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Abstract—Point set filtering, which aims at reconstructing noise-free point sets from their corresponding noisy inputs, is a fundamental
problem in 3D geometry processing. The main challenge of point set filtering is to preserve geometric features of the underlying
geometry while at the same time removing the noise. State-of-the-art point set filtering methods still struggle with this issue: some are
not designed to recover sharp features, and others cannot well preserve geometric features, especially fine-scale features. In this
paper, we propose a novel approach for robust feature-preserving point set filtering, inspired by the Gaussian Mixture Model (GMM).
Taking a noisy point set and its filtered normals as input, our method can robustly reconstruct a high-quality point set which is both
noise-free and feature-preserving. Various experiments show that our approach can soundly outperform the selected state-of-the-art
methods, in terms of both filtering quality and reconstruction accuracy.

Index Terms—GPF, Gaussian Mixture Model, point set filtering, feature preserving.
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1 INTRODUCTION

P OINT set filtering, which aims at reconstructing noise-free
point sets from their corresponding noisy inputs, is a fun-

damental problem in 3D geometry processing. The filtered point
set models can serve as a basis for a variety of further geometry
processing, animation, and rendering applications, such as 3D
reconstruction and point-based rendering. In fact, the design of ro-
bust point set filtering methods has become increasingly important
with the growing availability of various scanning equipments, es-
pecially the consumer-grade depth sensors (e.g., Microsoft Kinect
[1]). The main technical challenge of point set filtering is to
robustly preserve geometric features while effectively removing
noise.

State-of-the-art point set filtering methods, for example, LOP
(locally optimal projection) [2], RIMLS (robust implicit moving
least squares) [3], WLOP (weighted LOP) [4], EAR (edge-aware
resampling) [5], and CLOP (continuous LOP) [6], have achieved
noticeable successes recently. However, these point set filtering
methods are either not designed for sharp feature preservation,
or are less robust in removing noise while preserving features.
Specifically, LOP [2], WLOP [4], and CLOP [6] are all LOP-based
methods, which have been shown to remove noise and outliers
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very robustly. But none of them is designed to preserve sharp
features, due to their inherent isotropic nature. In other words,
they do not take geometric features into account. EAR [5] is an
extended LOP-based method that does take geometric features
into account. It may smear fine-scale geometric features, however,
since it needs to utilize a rather big neighborhood size, which
acts like a smoothing kernel, to push points away from prominent
edges. RIMLS [3] also considers feature preservation, but due
to the strong dependence on the initial normal estimation it is
generally more sensitive to outliers and noise compared to LOP-
based methods. The above issues substantially limit the robustness
and effectiveness of these methods in point set filtering.

Motivated by the above challenges, in this paper we present a
GMM-inspired feature-preserving point set filtering (abbreviated
as GPF) method which is a projection technique. The Gaussian
Mixture Model, or GMM, is known to be a powerful statistical
probability model [7], [8], [9]. By introducing normal informa-
tion, our proposed anisotropic projection method is robust and
effective in filtering point sets. Given a noisy point set and its
filtered normals, our projection method can robustly generate
a corresponding noise-free point set, with geometric features
automatically preserved. The main contributions of our work are:

• a robust and effective method that preserves geometric
features;

• a GMM-inspired formulation leading to an algorithm that
is simple to implement.

Through a variety of experiments, we show that our method
can significantly outperform the state-of-the-art techniques [3],
[4], [5], [6], in terms of both filtering quality and reconstruction
accuracy (Section 5), as illustrated in Figure 1. Furthermore, we
discuss the key differences between our method and other selected
techniques, as well as the limitations of our approach (Section 6).

2 RELATED WORK

In this section, we review previous research that is most related
with our work. We first review point set filtering methods, fol-
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Fig. 1. Filtered results of the raw Basket point set. The zoomed regions highlight how our approach better preserves geometric features while
robustly removing noise compared to previous techniques. We show corresponding surface reconstruction results in the bottom row.

lowed by surface reconstruction techniques. Finally, we review
some related work that also employed the Gaussian Mixture
Model (GMM).

2.1 Point Set Filtering

Given a point set, a core problem that has been studied widely
in the context of point set surfaces is how to define a projection
of the input points onto the underlying surface. Levin [10], [11]
introduced the seminal moving least squares (MLS) formulations.
To smooth noisy point clouds, pioneering work [12], [13], [14]
defined moving least squares (MLS) and extremal surfaces. Later,
Lange et al. [15] put forward an anisotropic smoothing method
for point sets. Fleishman et al. presented a statistics-based moving
least squares technique to reconstruct piecewise smooth point set
surfaces [16]. Öztireli et al. [3] proposed robust implicit moving
least squares (RIMLS) for feature-preserving point set projection.

More recently, promising point set projection methods [4], [6]
based on the LOP (locally optimal projection) operator [2] have
emerged. LOP [2] is parameterization free, i.e., it does not rely
on estimating a local normal, fitting a local plane, or using any
other local parametric representation. However, LOP may fail to
converge, and cannot distribute points uniformly under significant
non-uniformity of the input points. As a consequence, a weighted
LOP was proposed [4]. Avron et al. introduced a L1-optimization
framework for reconstruction of sharp point set surfaces [17].
Later, a Kernel LOP was presented to decrease the computational
cost of LOP [18], but the result quality deteriorates quickly as
the number of kernels is reduced. Preiner et al. [6] developed an
accelerated variant of LOP, called CLOP, which reformulates the
data term to be a continuous representation of the input point
set. Sun et al. proposed a method for filtering point sets via
L0 minimization [19], but a post-processing step is required to
solve the cross artifact problem around regions with sharp edges.
Wu et al. formulated point set consolidation, skeletonization, and
completion into a unified framework [20].

2.2 Surface Reconstruction
Surface reconstruction has been extensively studied for more than
twenty years. As a seminal work [21], Hoppe et al. proposed
an implicit model via estimating tangent planes. In 1998, a new
Voronoi-based surface reconstruction algorithm was proposed by
Amenta et al. [22]. In the same year, RBF [23] and Delaunay-
based Cocone [24] were both proposed. More recently, popular
surface reconstruction methods are Poisson Reconstruction [25],
[26], APSS [27] and RIMLS [3]. Most of the methods, such as
Cocone, RBF, Poisson, and APSS [23], [24], [25], [26], [27], are
edge-oblivious, while RIMLS [3] is edge-aware. Recently, a scale
space meshing method for raw data point sets was developed by
Digne et al. [28]. More recently, Xiong et al. introduced a unified
framework for surface reconstruction via dictionary learning [29].
Interested readers are referred to [30], [31] for a comprehensive
review on this topic. Most of the surface reconstruction methods
rely on correct normal information and point locations. Hence, a
point set filtering step is commonly applied before the reconstruc-
tion.

2.3 Gaussian Mixture Model
The Gaussian Mixture Model (GMM) has been broadly used
in a variety of research fields, for example, speaker identifica-
tion/verification [32], [33], background subtraction [34], rigid and
non-rigid point set registration [7], [35], [36], pose estimation [8],
detection of compound structures [37], compressive sensing [9],
and so on. Inspired mainly by Myronenko et al. [7], we extend
GMM to point set filtering. The key idea is to relate the input
points to the projected points via the GMM. The Expectation-
Maximization (EM) algorithm [38] is utilized to solve this projec-
tion problem, in an iterative way.

3 METHOD OVERVIEW

The main component of our work is the GMM-inspired feature-
preserving point set filtering (GPF). Before applying GPF, we
smooth normals of the input point set with the bilateral filter [5].
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(a) Noisy input (b) Bilateral smoothing (c) GPF (d) Upsampling (e) Reconstruction

Fig. 2. An overview of our pipeline involving bilateral filtering (b), our proposed filtering approach GPF (c), upsampling (d) and surface reconstruction
(e). We utilize bilateral normal filtering [5] before the proposed GPF, and further upsample the projected point set defined by GPF and reconstruct
surfaces [3].

To further enhance point set rendering and surface reconstruction,
we utilize a point set upsampling algorithm [5] in a post-process
to increase the point density of the output of GPF. Interested
readers are referred to the work by Huang et al. [5] for bilateral
smoothing (Section 4) and upsampling (Section 5). Figure 2 shows
an example of our pipeline involving bilateral filtering, GPF,
upsampling and reconstruction.

Many state-of-the-art point set projection methods [2], [4],
[6] are not designed for preserving sharp features by nature.
We present GPF that accounts for point set filtering and feature
preservation simultaneously. Given a noisy point set and its fil-
tered normals, GPF projects points onto the underlying surface.
Features in the projected point set can be automatically preserved
(e.g., Figure 2), by considering the filtered normal information
during projection.

4 GMM-INSPIRED FEATURE-PRESERVING PRO-
JECTION

In this section we introduce our GPF approach by formulating
the projection problem using a GMM. Then we explain how to
perform the projection using an EM algorithm, and we introduce
energy terms that allow us to preserve geometric features and
obtain a uniform point distribution on the surface.

4.1 The Probabilistic Framework

Let V = {v1,v2, · · · ,vN} be the input, which is an unorganized,
noisy point set. Given V , X = {x1,x2, · · · ,xM} is a set of points
projected onto the underlying surface, which is defined by our
GPF model. We initialize X by randomly downsampling points
from V . Inspired by Myronenko et al. [7], we assume the dis-
tribution of the noisy input points V follows a GMM, which is
defined by a set of centroids and covariances, and we view X
as the centroids of the GMM. The goal is now to determine the
parameters of the GMM, i.e., the centroids and covariances, that
best explain the noisy input data V . In other words, we need to
maximize the likelihood that V is generated by the GMM by
optimizing over the parameters of the GMM, i.e., the centroids
X and covariances. Under the GMM model, we formulate the
probability density for an input point vn ∈V as

p(vn) = (1−ω)
M

∑
m=1

1
M

p(vn|xm)+ω
1
N
, (1)

where p(vn|xm) =
1

(2πσ2)d/2 e
−‖vn−xm‖2

2σ2 is the m-th Gaussian com-
ponent, and d is the dimensionality of the point set (d = 3
in this work). vn and xm are row vectors (1× 3). Similar to
Myronenko et al. [7], we use equal isotropic covariances σ2 for
all components and equal membership probabilities, represented
by the factor 1

M above. Finally, we include a uniform distribution
in the model (i.e., p = 1

N ), which accounts for noise and outliers,
and weight it with ω ∈ [0,1]. The likelihood function of our model
is L (X ,σ2) = ∏

N
n=1 p(vn).

The GMM centroid locations X and the covariance σ2 can
be estimated by maximizing the likelihood, or by minimizing the
negative log-likelihood function,

E(X ,σ2) =−
N

∑
n=1

log

(
1−ω

M

M

∑
m=1

p(vn|xm)+
ω

N

)
. (2)

4.2 EM Optimization
In order to find X and σ2, we use the EM (i.e., Expectation-
Maximization) algorithm [38] to minimize Eq.2. Given the X
and σ2 values, the E-step is to compute the posterior probability
of the mixture components using Bayes’ theorem. Based on the
posterior probability, the M-step is to find the new X and σ2

values by minimizing the expectation of the complete negative
log-likelihood function [39]. The E-step and M-step are alternately
performed until convergence, or a maximum number of iterations.

E-step. In this step, the posterior probabilities pold(xm|vn) are
computed using “old values” estimated from the last iteration
according to Bayes’ theorem,

pold(xm|vn) =
e
−‖vn−xold

m ‖2

2σ2

∑
M
m′=1 e

−‖vn−xold
m′ ‖

2

2σ2 + (2πσ2)d/2ωM
(1−ω)N

. (3)

M-step. At the M-step, we estimate the parameters (X and σ2)
by minimizing the upper bound of Eq. (2), shown as follows.

Q(X ,σ2) = D(X ,σ2)+
dNp

2
logσ

2, (4)

where Np = ∑
N
n=1 ∑

M
m=1 pmn, pmn = pold(xm|vn), and D(X ,σ2) =

1
2σ2 ∑

N
n=1 ∑

M
m=1 pmn ‖vn− xm‖2. Generally, D(X ,σ2) is called a

data term, which pushes the projected points xm to be close to
the observed data vn, and hence to approximate the underlying
geometry.
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4.3 Feature-preserving Data Term and Repulsion Term

Data term. Similar to [2], [4], [6], the data term ‖vn− xm‖2 cannot
preserve sharp features during projection. To address this problem,
we introduce a modified data term that includes the filtered normal
information as a key component of our approach. That is, we
replace ‖vn− xm‖2 with

∥∥(vn− xm)bT
n
∥∥2, where bn is the normal

vector (1×3) of the n-th point in V , and T is its transpose,

D(X ,σ2) =
1

2σ2

N

∑
n=1

M

∑
m=1

pmn
∥∥(vn− xm)bT

n
∥∥2

. (5)

Intuitively, this means we replace the point-to-point distance with
a point-to-plane distance, where the plane is given by the filtered
normal at each point. This encourages projected points xm to stay
close to local tangent planes, and it avoids the smoothing out of
geometric features.

Repulsion term. Similar to existing projection operators [2],
[4], [6], we also introduce a repulsive force to Eq. 4, striving for
an even distribution of the projected points (i.e., X). Like in our
data term, we also introduce normal information to the repulsion
term to keep the projected points on the local tangent planes. We
achieve this by projecting the repulsive forces onto the tangent
planes. Hence, our repulsion forces are based on the difference
vector between close-by points xm and x′m, projected onto the
tangent plane given by the normal b′m of x′m. This leads to the
repulsion term

R(X) =
M

∑
m=1

λm

M

∑
m′=1,m′ 6=m

η(rmm′)θ(rmm′), (6)

where rmm′ =
∥∥(xm− xm′)− (xm− xm′)bT

m′bm′
∥∥ is the distance vec-

tor xm − xm′ projected onto the tangent plane defined by the
point-normal pair 〈xm′ ,bm′〉. Similar to Huang et al. [4], our final
repulsion force consists of a term η(r) = −r and a smoothly
decaying weight function θ(r) = e(−r2/(h/2)2). h is the support
radius which should be adjusted according to different point set
models. h is normally increased with the growing noise level. h
needs to be decreased when there are close-by surfaces in the point
set, for example the block model in Figure 8. In our experiments,
h is set to be in the range [3h0,12h0] where h0 = dbb/

√
N and dbb

is the diagonal length of the bounding box of the input point set.
Thus, our final optimization objective for the M-step is based

on Eq. 4, but with our modified data and novel repulsion terms.
By slight abuse of notation, we redefine

Q(X ,σ2) = D(X ,σ2)+R(X)+
dNp

2
logσ

2. (7)

Note that the point-to-plane distance is not used in the E-step,
because we found using it would not make a difference visually.

4.4 Minimization

We now describe how to find the projected points X and covariance
σ in the M-step as argminX ,σ2 Q(X ,σ2). The partial derivative of
Eq. 7 with respect to xm is

∂Q
∂xm

=
1

σ2

N

∑
n=1

pmn(xm− vn)bT
n bn−

λm

M

∑
m′=1,m′ 6=m

βmm′(xm− xm′)Cmm′C
T
mm′ ,

(8)

(a) (b)

Fig. 3. Two examples illustrating the local notion in GPF. The input
noisy points and the projected points are colored with black and red,
respectively. The green point indicates a sample point with its local
neighbors in the original point set, which we take into account during
our optimization steps, colored in blue.

where βmm′ =
θ(rmm′ )

rmm′

∣∣∣ ∂η(rmm′ )
∂ r

∣∣∣, Cmm′ = I− bT
m′bm′ , and I is the

3×3 identity matrix. It is not difficult to prove that CT
mm′ = Cmm′

and further Cmm′CT
mm′ =Cmm′ .

As shown in Eq. 8, the coefficients of xm in the derivatives
of the data and repulsion terms are matrices rather than scalars.
This is quite different from LOP and WLOP [2], [4]. Therefore,
we apply gradient descent to find X , which is iterative and fast. In
each gradient descent step we update xm using

xk+1
m = xk

m +
∑

N
n=1 pk

mn(vn− xk
m)b

T
n bn

∑
N
n=1 pk

mn
+

µ
(
σ

2)k ∑
M
m′=1,m′ 6=m β k

mm′(x
k
m− xk

m′)C
k
mm′

∑
M
m′=1,m′ 6=m β k

mm′
,

(9)

where k+ 1 and k represents the (k+ 1)-th and k-th gradient de-
scent iteration, respectively,

(
σ2
)k means σ2 at the k-th iteration,

and we scaled the gradient from Eq. 8 by
(
σ2
)k
/∑

N
n=1 pk

mn to
adjust the gradient descent step size. In addition, we introduced

the notation µ = λm
∑

M
m′=1,m′ 6=m βmm′

∑
N
n=1 pmn

. In practice, we replace µ
(
σ2
)k

with a user parameter µ̂ , which allows us to manually control the
relative strength of the repulsion term. We set µ̂ in the range
[0.05,0.30] in our experiments.

In addition, we also take density weights into account, as
suggested by Huang et al. [4]. The fixed point iteration for xk+1

m
finally becomes

xk+1
m = xk

m +
∑

N
n=1 pk

mn/ρn(vn− xk
m)b

T
n bn

∑
N
n=1 pk

mn/ρn
+

µ̂
∑

M
m′=1,m′ 6=m wk

m′β
k
mm′(x

k
m− xk

m′)C
k
mm′

∑
M
m′=1,m′ 6=m wk

m′β
k
mm′

,

(10)

where the density weights are ρn = 1+∑
N
n′=1,n′ 6=n θ(‖vn− vn′‖),

and wk
m′ = 1+∑

M
m′=1,m′ 6=m θ(

∥∥xk
m− xk

m′
∥∥).

To compute σ2, we take the partial derivative of Eq. 7 with
respect to σ2. Hence, we obtain σ2 at the (k+1)-th iteration as

(
σ

2)k+1
=

1
dNk

p

N

∑
n=1

M

∑
m=1

pk
mn

∥∥∥(vn− xk+1
m )bT

n

∥∥∥2
, (11)

Finally, we summarize the proposed GMM-inspired feature-
preserving point set filtering (GPF) method in Algorithm 1.
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Algorithm 1 GMM-inspired feature-preserving point set filtering
Input: noisy point set V , filtered normals {bn}
Output: projected point set X

1: Initialize: ω = 0.02, σ2 = 0.004, h ∈ [3h0,12h0], µ̂ ∈
[0.05,0.30], downsample V to X0

2: repeat
3: E-step: update {pmn} via Eq. 3
4: M-step: update X via Eq.10 and σ2 via Eq.11
5: until convergent OR maximum iterations are reached
6: return X

(a) Noisy input (b) ω = 0.02 (c) ω = 0.52 (d) ω = 0.99999

Fig. 4. A test of different outlier weights ω on a plane (side view)
corrupted with large outliers. Larger ω better suppress outliers.

(a) Noisy input (b) µ̂ = 0.05 (c) µ̂ = 0.3

Fig. 5. A comparison for different repulsion strengths µ̂. A relatively
larger µ̂ leads to a more even distribution of projected points.

(a) Noisy input

(b) M = 1
8 N

(c) Upsampling of
(b)

(d) M = 1
5 N

(e) Upsampling of
(d)

(f) M = 3
5 N

(g) Upsampling of
(f)

Fig. 6. A comparison for different numbers of downsampled points M.
The corresponding upsampling results are shown in the bottom.

Similar to the strategy used in [8], we used a fixed initial value for
σ2 (0.004) since we found no obvious artifacts compared with the
initialization using the input points [7].

In practice, GPF is implemented in a local sense as illustrated
in Figure 3. A local implementation is necessary because the
original method involves massive memory and computational cost
(e.g., computation for the M×N matrix {pmn}). Specifically, for
the data term, we set a ball radius (h/2) to obtain the neighbors
in V of each point in X as well as the neighbors in X of each
point in V . For the repulsion term, we set a larger ball radius (h
in Eq. (6)) to find the neighbors in X of each point in X . A larger

radius for the repulsion term is to alleviate the point aggregation
issue and generate a more uniform points distribution. This local
implementation scheme significantly reduces the computational
and memory cost.

We illustrate the influence of the GPF parameters (outlier
weight ω , repulsion strength µ̂ , number of downsampled points
M) in Figures 4, 5, and 6. We tested the effect of using different
ω on a plane model corrupted with strong outliers (Figure 4), and
found a great ω value (approaching 1) is helpful in dealing with
significant outliers. This is mainly because the update variations
of σ2 are not large, and a large ω is thus needed to account
for a significant value of (2πσ2)d/2ωM

(1−ω)N (Eq. (3)). In general, we
found ω = 0.02 works well in our experiments (Section 5) where
outliers are less prominent compared to the particular example
in Figure 4. The parameter µ̂ controls the relative power of
repulsion forces. Figure 5 shows a comparison of using different
µ̂ . Figure 6 demonstrates that different numbers (typically < N as
suggested in [2], [4]) of the downsampled points would generate
very similar upsampling results in the end. In the experiments
(Section 5), we randomly select about half of the original points
as the downsampled points.

5 RESULTS

We compared both our approach and the selected state-of-the-art
methods (i.e., RIMLS [3], WLOP [4], EAR [5], CLOP [6]) on a
wide range of synthetic and raw scans. Both visual and quantitative
comparison results are presented. Please refer to the supplemental
material for more results.

Experiment setup. For rendering purposes, the output of all
five methods are upsampled [5] and further reconstructed via the
feature preserving surface reconstruction method (i.e., RIMLS [3]
in Meshlab). For the sake of fair comparison and visualization, we
adopt the following principles. For each comparative experiment,
(1) we carefully tuned the main parameters of each method to
achieve best visual results; (2) all five methods used approximately
the same numbers of downsampled (upsampled) points; (3) iden-
tical surface reconstruction parameters are employed; (4) we use
PCA normal estimation to acquire the same initial normals for
all five methods. Regarding normal-related methods, RIMLS [3],
EAR [5] and GPF employ the bilateral filter [5] by setting the
same parameters. WLOP and CLOP [4], [6] are independent of
normals; (5) back-face culling is used for point set rendering.

Synthetic point scans. Synthetic point scans are corrupted with
a certain amount of noise, for example, 1.0% of the diagonal
length of the bounding box. As shown in Figures 7, 8 and 9,
our approach yields substantially better results than the selected
state-of-the-art methods, in terms of feature preservation. Note that
RIMLS [3] and EAR [5] can also preserve features to some extent,
but they produce less pleasing results, for example, obvious flaws
in feature regions (e.g., 8(b)), remarkably curved edges (e.g., 8(f)),
uncleanness (i.e., unrobustness to outliers, e.g., 9(g)). Comparing
to the selected methods, the proposed GPF produces the best result
even when handling a high level of noise (Figure 7).

Raw point scans. Besides the synthetic point clouds, we
also tested the five methods on raw scans data. We observed,
from Figures 1, 10 and 11, that our method can produce nicer
results than the state-of-the-art methods, in terms of fine-features
preservation. Figure 12 shows that the final result of our method
is generally more desireable than the other methods, regarding to
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(a) Noisy input

(b) RIMLS

(c) RIMLS

(d) WLOP

(e) WLOP

(f) EAR

(g) EAR

(h) CLOP

(i) CLOP

(j) Our

(k) Our

Fig. 7. Filtered results of the Cube point set (3.0% noise).

(a) Noisy input

(b) RIMLS

(c) RIMLS

(d) WLOP

(e) WLOP

(f) EAR

(g) EAR

(h) CLOP

(i) CLOP

(j) Our

(k) Our

Fig. 8. Filtered results of the Block point set (1.5% noise). The corresponding surface reconstruction results are shown in the bottom. Please refer
to the zoomed regions.

the sharpness of the geometric features and the smoothness of the
planar regions.

Quantitative statistics. In addition to the above visual com-
parisons, two quantitative evaluations are carried out.

Accuracy. We compare the reconstruction accuracy of all five
methods on two point sets. Specifically, we use digital virtual scans
of synthetic models (ground truth) to evaluate the reconstruction
accuracy [20]. The error is measured using the average distance
between points of the ground truth and their closest points of the
reconstructed point set. As shown in Figures 13, 14 and 15, the
reconstructions based on the output of GPF is the most accurate
one among the five methods.
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Fig. 15. The mean square errors of the reconstructed models (Figures
13 and 14) for all five methods.
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(a) Noisy input

(b) RIMLS

(c) RIMLS

(d) WLOP

(e) WLOP

(f) EAR

(g) EAR

(h) CLOP

(i) CLOP

(j) Our

(k) Our

Fig. 9. Filtered results of the Trim-star point set (1.0% noise). The corresponding surface reconstruction results are shown in the bottom. Please
refer to the zoomed regions to see the improvements provided by GPF more clearly.

(a) Noisy input

(b) RIMLS

(c) RIMLS

(d) WLOP

(e) WLOP

(f) EAR

(g) EAR

(h) CLOP

(i) CLOP

(j) Our

(k) Our

Fig. 10. Filtered results of the raw embossed point set. The corresponding surface reconstruction results are shown in the bottom.

(a) Noisy input

(b) RIMLS

(c) RIMLS

(d) WLOP

(e) WLOP

(f) EAR

(g) EAR

(h) CLOP

(i) CLOP

(j) Our

(k) Our

Fig. 11. Filtered results of the raw Saint-jean point set. The corresponding surface reconstruction results are shown in the bottom. Please refer to
the zoomed regions.
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(a) Noisy input

(b) Photo

(c) RIMLS

(d) RIMLS

(e) WLOP

(f) WLOP

(g) EAR

(h) EAR

(i) CLOP

(j) CLOP

(k) Our

(l) Our

Fig. 12. Filtered results of the raw Water-Meter point set. The corresponding surface reconstruction results are shown in the bottom.

(a) Noisy input (b) RIMLS (c) WLOP (d) EAR (e) CLOP (f) Our
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(g)

Fig. 13. Reconstruction accuracies of the raw Sphere point set. (g) is the error bar.

(a) Noisy input (b) RIMLS (c) WLOP (d) EAR (e) CLOP (f) Our

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0
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0.067
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(g)

Fig. 14. Reconstruction accuracies of the raw Ventura point set. (g) is the error bar.

TABLE 1
Timing statistics (in seconds) for different approaches. N and M are the
numbers of input points and downsampled points, respectively (Section
4). All examples were run on the same computer that equipped with an

Intel(R) Core(TM) Q8400 2.66-GHz CPU.

Models
Figure 8
N: 33490
M: 17K

Figure 12
N: 50629
M: 23K

Figure 9
N: 75053
M: 35K

Figure 10
N: 48305
M: 27k

RIMLS 18.22 161.73 60.54 16.87
WLOP 52.56 260.08 100.87 17.14
EAR 54.9 198.34 148.34 24.22
CLOP 7.72 13.15 25.13 3.78
Our 16.69 150.37 65.38 17.34

Timing. For fair comparisons, we accumulate the running time
of PCA normal estimation, bilateral normal smoothing and the

GPF as the total running time of our work. We run RIMLS,
WLOP, EAR and CLOP on the same machine and report their
running time. We can see from Table 1 that our method is generally
faster than WLOP and EAR, but slower than CLOP.

6 DISCUSSION

Besides the above comparative results (Section 5), it is essential
to discuss the key differences between our method and the four
selected state-of-the-art methods in more detail.

GPF vs RIMLS. RIMLS [3], which considers feature preser-
vation, is an advantageous combination of MLS and local kernel
regression. It encodes a low pass filter and can naturally deal with
noise. Our GPF is inspired by the GMM and incorporates normal
information to automatically preserve geometric features. In fact,
RIMLS is mainly designed for surface reconstruction and does not
consider the non-uniformity issue of projected points (Figure 16).
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GPF vs EAR. EAR [5] is a resampling algorithm, which
consists of two steps: resampling away from edges and edge-
aware upsampling. Excluding normal smoothing and upsampling,
there exist significant differences between GPF and ALOP (i.e.,
anisotropic LOP) which plays a key role in the first step of
EAR. Regarding to the formulation differences, ALOP modified
the spatial weight function of the data term by using the filtered
normals; while our GPF is GMM-inspired and incorporates filtered
normal information in a very different manner. We use point-to-
plane distance in our data term and project the repulsive forces
onto the local tangent plane. In terms of results, ALOP leads to
gaps around sharp edges and then fills the gaps via upsampling; the
proposed GPF attracts points to edges, leading to high sampling
density around the sharp feature areas. Furthermore, EAR requires
running WLOP as a pre-process, and needs to use a rather big
neighborhood size for ALOP to push points away from edges. As
a result, EAR may smear fine-scale features.

GPF vs LOP/WLOP. WLOP [4] is a weighted version of
LOP [2], which augments the regularity of points distribution.
Similar to LOP, it contains two terms: data and repulsion term.
The data term locally approximates the underlying geometry, and
the repulsion term strives for an even distribution of the projected
points. The main differences between our method and LOP/WLOP
[2], [4] are: (1) LOP and WLOP is based on the L1-median concept
while we assume the input point cloud V follows a GMM and
derive a different iterative projection process from the GMM-
inspired formulation; (2) LOP and WLOP only utilize positional
information while our technique introduces both positional and
normal information; (3) LOP and WLOP are isotropic so that they
are not designed to preserve sharp features, while our method can
automatically preserve geometric features.

GPF vs CLOP. CLOP [6], which reformulates the data term
to be a continuous representation of the input point cloud, is
technically a variant of LOP [2]. Even though both CLOP [6]
and GPF are inspired by GMM, there still exist major distinc-
tions between them: (1) CLOP uses a hierarchical expectation-
maximization (HEM) algorithm to compute the Gaussians which
are used to represent the density of the input points (the filtering
quality and accuracy would possibly deteriorate with increasing
hierarchy levels due to the agglomerative nature of HEM), while
we directly apply EM on the input points; (2) CLOP only tries to
adopt a geometric regularization when merging clusters in HEM
and does not consider the geometric features in the input points,
while GPF preserves features by introducing normal information
into both the data and repulsion terms; (3) CLOP reformulates
the attraction force by fitting the generated Gaussians into the
data term form of WLOP [4], while the proposed GPF uses a

(a) Noisy input (b) RIMLS (c) GPF

Fig. 16. The non-uniformity issue. Black arrows indicate denser regions.
Note that the gap in our result can be alleviated in the limitation discus-
sion (Figure 21).

(a) Noisy input (b) WLOP (c) CLOP (d) GPF

Fig. 17. Projected results of WLOP, CLOP and our GPF.

(a) Noisy (b) WLOP (c) CLOP (d) Our

(e) Noisy (f) WLOP (g) CLOP (h) Our

Fig. 18. Sensitivity to strong outliers of LOP-based methods (e.g., WLOP
and CLOP) and the proposed GPF. The first row: the original and
sampled points are colored in black and blue, respectively. The second
row: a shape with sharp edges. For all three methods, big radii are used
to deal with strong outliers.

GMM-inspired formulation and ends up with a different iterative
projection operator by assuming the input point set follows a
GMM.

Figure 17, which compares the projection results of WLOP [4],
CLOP [6] and the proposed GPF, shows that our method can well
preserve geometric features. Note that the LOP-based techniques
[2], [4], [6] are insensitive to outliers in the data due to the L1-norm
formulation. We tested the outlier sensitivity of WLOP, CLOP
and our approach, shown in Figure 18. The proposed GPF can
also deal with heavy outliers, mainly due to the weighted uniform
distribution term ω

N (Eq. (1)) accounting for outliers and noise.
Regarding the plane example (the first row in Figure 18), our
method is a bit more sensitive than WLOP and CLOP, mainly
since there are no sharp edges which can automatically attract
points (including outliers).

Note that our method aims at filtering: removing noise while
preserving geometric features including discontinuities (e.g., sharp
edges in the cube model). Some sampling techniques (e.g., spectral
sampling [40]) are specifically designed for resampling rather than
filtering. It is similar to the upsampling step in EAR [5], and can be
potentially used as the upsampling step after our GPF step (Figure
2). We found the upsampling technique in EAR is adequate for
our experiments. In this work, we also compared our method with
a number of state-of-the-art approaches which are designed for
filtering. The surface reconstruction results by RIMLS could be
possibly improved by sampling techniques like spectral sampling.

Despite the demonstrated performance improvements of our
approach over the state-of-the-art methods, it still has several
limitations.

(i) Similar to EAR [5], we employ the bilateral normal filter
[5] to obtain smoothed normals because of its effectiveness and
efficiency. However, GPF may produce less than satisfactory
results when handling point scans that are contaminated by severe
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(a) Noisy input

(b) RIMLS

(c) RIMLS

(d) WLOP

(e) WLOP

(f) EAR

(g) EAR

(h) CLOP

(i) CLOP

(j) Our

(k) Our

Fig. 19. Filtered results of the point set corrupted with heavy noise (3.0% noise). The corresponding surface reconstruction results are shown in the
bottom. Please refer to the zoomed regions. The mean square errors of these five methods (from left to right) are 2.1×10−4, 8×10−4, 4.1×10−4,
5.7×10−4 and 1.8×10−4, respectively.

(a) Input (b) GPF

Fig. 20. A failure example of our approach when handling a point scan
with a number of open boundaries.

noise, as a result of highly inaccurate normals estimation. An
example is shown in Figure 19. Despite the fact that the recon-
structed result by GPF is far from perfect, GPF still visually and
quantitatively performs the best among all five methods when the
filtered normal field is quite unreliable. Some promising normal
estimation methods [41], [42] have been proposed recently. A
more effective and accurate normal estimation technique could
certainly improve the filtering quality of GPF, which we consider
to be beyond the scope of this work.

(ii) Similar to WLOP [4], EAR [5] and CLOP [6], GPF
is not designed for handling open boundaries and inputs with
large missing data, and it may generate undesired results in these
situations. Such a failure example is shown in Figure 20. Similar
to many existing methods (e.g., [5]), automatically finding optimal
parameters for different inputs still remains a challenge. In the

(a) Noisy input

(b) Original GPF

(c) Upsampling of (b)

(d) After gap filling

(e) Upsampling of (d)

Fig. 21. Alleviating the gap issue near edges. The corresponding up-
sampling results shown at the bottom, however, are very similar with
and without the extra step to fill gaps near edges.

proposed GPF, the main parameters that need tuning are the
support radius h and the repulsion weight µ̂ .

(iii) The proposed GPF may produce gaps near the edges,
after points are attracted to and accumulated around edges. In our
experiments, however, we found that such “gap regions” do not
affect the final upsampling and surface reconstruction results. Still,
one way to alleviate the gap issue is to run several iterations of
GPF with a rather big neighborhood after the original GPF, which
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encourages points to move to the gap regions along the underlying
surface. Figure 21 shows such an example which demonstrates
very similar upsampling results of GPF points with or without
gaps.

7 CONCLUSIONS

In this paper, we presented a GMM-inspired locally optimal
projection approach for feature-preserving point set filtering (i.e.,
GPF). Taking a noisy and outlier-ridden point cloud and its
filtered normals as input, our approach automatically and robustly
preserves geometric features while removing noise. Various exper-
imental results show the robustness of our method in filtering both
synthetic and raw point scans. In this work, we focus on point set
filtering, which strives at obtaining a projected point set that can
approximate the underlying geometry, preserve sharp features and
details, and produce a relatively uniform points distribution. For
future work, it would be interesting to incorporate hole filling
and boundary handling techniques into our point set filtering
framework. Feature-preserving mesh denoising techniques (e.g.,
[43], [44]) can be further combined with our point set filtering
framework, to achieve desired mesh representations.
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