
1 

第三章 Instruction-Level Parallelism 
and Its Dynamic Exploitation 

陈文智  

chenwz@zju.edu.cn 

浙江大学计算机学院 

2014年10月 

 

mailto:chenwz@zju.edu.cn


2 

3.3.5 Pipelining Control Hazards 

 Taxonomy of Hazards  
 Structural hazards  

 These are conflicts over hardware resources.  

 Data hazards 
 Instruction depends on result of prior computation 

which is not ready (computed or stored) yet 
 OK, we did these, Double Bump, Forwarding path,  
    software scheduling, otherwise have to stall 

Control hazards  
 branch condition and the branch PC are not 
available in time to fetch an instruction on 
the next clock 



3 

The Control hazard 

一、Cause 
 branch condition and the branch PC are not 

available in time to fetch an instruction on the 
next clock 

 The next PC takes time to compute 
 For conditional branches, the branch direction 

takes time to compute. 

 Control hazards can cause a greater and 
greater performance loss for MIPS pipeline 
than do data hazards. 



4 

Example: Branches 



5 

Branches of Basic Pipelined Datapath 



6 

二、The Penalty of Control hazard 

 

b=3 



7 

三、Dealing with the control hazard 

 Four simple solutions 
 Freeze or flush the pipeline 

 Penalty is fixed. 
 Can not be reduced by software. 

 Predict-not-taken (Predict-untaken) 
 Treat every branch as not taken 

 Predict-taken 
 Treat every branch as taken 

 Delayed branch 

 Note: 
 Fixed hardware 
 Compile time scheme using knowledge of hardware scheme 

and of branch behavior 



8 

(1)Freeze or flush the pipeline 



9 

(2)Predict not-taken 

 Hardware: 
 Treat every branch as not taken (or as the 

formal instruction) 
 When branch is not taken, the fetched instruction just 

continues to flow on.   No stall at all. 
 If the branch is taken, then restart the fetch at the 

branch target, which cause 3 stall.(should turn the 
fetched instruction into a no-op) 

 Compiler: 
 Can improve the performance by coding the most 

frequent case in the untaken path. 



10 

(3)Predict –taken 

 Most branches(60%) are taken, so we should make the taken 
branch more faster. Why not try assuming the branch always 
taken?  

 Hardware 
 Treat every branch as taken (evidence: more than 60% branches 

are taken) 
 As soon as the branch target address is computed, assume the 

branch to be taken and begin fetching and executing at the target.  
 Only useful when the target is known before the branch outcome. 
 No advantage at all for MIPS 5-stage pipeline. 

 Compiler 
 Can improve the performance by coding the most frequent case in 

the taken path. 



11 

 

 

数
据
存
储
器 

M
U

X
 

 
S

ig
n 

ex
te

nd

 

M
U

X
 

M
U

X
 

 

 

0 ?
 

A
L

U
 

  

 

寄
存
器 

32 16 

  
 P

C
 

 

数
据
存
储
器 

A
D

D
 

M
U

X
 

IF/ID 

转移 

发生 

ID/EX EX/MEM MEM/WB 

IR6..10 

IR11..15 

MEM/ 

WB .IR
 

4 

IR 
A

L

U
 



12 

Pipeline status for predict-taken 

44 BEQ R1, R3, 24 IF ID EX MEM WB 

48 AND R12, R2, R5 IF idle idle idle idle 

72 LW R4, 50(R7) IF ID EX MEM WB 

76 IF ID EX MEM 

80 IF ID EX 

Branch is not taken:  3 stall 
44 BEQ R1, R3, 24 IF ID EX MEM WB 

48 AND R12, R2, R5 IF idle idle idle idle 

72 LW R4, 50(R7) IF ID idle idle idle 

76 IF idle idle idle 

48 AND R12, R2, R5 IF ID EX 

Branch is taken:  1 stall 



13 

Modify  MIPS Datapath  
Move the Branch Computation Forward 

 

 

数
据
存
储
器 

M
U

X
 

 Si
gn

 

ex
te

nd

 

M
U

X
 

M
U

X
 

 

 

0 ?
 

A
L

U
 

   

寄
存
器 

32 16 

  
 P

C
 

 

数
据
存
储
器 

A
D

D
 

M
U

X
 

IF/ID 

转移 

发生 

ID/EX EX/MEM MEM/WB 

IR6..10 

IR11..15 

MEM/ 

WB .IR
 

4 

IR 



14 

Move the Branch Computation more Forward 

store 

load 



15 

Result: New & Improved MIPS Datapath 

•Need just 1 extra cycle after the BEQ branch to know 
right address 
•On MIPS, its called - the branch delay slot 

48 or 72        



16 

(4)Delayed branch 

 Good information 
 Just 1 cycle to figure out what the right branch 

address is 
 So, not 2 or 3 cycles of potential NOP or stall 

 Strange news 
 OK, it’s always 1 cycle, and we always have to wait 
 And on MIPS, this instruction always executes, no 

matter whether the branch taken or not taken. 
(hardware scheme) 



17 

Branch delay slot 

 Hence the name: branch delay slot 
 
 
 
 
 

 The instruction cycle after the branch is used for address 
calculation , 1 cycle delay necessary 

 SO…we regard this as a free instruction cycle, and we just 
DO IT 

 Consequence 
 You (or your compiler) will need to adjust your code to put 

some useful work in that “slot”, since just putting in a NOP 
is wasteful (compiler scheme) 



18 

How to adjust the codes? 

 
 ADD R1,R2,R3 

 if R2=0 then 

  
Delay slot

 

 

 if R2=0 then 

ADD R1,R2,R3 

 ADD R1,R2,R3 

 
if R2=0 then 

 

 SUB R4,R5,R6 
  

Delay slot
 

 ADD R1,R2,R3 

 
if R2=0 then 

SUB R4,R5,R6 

 SUB R4,R5,R6 

 ADD R1,R2,R3 

 if R2=0 then 

  
Delay slot

 

  

 ADD R1,R2,R3 

 if R2=0 then 

SUB R4,R5,R6 

(a)From before           (b)From target        (c)From fall-through 



19 

Example: rewrite the code (a) 



20 

Example: rewrite the code (b-1) 

 

Loop:  LW    R2,  0(R1) 

           ADD  R3,  R2, R4 

           SW    R3,  0(R1) 

           …… 

           SUB   R1, R1, #4 

           BNEZ R1, Loop 

          LW      R2, 0(R1) 

Loop:   ADD    R3, R2, R4 

            SW      R3, 0(R1) 

            …… 

          SUB  R1,R1, #4 

          BNEZ R1, Loop 

            LW      R2, 0(R1) 



21 

Example: rewrite the code (b-2) 

Loop:  LW    R2,  0(R1) 

           ADD  R3,  R2, R4 

           SW    R3,  0(R1) 

           DIV   ….. 

           …… 

           SUB   R1, R1, #4 

           BNEZ R1, Loop 

Loop:  LW    R2,  0(R1) 

           ADD  R3,  R2, R4 

           DIV   …... 

           …...           

           SUB   R1, R1, #4 

           BNEZ R1, Loop 

           SW    R3,  +4(R1) 



22 

Schedualing strategy vs. performance 

improvement 

     

 Scheduling 

strategy 

Requirements Improves performance 

when? 
 

 a. From 

before 

  branch 

Branch must not depend on the 

rescheduled instruction 

Always  

 b. From 

  target 

Must be OK to execute 

rescheduled instruction if branch is 

not taken. May need to duplicate 

instructions. 

When branch is taken. May 

enlarge program if 

instructions are duplicated. 

 

 c. From 

fall 

  through 

Must be OK to execute instruction 

if branch is taken. 

When branch is not taken.  

 d. place a 

  no-op  

 No improvement.  

 



23 

Constrains of the delayed branch 

 There are restrictions on the instructions 
that are scheduled into the delay slots  

 The compiler's ability to predict accurately 
whether or not a branch is taken determines 
how much useful work is actually done. 

 For scheduling scheme b and c,  
 It must be O.K. to execute the SUB instruction 

if the prediction is wrong.  
 Or the hardware must provide a way of cancelling 

the instruction.  



24 

About delayed branch 

Delayed branch are adopted in most 
RISC processors. 

In general, the length of branch delay 
is more than 1 .  However, always just 
one slot is used due to the compiler 
complexity.  



25 

Summary for control hazard 

 Control hazards can cause a greater 
performance loss than do data hazards. 

 In general, the deeper the pipeline, the 
worse the branch penalty in clock cycles.  

 A higher CPI processor can afford to have 
more expensive branches. 

 The efficiency of the three schemes greatly 
depends on the branch prediction. 



26 

3.4 Extending the MIPS Pipeline to Handle 

 Multicycle Operations 



27 



28 



29 



30 



31 



32 



33 



34 



35 



36 


