%E%ﬁ Instruction—-Level Parallelism
and Its Dynamic Exploitation

RS
chenwz@?zju.edu.cn
WL Kt AL B
2014F10H

mailto:chenwz@zju.edu.cn

3.3.5 Pipelining Hazards

e Taxonomy of Hazards

Structural hazards
e These are conflicts over hardware resources.

Data hazards

e Instruction depends on result of prior computation
which is not ready (computed or stored) yet

e OK, we did these, Double Bump, Forwarding path,
software scheduling, otherwise have to stall

Control hazards

e branch condition and the branch PC are not
available in time to fetch an instruction on
the next clock

The Control hazard

—. Cause

branch condition and the branch PC are not
available in time to fetch an instruction on the

next clock
The next PC takes time to compute
For conditional branches, the branch direction
takes time to compute.
e Control hazards can cause a greater and
greater performance loss for MIPS pipeline
than do data hazards.

Address Instruction

36
40

NOP
ADD.R30 R30,R30

44

BEQ R1, R3, 24

48
52
56
60
64
63

OR R13, R6, R2

ADD R14,R2, R

<- this branchs to address 72

21 We execute all these if R1 1= R3

- :r We execute just these if R1 == R3

Flow of instructions if branch is taken: 36, 40,44, 72, ...
Flow of instructions if branch is not taken: 36, 40, 44, 48, ...

The Penalty of Control hazard

Flow of instructions if branch is taken: 36, 40, 44, 72, ...
Flow of instructions if branch is not taken: 36, 40, 44, 48, .

b6 ADD R14, R2, R2

Clock | Clock (Clock |Clock | Clock Clock (Clock |Clock |Clock

Cycle 1I Cycle 2|Cycle Cycle 4| Cycle 5 Cycle E{Cycle? Cycle §Cycle 9|
| ¢ —_ I [I [|
I BEQRT RS 28 M —|—§REG | fr| DM |=— Reg | | | |
| T | | | |
[| :—H—, I I I I
18 AND R12,R2,R5 | | M HREQ) | | I
[— | I I I
M IR | [Red! |
52 OR R13, R6, R2 | | |
| | I
I I I
| DM Red|
[
'

ALU|

|
| : J

| | | MITEREG) S
| |

50 or 72 (depending on
pranch)

II
I
|
I

DM Reg
| |

—

—.. Dealing with the control hazard

e Four simple solutions

Freeze or flush the pipeline

o Penalty is fixed.

e Can not be reduced by software.
Predict-not-taken (Predict-untaken)

o Treat every branch as not taken
Predict-taken

o Treat every branch as taken

Delayed branch
e Note:

Fixed hardware

Compile time scheme using knowledge of hardware scheme
and of branch behavior

(1)Freeze or flush the pipeline

Flow of instructions if branch is not taken: 36, 40, 44, 48, ...

Clock | Clock (Clock Clock | Clock |Clock (Clock |Clock [Clock
CycleI Cycle 2 Cycle ycle4 Cycle5 Cycle ycle? Cycle 8|Cycle'i

l - | | |

44 BEQR1, R3, 24 IM _|_= Te ﬁ | | | |
s — I

Y _r'l“" | I | |
i (M) bubbi bubbif bubbys f bubelet ||

[| l | | | |

I [I I [
! | | S |{ bubblg; bubbis |

| I I | !

I [[I | [

| I I |

I I I ; __I_ LU I DM I Re
48 AND R12, R2, R5 I ! T‘REE JI_ :]' 9

(2)Predict not-taken

e Hardware:

Treat every branch as not taken (or as the
formal instruction)

o When branch is not taken, the fetched instruction just
continues to flow on. No stall at all.

o If the branch is taken, then restart the fetch at the
branch target, which cause 3 stall.(should turn the
fetched instruction into a no-op)

e Compiler:
Can improve the performance by coding the most
frequent case in the untaken path.

(3)Predict —taken

e Most branches(60%) are taken, so we should make the taken
branch more faster. Why not try assuming the branch always

taken?

e Hardware

Treat every branch as taken (evidence: more than 60% branches
are taken)

As soon as the branch target address is computed, assume the
branch to be taken and begin fetching and executing at the target.

Only useful when the target is known before the branch outcome.
No advantage at all for MIPS 5-stage pipeline.

e Compiler

Can im‘Er'ove the performance by coding the most frequent case in
the taken path.

10

EX/MEM

11

Pipeline status for predict-taken

44 BEQ R1, R3, 24 IF |ID\ |EX |MEM\ |WB

48 AND R12, R2, R5 @\tidle idle \ [idle |idle

72 LW R4, 50(R7) IF |ID EX MEM | WB
76 IF \ID EX | MEM
80 IF |[ID |EX
Branch is not taken: 3 stall

44 BEQ R1, R3, 24 IF |ID |EX |MEM\ |WB

48 AND R12, R2, R5 —~dle |idle \|idle |idle

72 LW R4, 50(R7) N IFNID idle |idle |idle
76) IP\ \idle idle | idle
48 AND R12, R2, R5 'IF |ID |EX

12

IR6..10

IR11..15 %
iz

AVA 2) %ﬁ

-

MEM/WB

13

‘Need just 1 extra cycle after the BEQ branch to know
right address
*On MIPS, its called - the branch delay slot

Clock | Clock |Clock Clock |Clock |Clock Clock | Clock | Clock
Cycle 1I Cycle 2|Cycle Cycle 4| Cycle5|CycIe Cycle ?l CycledCycIeE

| | |
14 BEQR1,R3, 24 IM |[4=REG - Reg

I ilillt—

48 AND R12,R2R5 | | 'M FERE]) DM

48 or 72

15

(4)Delayed branch

e Good information

Just 1 cycle to figure out what the right branch
address is

So, hot 2 or 3 cycles of potential NOP or stall

e Strange news
OK, it's always 1 cycle, and we always have to wait

And on MIPS, this instruction always executes, no
matter whether the branch taken or not taken.
(hardware scheme)

16

Branch delay slot

e Hence the name: branch delay slot

branch instruction

sequential successor,
sequential successor,

sequential successor,
branch target if taken

Branch delay slots

The instruction cycle after the branch is used for address
calculation , 1 cycle delay necessary

S0O..we regard this as a free instruction cycle, and we just

DOIT
e Consequence

You (or your compiler) will need to adjust your code to put
some useful work in that "slot", since just putting in a

is wasteful

17

How to adjust the codes?

ADD R1,R2,R3
iIf R2=0 then

Delay slot

SUB R4,R5,R6«
ADD R1,R2,R3
iIf R2=0 then

Delay slot

if R2=0 then

ADD R1,R2,R3

(a)From before

4—
ADD R1,R2,R3

If R2=0 then —

SUB R4.R5.R6

(b)From target

ADD R1,R2,R3
iIf R2=0 then
Delay slot

SUB R4,R5,R6

ADD R1,R2,R3
iIf R2=0 then
SUB R4,R5,R6

(c)From fall-through

18

Example: rewrite the code (a)

 Without Branch Delay Slot With Branch Delay Slot

Address Instruction Address Instruction

36 NOP 36 NOP

40 ADD R30 R30,R304 BEQ R1, R3, 28
44 __BE.Q.B.L.ZA 4 ADD R30, R30, R30
48 AND R12, R2 R5 48 AND R12, R2, R5
52 OR R13, R6, R2 52 OR R13,R6, R2
56 ADD R14, R2, R2 56 ADD R14, R2, R2
60 60

64 64

68 68

72 LW R4, 50(R7) 72 LW R4, 50(R7)

76 76

< Flow of instructions if branch is taken: 36, 40, 44, 72, ...
J Flow of instructions if branch is not taken: 36, 40, 44, 48, ...

19

Example: rewrite the code (b-1)

LW R2, O(R1)
ADD R3, R2, R4
SW R3, 0(R1)

SUB R1,R1, #4
BNEZ R1, Loop

LW R2, 0(R1

<

Loop: ADD R3, R2,
SW R3, 0(R’

SUB R1,R1, #4
BNEZ R1, Loop
LW R2, 0(R1)

20

Example: rewrite the code (b-2)

Loop: LW R2, 0O(R’
ADD R3, R2,
SW R3, 0(R?

SUB R1,R1,#4
BNEZ R1, Loop

Loop: LW R2, 0(R1)
ADD R3, R2,R4

SUB R1,R1,#4
BNEZ R1, Loop
SW R3, +4(R1)

4

21

Schedualing strategy vs. performance
Improvement

Scheduling
strategy

Requirements

Improves
when?

performance

a. From
before
branch

Branch must not depend on the
rescheduled instruction

Always

b. From
target

Must be OK to execute
rescheduled instruction if branch is
not taken. May need to duplicate
instructions.

When branch is taken. May
enlarge program if
instructions are duplicated.

C. From
fall
through

Must be OK to execute instruction
if branch is taken.

When branch is not taken.

d. place a
no-op

No improvement.

22

Constrains of the delayed branch

e There are restrictions on the instructions
that are scheduled into the delay slots

e The compiler's ability to predict accurately
whether or not a branch is taken determines
how much useful work is actually done.

e For scheduling scheme b and c,

It must be O.K. to execute the SUB instruction
if the prediction is wrong.

Or the hardware must provide a way of cancelling
the instruction.

23

About delayed branch

¢ Delayed branch are adopted in most
RISC processors.

e In general, the length of branch delay
is more than 1. However, always just
one slot is used due to the compiler
complexity.

24

Summary for control hazard

e Control hazards can cause a greater
performance loss than do data hazards.

® In general, the deeper the pipeline, the
worse the branch penalty in clock cycles.

e A higher CPI processor can afford to have
more expensive branches.

e The efficiency of the three schemes greatly
depends on the branch prediction.

25

3.4 Extending the MIPS Pipeline to Hanc
Multicycle Operations

26

Floating-Point Pipeline

4 It is impractical to require that all MIPS floating point operations complete in
one clock cycle (complex logic and/or very long clock cycle)

d A floating-point pipeline differs from EX

integer instructions pipeline in:

© The EX cycle may be repeated as many
times as need to complete the operation

EX stage not pipelined
q stall if EX takes more
than one cycle

Integer unit

® There may be multiple floating-point =
functional units '

FF/inleger
muliiply

Integer & FP

instructions Ex

- A stall will occur if the instruction
to be issued will either cause a
structural or a data hazard

FP adder

e Multi-cycle
“7 EX phase

EX

- No instruction is assumed to inter
the EX stage as long the previous
Ainstructiun has not finished it

FFR/inleger

| divider

27

Multi-cycle FP Plpellne

Intager unil

-—ﬂ I Integer ALU

FPinteger multiply

7-stages pipelined
FP multiple -

Non-pipelined DIV
operation stalling
the whole pipeline

Pipelined FP addition

for 24 cycle with latency of 3 cycles
MULTD | IF ID | M1 |M2 | M3 | M4 M5 M6 M7 [MEM | WB
ADDD IF D | AT |A2 |A3 | Al MEM | WB
LD IF ID | EX | MEM | WB
SD IF ID | EX MEM | WB

Example: blue indicate where data is needed and red when result is available
28

AN

Multi-cycle FP Pipeline EX Phase

d Example: assume that floating point add, subtract and multiple can be

performed in stages while integer and FP divide cannot

d Latency: the number of intervening cycles between an instruction that
produces a result and an instruction that uses

d Since most operations consume their operands at the beginning of the EX
stage, latency is usually number of the stages of the EX an instruction uses

- Naturally long latency increases the frequency of RAW hazards

< Initiation (Repeat) interval: the number of cycles that must elapse between

issuing two operations of a given type

Functional unit Latency | Initiation interval
Integer ALU 0 1
Data memory (integer and FP loads) 1 1
FP add 3 1
FP multiply (also integer multiply) 6 1
FP divide (also integer divide) 24 25

N\ Example of typical latency of floating point operations

29

FP Pipeline Challenges

Issues:
» Because the divide unit is not fully pipelined, structural hazards can occur

» Because the instructions have varying running times, the number of register
writes required in a cycle can be larger than 1

» WAW hazards are possible, since instructions no longer reach WB in order

» WAR hazards are NOT possible, since register reads are still taking place
during the ID stage

» Instructions can complete in a different order than they were issued, causing
problems with exceptions

» Longer latency of operations makes stalls for RAW hazards more frequent

i Clock cycle number
Instruction
11213 | 4 s| 6| 7|89 101112 (13 |14 |15]| 16 | 17
LD F4, D(R2) IF]ID|EX|MEM|WDB
MULTD FQ, F4, F& IF]ID | stal [M M2 | M3 | M4 | MS | ME | M7 | MEM| WB
ADDD F2, FO, F& IF | stall | 1D | stal | stall | stall | stall | stall | stall | AT | A2 | A3 | A4 | MEM
SD O(R2), F2 IF | stall | stall | stall | stall | stall | stal 1D EX | stall | stall | stall | MEM

P Example of RAW hazard caused by the long latency

30

Write-Caused Structural Hazard

Instruction Clock cycle number

1172737477 5 7 6 [71 8 [9 T 10 11

MULTD FO, F4, F6 | IF [ID| M1 | M2| M3 M4 | M5 | M6 M7 | MEM | WB

IF| ID | EX|MEM| WB

IF | ID| EX | MEM | WB

ADDD F2, F4, F6 IF | ID Al | A2 | A3 A4 | MEM | WB

IF D | EX | MEM | WB

IF ID | EX | MEM| WB

LD F2, O(R2) IF 1D EX | MEM | WB

d At cycle 11, the MULTD, ADDD and LD instructions will try to write back
causing structural hazard if there is only one write port

- Additional write ports are not cost effective since they are rarely used and it
is better to detect and resolve the structural hazard

- Structural hazards can be detected at the ID stage and the instruction will be
stalled to avoid a conflict with another at the WB

4 Alternatively, structural hazards can be handled at the MEM or WB by
AJescheduling the usage of the write port
31

WAW Data Hazards

Clock cycle number

Instruction

1121 3 4 5 6 7 8 9 10 11

MULTD FO, F4, F6 |IF|ID| M1 |[M2| M3 M4 | M5 | M6 M7 | MEM | WE
IF | ID | EX| MEM | WB
IF | ID| EX | MEM | WB
ADDD F2, F4, F6 IF D A1 A2 | A3 A4 | MEM | WE
IF ID EX | MEM | WE
LD F2, O(R2) |F D EX | MEM | WE
IF D EX | MEM | WB

J WAW hazards can be corrected by either:

© Stopping the latter instruction (LD in example) at the MEM until it is safe
® Preventing the first instruction from overwriting the register

- Correcting WAW Hazards at cycle 11 is not problematic unless there is an
instruction between ADDD and LD that read F2 causing RAW hazard

J WAW hazards can be detected at the ID stage and thus the first instruction

can be converted to no-op

d Since WAW hazards are generally very rare, designers usually go with the

/N simplest solution

32

Detecting Hazards

- Hazards can occur among FP instructions and among FP and integer
instructions

d Using separate register files for integer and FP limits potential hazards to just
FP load and store instructions

d Assuming all checks are to be performed in the ID phase, hazards can be
detected through the following steps:

@ Check for structural hazards:
» Wait if the functional unit is busy (Divides in our case)
» Make sure the register write port is available when needed

® Check for a RAW data hazard
» Requires knowledge of latency and initiation interval to decide when
to forward and when to stall

© Check for a WAW data hazard
» Write completion has to be estimated at the ID stage to check with
other instructions in the pipeline

- Data hazard detection and forwarding logic can be derived from values
‘Eﬂred at the data stationary between the different stages

33

MIPS 4000 Pipeline

d Implements the MIPS-3 64-bit instruction
d Uses 8 stages pipeline through pipelining instruction and data cache access
d Deeper pipeline allows for higher clock rate but increases load/branch delays

IF : IS : RF : EX : DF : DS : TC : WB
N = ; } Data memory]
Instruction memaory Reg | ; 7 ; Y ; =

IF: First half of instr. fetch; PC selection, initiation of instruction cache access
IS: Second half of the instruction fetch completing instruction cache access
RF: Instr. Decode, register fetch, hazard checking and instr. cache hit detection
EX: ALU operations, effective address calculation, and condition evaluation
DF: Data fetch, first half of data cache access

DS: Second half of data fetch, completion of data cache access

TC: Tag check, determine whether the data cache access hit

A WB: Write back for loads and register-register operations
34

Load Delays

-
cc1 : CC2 : CC3 :

CCa ccs : CC6 : CC7 : CC8 Cc9 : CC10 : CC1
e pe—l)
nstruction memory Heq | =1

ﬁslamemﬂ: §|:.1
&/ Ty [

Instriction memory

Time (in cock cycles)

LW R1

Instruction 1

Elatﬂ memnq:.r Rer

Instruction 2

Instrr:,mlicn I‘I'lEf‘I'IDi"'f

I::'ata memnrfa

ADD RZ, R1 Instriction memoty —Rea | ;3 | Data memory

REg

iz

- Data value are available at the end of the DS cycle, cause a two cycle delay
for load instructions

d Pipelined cache access increases the need for forwarding and complicates
the forwarding logic

- A cache miss will stall the pipeline additional one (or more) cycles

35

Time (in clock cycles)

Branching Delays

-
o1 : cc2 ; ©C3 ; CC4 ; CC5 ; CCE cer ces cce : cclo ;G
BZ |r‘lﬂ[l‘t§.|ﬂli1}|‘| memc@’y g | F‘Hm mermrg: Beg
Instruction 1 Instriiction memory Data memory Feg
Instruction 2 instrisction memary EJ: =i F I/%l o Data memory |Reg
Instruction 3 Instriictort memoty —HEG | L%' Data memory Feg
- - ! ' j ' L L
Target }Instrucﬂm memary - Ben [/;é : Data memory —‘

- Branch conditions are computed during EX stage extending the basic branch
delay to 3 cycles

J MIPS allows for a single-cycle delay branching and a predict-not-taken

A Strategy for the remaining two branching delay cycles

36

