evaluated.

- Assuming branch frequencies as followed
v Unconditional branch 4%
v Conditional branch, untaken 6%
\ Conditional branch, taken 10%

Pipeline status for various

schemes
uncond. L1 L2 L3 L4 L5 L6 2 stall
L1 s LI1(branch target)
Stall pipeline: L1 L2 L3 L4 L5 L6 3 stall

L1 s s Ll(branch target/i+1)
Predict taken:

L1 L2 L3 L4 L5 L6

taken: L1 s L1L2 L3 2 stall
untaken: L1 s L1 idle 3 stall
L1(i+1)

Predict untaken.
L1 L2 L3 L4 L5 L6

untaken: L1 L2 L3L4 L5 O stall
taken: L1 L2 L3 idle 3 stall
L1 L2 idle
L1 idle

L1(branch kamgét)

Resolution

Additiona to the CP! Al
Branch branches
scheme | Unconditional | Takencond. | Untaken cond. (20%)

Branches(4%) | Branches(10%) | Branches(6%)

Sl o 08| 3 [030 | 3 | 048] 056
pipeline
Predict
taken 2 0.08 2 0.20 3 0.18 0.46
Predict
untaker 2 0.08 3 0.30 0 0.00 0.38

Pipeline hazards

« Taxonomy of Hazards

- Structural hazards
\ These are conflicts over hardware resources.

- Data hazards

\ Instruction depends on result of prior computation which
is not ready (computed or stored) yet

- Control hazards

\ branch condition and the branch PC are not
available in time to fetch an instruction on the
next clock

V OK, we did these, calculate the destination address and
condition asap, Flushing the pipeline, predict-not-taken,
predict-taken, delayed branch (with/without cancelling)

=
m

Summary for control hazard

» Control hazards can cause a greater
performance loss than do data hazards.

* In general, the deeper the pipeline, the worse
the branch penalty in clock cycles.

* A higher CPI processor can afford to have more
expensive branches.

* The efficiency of the three schemes greatly
depends on the branch prediction.

Branch prediction

+ There are many different schemes

- static branch prediction

- Assume taken

\ This is surprisingly effective since 85% of backward
branches and 60% of forward branches are taken.

- Assume not taken
- Predict by using profile information from previous
run
» dynamic branch prediction by hardware
- 1-bit Branch Prediction
- 2-bit Branch Prediction
- N-bit Branch Prediction
- Table-based Branch Predictior

Accuracy of prediction based on
profile

& % 25.0%
—~ 25%
g 20% .
g 15% 12%
2 low 9% 10% 9.00%
RZ) 5%
= O% 1 1 1 . 1 . 1 1 1 1
= 3 8 5 8§ =2 58 o
s 8 ° £ F 3 £
_— = L
o 2 1000 B Profile-based 953
o 3 200
O . 92 113 96
2 5 100
(<)) ot
M™
o 8 10
o,
g w
- g |
S N O & N © & Q S
S Q S O XS
& & & ° S &

HRiES

0: AR
It {

1: ¥%%

T R IGCER =

IF (aa == 2)
aa =0:;

IF (bb == 2)
bb = 0

IF (aa !'==bb) {

—————

- #Reg[R1] =d
BNEZ R1,L1 ; brb1, (d'=0)
DADDIU R1, RO, #1 : d==0, so d=1
L1: DADDIU R3,R1,#-1;
BNEZ R3, L2 ; brb2, (d!=1)

RS REN

i 1L ¥ 5% %5 &

RS REN

i 1L ¥ 5% %5 &

RS REN

i 1L ¥ 5% %5 &

JUFRZH A)2 X

e VEE:
— XEAI T M

- B LE—KBrig4, FIE—RARbrissd, EEMHR
filoopH AT EER], INEEloopHAEHEDLriE4

Taken Taken

g&
Predict Taken f Predict Taken
Predict Not %Predict Not

PSR T 2% R I L3R 65 %]

LRI 1

)

INT/NT. (5%

IBARTRMEE,

72{)‘_, /

)

1) O
T
NT/T

—

NT/T

yd))

O NN O N

“NT/T

22

