
A User-Level NUMA-Aware Scheduler

for Optimizing Virtual Machine Performance

Yuxia Cheng, Wenzhi Chen, Xiao Chen, Bin Xu, and Shaoyu Zhang

College of Computer Science and Technology, Zhejiang University, Hangzhou, China
{rainytech,chenwz,chunxiao,xubin,zsy056}@zju.edu.cn

Abstract. Commodity servers deployed in the data centers are now typ-
ically using the Non-Uniform Memory Access (NUMA) architecture. The
NUMA multicore servers provide scalable system performance and cost-
effective property. However, virtual machines (VMs) running on NUMA
systems will access remote memory and contend for shared on-chip re-
sources, which will decrease the overall performance of VMs and reduce
the efficiency, fairness, and QoS that a virtualized system is capable to
provide. In this paper, we propose a “Best NUMA Node” based virtual
machine scheduling algorithm and implement it in a user-level scheduler
that can periodically adjust the placement of VMs running on NUMA
systems. Experimental results show that our NUMA-aware virtual ma-
chine scheduling algorithm is able to improve VM performance by up
to 23.4% compared with the default CFS (Completely Fair Scheduler)
scheduler used in KVM. Moreover, the algorithm achieves more stable
virtual machine performance.

Keywords: NUMA, virtual machine, scheduling, memory locality.

1 Introduction

Multicore processors are commonly seen in today’s computer architectures. How-
ever, a high frequency (typically 2-4 GHz) core often needs an enormous amount
of memory bandwidth to effectively utilize its processing power. Even a single
core running a memory-intensive application will find itself constrained by mem-
ory bandwidth. As the number of cores becomes larger, this problem becomes
more severe on Symmetric Multi-Processing (SMP) systems, where many cores
must compete for memory controller and bandwidth in a Uniform Memory Ac-
cess (UMA) manner. The Non-Uniform Memory Access (NUMA) architecture is
then proposed to alleviate the constrained memory bandwidth problem as well
as to increase the overall system throughput.

Commodity servers deployed in today’s data centers are now typically using
the Non-Uniform Memory Access (NUMA) architecture. The NUMA system
links several small and cost-effective nodes (known as NUMA nodes) via the
high-speed interconnect, where each NUMA node contains processors, memory
controllers, and memory banks. The memory controller on a NUMA node is
responsible for the local NUMA node memory access. An application accessing

C. Wu and A. Cohen (Eds.): APPT 2013, LNCS 8299, pp. 32–46, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A User-Level NUMA-Aware Scheduler for Optimizing VM Performance 33

remote NUMA node memory requires the remote memory controller to fetch the
data from remote memory banks and send back the data through the high-speed
interconnect, thus the latency of accessing remote node memory is larger than
accessing local node memory.

The difference of memory access latency between local NUMA node and re-
mote NUMA node will severely impact an application’s performance, if the ap-
plication is running on one NUMA node while its memory is located in another
NUMA node. For example, the Linux default task scheduler CFS takes little
consideration of the underlying NUMA topologies and will scheduling tasks to
different cores depending on the CPU load balance, which eventually will result
in applications running on different cores and their memory being distributed on
different NUMA nodes. Especially for memory sensitive applications, the remote
memory access latency will greatly impact the overall application performance.

Virtualization poses additional challenges on performance optimizations of
the NUMA multicore systems. Existing virtual machine monitors (VMMs), such
as Xen [6] and KVM [12], are unaware of the NUMA multicore topology when
scheduling VMs. The guest operating system (OS) running in a virtual machine
(VM) also have little knowledge about the underlying NUMA multicore topology
, which makes application and OS level NUMA optimizations working ineffec-
tively in virtualized environment. As a result, the VMs running both in Xen and
KVM are frequently accessing remote memory on the NUMA multicore systems,
and this lead to sub-optimal and unpredictable virtual machine performance on
NUMA servers.

In this paper, we propose a “Best NUMA Node” based virtual machine
scheduling algorithm and implement it in a user-level scheduler that can pe-
riodically adjust the placement of VMs running on NUMA systems and make
NUMA-aware scheduling decisions. Our solution not only improves VM’s mem-
ory access locality but also maintains system load balance. And each VM achieves
more stable performance on NUMA multicore systems.

The rest of this paper is organized as follows: the NUMA performance impact
is analyzed in section 2. We present the proposed NUMA-aware scheduling algo-
rithm and describe the implementation of the user-level scheduler in section 3.
In section 4, the performance evaluation of the proposed algorithm is presented.
Finally, we discuss the related work in section 5 and draw our conclusion in
section 6.

2 NUMA Performance Impact

The NUMA architecture introduces more complex topology than UMA (Uniform
Memory Access) systems. Applications (especially for long-running applications
such as VMs) may have a high probability of accessing memory remotely on
NUMA systems. The CPU, memory bandwidth, and memory capacity load bal-
ance among NUMA nodes put much burden on OS and VMM schedulers to
properly take advantage of the NUMA architecture. The main focus of these
schedulers is to load balance CPU processing resource and seldom consider the

34 Y. Cheng et al.

core
0

core
2

core
4

core
6

L3 cache

IMC QPI QPI

core
1

core
3

core
5

core
7

L3 cache

IMCQPI QPIQPI Link

IOH/PCHDDR3 DDR3

(a) 2-NUMA-node Westmere-EP Sys-
tem

L3 Cache

I
M
C

QPI

Mem
Node

0

core
0

core
1

core
2

core
3

I
M
C

L3 Cache

I
M
C

QPI
Mem
Node

2
core

8
core

9
core
10

core
11

I
M
C

L3 Cache

I
M
C

QPI
Mem
Node

3
core
12

core
13

core
14

core
15

I
M
C

L3 Cache

I
M
C

QPI

Mem
Node

1

core
4

core
5

core
6

core
7

I
M
C

QPI Link QPI Link

(b) 4-NUMA-node Westmere-EX
System

Fig. 1. Dual Socket NUMA Multicore System Performance Impact

NUMA memory effect. In this section, we conduct some experiments to show
that the existing VM scheduler CFS (Completely Fair Scheduler) used in KVM
[12] will schedule VMs onto different NUMA nodes which results in VMs’ re-
mote memory access, and we also evaluate the performance degradation caused
by remote memory access on NUMA systems.

Table 1. Hardware Configuration of multicore NUMA servers

Server models Dell R710 Dell R910

Processor type Intel Xeon E5620 Intel Xeon E7520

Number of cores 4 cores (2 sockets) 4 cores (4 sockets)

Clock frequency 2.4 GHz 1.87 GHz

L3 cache 12MB shared, inclusive 18MB shared, inclusive

Memory 2 memory nodes, each with 16GB 4 memory nodes, each with 16GB

We use two experimental systems for evaluation. One is a two-NUMA-node
Dell R710 server, the other is a four-NUMA-node Dell R910 server. The detailed
hardware configuration is shown in table 1. Both servers are commonly seen in
today’s data centers. The R710 server has two 2.40 GHz Intel (R) Xeon (R) CPU
E5620 processors based on the Westmere-EP architecture (shown in Fig.1 (a)).
Each E5620 processor has four cores sharing a 12MB L3 cache. The R710 server
has a total of 8 physical cores and 16GB memory, with each NUMA node having
4 physical cores and 8 GB memory. The R910 server has four 1.87 GHz Intel (R)
Xeon (R) CPU E7520 processors based on the Nehalem-EX architecture (shown
in Fig.1 (b)). Each E7520 processor has four cores sharing a 18MB L3 cache.
The R910 server has a total of 16 physical cores and 64 GB memory, with each
NUMA node having 4 physical cores and 16 GB memory.

We briefly describe the NUMA architecture of our evaluation platforms. The
2-NUMA-node Intel Xeon Westmere-EP topology is shown in Fig.1 (a). In the

A User-Level NUMA-Aware Scheduler for Optimizing VM Performance 35

1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10

12
x 10

4

Virtual Machines running on the R910 server

M
em

or
y

D
is

tri
bu

tio
n

of
 V

M
s

(#
 o

f p
ag

es
) node#0

node#1
node#2
node#3

Fig. 2. Memory Distribution of VMs running on NUMA Systems

Westmere-EP architecture, there are usually four or six cores sharing the Last
Level Cache (LLC, or L3 cache) in a socket, while each core has its own private
L1 and L2 cache. Each socket has the Integrated Memory Controller (IMC)
connected to the local three channels of DDR3 memory. Accessing to the physical
memory connected to a remote IMC is called the remote memory access. The
Intel QuickPath Interconnect (QPI) interfaces are responsible for transferring
data between two sockets. And the two sockets communicate with I/O devices
in the system through IOH/PCH (IO Hub / Platform Controller Hub) chips.
Fig.1 (b) shows a 4-NUMA-node Intel Xeon Westmere-EX topology, there are
four NUMA nodes interconnected by the QPI links in the system, and each
node has four cores sharing one LLC with two IMCs integrated in the socket.
Although other NUMA multicore processors (e.g., AMD Opteron) may differ in
the configuration of on-chip caches and the cross-chip interconnect techniques,
they have similar architectural designs.

2.1 Memory Distribution on NUMA Nodes

We use KVM as our experimental virtualization environment. The default Linux
memory allocation strategy is allocating memory on local node as long as the
task is running on that node and the node has enough free memory. Therefore,
after a long period of running, a VM will migrate from one NUMA node to
another NUMA node due to the CPU load balance of the CFS scheduler. Even-
tually, the VM’s memory will be scattered on all NUMA nodes. Fig.2 shows
the memory distribution of virtual machines running on the NUMA system.

36 Y. Cheng et al.

cg bt ep ft is lu mg sp
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

NPB−OMP benchmarks Class B

N
or

m
al

iz
ed

 B
en

ch
m

ar
k

ru
nt

im
e

local memory
remote memory

Fig. 3. Remote Memory Access Penalty on Virtual Machine Performance

The data is collected from the R910 server (described in Section 2.1) with KVM
virtualization environment, twelve VMs are running on the server, and each VM
is configured with 4 VCPUs and 4 GB memory.

The memory of VMs scattered on all NUMA nodes will lead to high memory
access latency due to a large proportion of memory access from remote NUMA
node. In section 2.2, we will study the VM’s remote memory access penalty on
NUMA systems.

2.2 Remote Memory Access Penalty

We run a single virtual machine on the R710 server to distinguish the remote
memory access performance impact on NUMA systems. In the experimental
evaluation, we first run the local memory access case that the VM’s VCPUs and
memory are all located in the same NUMA node. Then, we run the remote mem-
ory access case that the VM’s VCPUs are pinned to one node and its memory is
bound to another node (using the virsh VM configuration file). In the two cases,
we record the average runtimes of NPB benchmarks (a total of five runs for each
benchmark) running inside the VM.

Fig.3 shows the benchmarks’ local performance compared with remote per-
formance. The average runtime of benchmarks in the remote memory access
case is normalized to the local memory access case. As the result shows, some
benchmarks (such as cg, lu, sp) have significant performance degradation due to
remote memory access latency. But there has little performance impact on other
benchmarks (such as ep and mg) due to the NUMA memory effect.

From the experimental result, we find that even in a two-NUMA-node system,
the remote memory access penalty is obvious, especially for NUMA sensitive
workloads. Therefore, it is beneficial to improve virtual machine memory access

A User-Level NUMA-Aware Scheduler for Optimizing VM Performance 37

locality on NUMA systems via properly using NUMA-aware scheduling methods.
In section 3, we present our NUMA-aware VM scheduling policy.

3 The NUMA-Aware VM Scheduler

3.1 Main Idea

Virtual machines running on multicore NUMA systems will benefit from local
node execution that a VM’s VCPUs are running on one NUMA node and its
memory is also located on the same NUMA node. VMs running on their local
nodes will reduce remote memory access latency. What’s more, all VCPUs of
a VM running on one NUMA node will reduce the last level cache (LLC) co-
herency overhead among LLCs of different NUMA nodes. If the VCPUs of a VM
is running on different NUMA nodes that have separate LLCs, when they ac-
cess shared data it will cause LLC coherency overhead. Finally, VMs local node
execution will also reduce the interconnect contention (e.g. contention for QPI
links in Intel Xeon processors). Although scheduling one VM’s VCPUs on the
same NUMA node will increase shared on-chip resources contention, we try to
schedule different VMs onto separate NUMA nodes with best effort to mitigate
shared resources contention and to maximize system throughput with a balanced
memory bandwidth usage.

However, it is a big challenge to make all the VMs execute on their local
NUMA node and at the same time fully utilize the scalable NUMA architecture.
One simple solution is to manually bind the VMs onto NUMA nodes, so all VMs
will have local node execution. But the manually bind solution lacks flexibility
and may lead to system load imbalance. Some heavily loaded NUMA nodes
may become the performance bottlenecks. System load imbalance will greatly
impact the VMs overall performance and can not effectively and efficiently take
advantage of the multicore NUMA architecture.

To improve virtual machine memory access locality and at the same time to
achieve system load balance, we propose a user-level NUMA-aware VM scheduler
that periodically scheduling the VCPUs onto certain NUMA nodes according to
the CPU and memory usage of all VMs in the virtualized system. The NUMA-
aware scheduling algorithm properly selects a “best NUMA node” for a VM
that is worth scheduling onto this “best NUMA node” to improve memory access
locality as well as to balance system load. Our “Best NUMA Node” based virtual
machine scheduling algorithm (short for BNN algorithm) dynamically adjust the
placement of VMs running on NUMA nodes as the workload behaviors of the
VMs change during execution. In section 3.2, we discuss the design motivation
and show a detailed description of the BNN algorithm. We implemented the
BNN algorithm in our user-level VM scheduler, and the implementation of the
user-level VM scheduler is presented in section 3.3.

3.2 The BNN Scheduling Algorithm

The “Best NUMA Node” based virtual machine scheduling algorithm (short for
BNN algorithm) is mainly composed of three parts: (i) selecting the VMs that

38 Y. Cheng et al.

are worth scheduling to improve their memory access locality; (ii) finding the
“Best NUMA Nodes” for the VMs selected by the previous step; (iii) scheduling
the VCPUs of the selected VMs to their “Best NUMA Node”.

(i) Selecting Proper VMs
We first select proper VMs that are worth scheduling to improve the virtual

machine memory access locality and the overall NUMA system load balance. To
select the most actively running VMs, the CPU load of each VM is calculated
online (the CPU load calculation of each VM is presented in section 3.3). VMs
are then sorted by their CPU load in descending order. Then, we select the
topmost k VMs as the proper VMs that are worth scheduling, such that the
value k satisfies the following equation:

k∑

i=1

N(V Mi)∑

j=1

Load(Vj) >
4

5

m∑

i=1

N(VMi)∑

j=1

Load(Vj) (1)

where N(VMi) represents the number of VCPUs of VMi, Load(Vj) represents
the CPU load of V CPUj , and m represents the total number of VMs in the
system. As denoted in the equation (1), we select the topmost k active VMs as
our target scheduling VMs (the total CPU load of these k VMs occupies 80%
(45) CPU usage of all VMs in the system) and let the default CFS scheduler
take over the rest of the VMs in the system to do fine-grained load balancing
job. We observe that active VMs suffer from NUMA effect more than less active
VMs, therefore we select the topmost k active VMs as our target NUMA-aware
scheduling VMs and the value of 80% CPU usage of all VMs is tuned by exper-
imental results. By scheduling the most active VMs into proper NUMA nodes
through our user-level scheduler and scheduling the remaining less active VMs
through the system default CFS scheduler, we can effectively address the chal-
lenges of virtual machine memory access locality and system load balance on
NUMA multicore systems.

(ii) Finding the “Best NUMA Node”
After selecting the proper VMs for NUMA-aware scheduling, we try to find

the “Best NUMA Node” for every selected VMs. First, we examine the memory
distribution of each selected VMs. The memory footprint of VMs in each NUMA
node is gathered online (the calculation of memory footprint of each VM is
presented in section 3.3). According to the memory footprint of the VM, we
select the “Best NUMA Node” candidates (short for BNN candidates) for the
VM. BNN candidates for the VM satisfy the following equation:

Mi >
1

n

n∑

j=1

Mj , (1 ≤ i ≤ n) (2)

where Mi represents the memory footprint of the VM in NUMA node i, n repre-
sents the total number of NUMA nodes in the system. Equation (2) means the
NUMA node i is selected as the BNN candidates as long as the memory footprint
in NUMA node i is larger than the average memory footprint of the VM in all
NUMA nodes. We select these NUMA nodes that have relatively large memory

A User-Level NUMA-Aware Scheduler for Optimizing VM Performance 39

Finding ``best NUMA node`` for each selected VMs

Input: List of selected VMs Lvm. The list is sorted in descending order of the

VMs’ CPU load. Each VM’s BNN candidates set.

Output: A mapping MBNN of VMs to ``best NUMA nodes``.

Variables: the number of NUMA nodes n; the number of total VMs m; VCPU
Resource VR; VMt’s BNN candidates set ;

1: Initialize VCPU Resource VRj of each NUMA node j.

2:

3: MBNN VMt pop_front (Lvm);

4: while VMt NULL do
5: max = node i in candidates set that has the largest VR value

6: if ()

7: BNN = max;

8: else

9: BNN = node j that has the largest VR value among all nodes;

10: end if

11: , push_back (MBNN, (, BNN))

12: VMt pop_front (Lvm);

13: end while

Fig. 4. The algorithm of finding the BNN node for each VM

footprint of the VM as its BNN candidates. Because the VM scheduling into
BNN candidate nodes will have a higher probability of accessing local memory.

Then, we find the “Best NUMA node” from the BNN candidates set for each
VM. Figure 4 shows the algorithm of finding the BNN node for each VM. First,
the VCPU resource of each NUMA node is initialized (Line 1-2) as follows:

V Rj =
1

n

m∑

i=1

N(VMi), (j = 1, ..., n) (3)

where n represents the total number of NUMA nodes in the system, m represents
the total number of VMs in the system, N(VMi) represents the number of
VCPUs of VMi. V Rj means the VCPU resource of NUMA node j, that is the
number of VCPUs allocated in NUMA node j. We suppose that each NUMA
node should have equal number of VCPUs to achieve system load balance and
maximize system throughput, so we equalize V Rj as equation (3) shows.

After initializing V Rj , we design an approximate bin packing algorithm to
find the “Best NUMA Node” for each selected VM. In the beginning, each node
j has the VCPU resource capacity of V Rj . Every time, we pick up a VMt from
the sorted VM list (Lvm). We select a node that has the largest VR (VCPU
resource) value from the BNN candidates set of the VMt, and record the node

40 Y. Cheng et al.

id as max (Line 5). If the max node has sufficient VCPU resource capacity to
hold the VMt (Line 6-7), then we select max as the VMt’s BNN node (good
memory locality for VMt and predictable load balance). Other wise, we try to
find a node that has large VCPU resource to hold VMt to maintain system load
balance, so we select the node that has the largest VR value among all nodes in
the system as the VMt’s BNN node. By heuristically selecting relatively large
VR value node each time, we can achieve good system balance when assigning
VMs to their BNN nodes. After selecting the BNN node for VMt, we decrease
the VR capacity of the BNN node and save the VMt’s BNN node mapping
strategy in the mapping list MBNN . Then, we find the BNN node for the next
VM from the VM list Lvm until all selected VMs are mapped to their BNN
nodes.

In the BNN algorithm, we assume that the number of a VM’s VCPUs is
smaller than the number of physical cores in one NUMA node and a VM’s
memory size is no larger than the physical memory size of one NUMA node.
Therefore, we can assign each VM a BNN node to hold VMs. If the VCPU
number and memory size of a VM are larger than a physical NUMA node (called
huge VMs), we can configure these huge VMs with several small virtual NUMA
nodes using the qemu-kvm’s VNUMA functionality and make sure each virtual
NUMA node of the huge VM is smaller than a physical NUMA node. Then,
we can use the BNN algorithm to schedule these virtual NUMA nodes just like
scheduling small VMs.

(iii) Scheduling VCPUs to BNN Nodes
After finding the “Best NUMA node” for each selected VMs, the scheduler

migrates the VMs’ VCPUs to their “Best NUMA nodes” according to the BNN
mapping list MBNN . We use the sched setaffinity() system call to schedule
VCPUs to the proper NUMA nodes. After the VCPUs’ affinities are set to their
BNN nodes, the job of scheduling VCPUs within nodes is automatically done
by the CFS scheduler. The unselected VMs (the less active VMs) will also be
scheduled by the CFS scheduler to achieve more fine-grained system load bal-
ance.

As the VMs’ workload behavior will change over time, our NUMA-aware VM
scheduler will periodically execute the above three steps to dynamically adjust
the BNN nodes for the selected VMs. The adjustment period is now heuristically
set to 60s.

3.3 Implementation of User-Level Scheduler

The NUMA-aware VM scheduler is a user-level process that is designed to test
the effectiveness of scheduling algorithms on real NUMA multicore systems. It
is able to monitor the virtual machine execution online, gather VM’s runtime
information for making scheduling decisions, pass it to the scheduling algorithm
and enforce the algorithm’s decisions. The NUMA-aware VM scheduler has three
major phases of execution: (i) Gathering system information online; (ii) Execut-
ing scheduling algorithm; (iii) Migrating VM’s memory.

A User-Level NUMA-Aware Scheduler for Optimizing VM Performance 41

Table 2. Gathering system information for scheduling

Gathered information Description of gathering methods

Information about the system’s
NUMA topology

The NUMA topology can be obtained via sysfs by
parsing the contents of /sys/devices/system/node.
The CPU topology can be obtained by parsing the

contents of /sys/devices/system/cpu.

Information about the CPU
load of each VM

VMs created by the KVM are regarded as general
processes in the Linux system. VCPUs of a VM

are regarded as threads of the VM process.
The CPU load of the threads can be obtained via

/proc/<PID>/task/<TID>/stat file (columns 13th
and 14th represent the number of jiffies1 during
which the given thread are running in user and

kernel mode respectively).

Information about the memory
footprint of each VM in each

NUMA node

The memory footprint of a VM in each NUMA
node is the amount of memory stored on each

NUMA node for the given VM process.
The file /proc/<PID>/numa maps contains the
node distribution information for each virtual
memory area assigned to the process in number

of pages.

(i) Gathering system information
The detailed description of gathering system information through user-level

scheduler online is shown in table 2. There are three kinds of information ob-
tained online via parsing pseudo file systems (proc and sysfs).

(1) Information about the system’s NUMA topology is obtained once the
scheduler starts running.

(2) Information about the CPU load of each VM is calculated periodically.
We calculate the average CPU load of each VM during one scheduling epoch,
and we sort the VMs using their average CPU load in descending order.

(3) Information about the memory footprint of VMs in NUMA nodes can be
obtained from the numa map files as shown in table 2. The memory footprint
of each VM is calculated when the scheduling algorithm selects BNN candidate
nodes for the VM.

(ii) Executing scheduling algorithm
The user-level scheduler monitors the VMs workload behavior (the CPU load

and memory distribution information), passes the gathered information to the
NUMA-aware VM scheduling algorithm and enforces algorithm’s decision on
migrating VCPU threads onto their proper NUMA nodes. The NUMA-aware
scheduling algorithm is periodically executed and the scheduling decisions are
enforced using sched setaffinity() system call.

1 One jiffy is the duration of one tick of the system timer interrupt.

42 Y. Cheng et al.

(iii) Migrating VM’s memory
The user-level scheduler also provides the function of migrating memory to

a specified NUMA node using the move pages() system call. Our NUMA-aware
VM scheduler adopts two memory migration strategies to migrate a VM’s proper
memory pages to its BNN node. The two memory migration strategies are as
follows:

(1) If a VM’s BNN node is changed to another NUMA node and the VM’s
VCPUs are scheduled onto its new BNN node. We then use the Intel PEBS
(Precise Event-Based Sampling) functionality [2] of sampling memory instruc-
tions to get the memory address of the VM. If the sampled memory address
is located in the remote NUMA node, we uses the move pages() system call to
migrate the pages around the sampled address to the BNN node. The sampled
addresses are considered as frequently accessed memory addresses which have a
higher probability to be sampled by PEBS than those less frequently accessed
addresses. In this way, we migrate the frequently accessed memory pages from
remote node to the BNN node.

(2) When the system load is below a certain threshold (for example 1/p CPU
usage of the total system, where p is the total number of physical cores), the
scheduler will begin a memory migration phase. In each memory migration phase,
the scheduler randomly selects one VM and migrates the VM’s memory pages
that reside in other nodes to its BNN node. Once the system load is below the
previously defined threshold, the memory migration phase will restart memory
migration phase.

4 Performance Evaluation

In this section, we evaluate the proposed BNN algorithm using the real-world
parallel workloads. We compare the performance of BNN with KVM’s default
CFS (Completely Fair Scheduler) scheduler and a manually VM binding strategy
in Section 4.1. Then we show the improvement of performance stability of the
BNN scheduler in Section 4.2. Finally, we analyze the BNN’s runtime overhead
in Section 4.3.

We run the experiments on the R910 server described in table 1. The server
is configured with 32 logical processors with hyperthreading enabled. In order
to isolate the NUMA effect from other factors that affect VMs performance, we
disable the Intel Turbo Boost in BIOS and set the processors to the maximum
frequency. We ran VMs in qemu-kvm (version 0.15.1). Both the host and guest
operating systems used in the experiments are SUSE 11 SP2 (the Linux kernel
version 3.0.13). The proposed NUMA-aware VM scheduler runs in the host OS.
We use the NAS Parallel Benchmark (NPB 3.3) [1] to measure virtual machine
performance. The NPB benchmark suite is a set of benchmarks developed for
the performance evaluation of parallel applications.

We simultaneously run 8 VMs on R910 server. Each VM is configured with 4
VCPUs and 8 GB memory. Inside each VM, we run one 4-threaded NPB-OMP
benchmark. For example, a 4-threaded bt benchmark runs in VM1, a 4-threaded
cg benchmark runs in VM2, and a 4-threaded sp benchmark runs in VM8.

A User-Level NUMA-Aware Scheduler for Optimizing VM Performance 43

bt cg ep ft is lu mg sp
0.4

0.6

0.8

1

1.2

1.4

1.6

R
un

tim
e

N
or

m
al

iz
ed

 to
 D

ef
au

lt
S

ch
ed

ul
er Default

Bind
BNN

Fig. 5. Virtual machines performance compared with default scheduler

4.1 Improvement on VM Performance

Figure 5 shows the runtime of benchmarks under three different strategies: the
default CFS scheduler (Default), the manually bind VMs strategy (Bind), and
the BNN scheduler (BNN). We simultaneously run 8 VMs described above on
R910 server. Each runtime is the average of five runs under the same strategy
and is normalized to the runtime under default KVM CFS scheduler. In the Bind
strategy, we manually bind two VMs into one NUMA node, and the eight VMs
are evenly distributed across four NUMA nodes on R910 server with two VMs
bound to every NUMA node. In the Bind strategy, VMs running bt and cg are
bound to node 0, VMs running ep and ft are bound to node 1, VMs running
is and lu are bound to node 2, and VMs running mg and sp are bound to
node 3.

From the experimental results, we observe that BNN outperformed Default
by at least 4.1% (ep) and by as much as 23.4% (lu). Since the Bind strategy
is unable to adjust to the workload changes, the performance of some bench-
marks degrade significantly (the performance degradation of cg and is is up to
26.4% and 20.7% respectively) compared with Default. From the figure, we also
find that BNN is more effective for benchmarks that are more sensitive to the
NUMA remote memory access latency. For example, BNN significantly improves
the performance of lu, bt, and sp by 23.4%, 14.5%, and 14.9% respectively, while
only improves the performance of ep and mg by 4.1% and 5.7%. From previous
experiment in Fig.3., we can find that lu, bt, and sp are NUMA sensitive bench-
marks, while mg and ep are insensitive to NUMA effect. The BNN scheduler
considers both NUMA effect and system load balance, so BNN achieves better
performance than both Default and Bind.

44 Y. Cheng et al.

bt cg ep ft is lu mg sp
0

2

4

6

8

10

12

14

R
el

at
iv

e
st

an
da

rd
 d

ev
ia

tio
n

(%
)

Default
Bind
BNN

Fig. 6. Comparison of runtime variations among Default, Bind and BNN strategies

4.2 Improvement on Performance Stability

Figure 6 shows the performance stability comparison of Default, Bind, and BNN
strategies in terms of benchmarks runtime variations. We calculated the Rela-
tive Standard Deviations (RSD) for a set of five runs of each benchmarks under
different strategies. RSD measures the extent of stability across program exe-
cutions. The smaller the RSD value, the more stable and consistent program
performance. As expected, the manually bind strategy achieved small RSD val-
ues in all workloads with no more than 3% variations. The default CFS scheduler
(that only considers CPU load when scheduling VCPUs to cores) caused much
more variations than the Bind strategy. For the NUMA sensitive sp benchmark,
the variations can be as high as 12.4%. In comparison, BNN achieves perfor-
mance stability close to the Bind strategy and has significant improvement on
performance stability than the Default strategy.

4.3 Overhead Analysis

The time complexity of BNN algorithm is O(nlgn). Sorting VMs according to
their CPU load has O(nlgn) time complexity, and finding the “best NUMA
node” for each VM has O(n) time complexity. As our scheduler executes the
BNN algorithm every 60s, so the total overhead of BNN scheduling algorithm
is very low. Our experimental results show that the proposed NUMA-aware
scheduler incurs less than 0.5% CPU overhead in the system.

5 Related Work

There has been great research interest in performance optimizations of NUMA-
related multicore systems. Many research efforts aim at improving application

A User-Level NUMA-Aware Scheduler for Optimizing VM Performance 45

throughput, fairness, and predictability on NUMA multicore systems. Exist-
ing work has tried to address these issues via thread scheduling and memory
migration.

In UMA (Uniform Memory Access) multicore systems, thread scheduling
methods have been studied to avoid the destructive use of shared on-chip re-
sources [7,16,13] or to use the shared resources constructively [4,8]. The NUMA
(Non-Uniform Memory Access) architecture introduces another performance
impact factor, the memory locality factor, to be considered when scheduling
threads[15]. Researchers proposed the profile-based [5] or dynamic memory mi-
gration techniques [9] to improve memory locality on NUMA systems. [7] and
[13] considered both shared on-chip resources and memory locality factors to op-
timize applications performance on NUMA multicore systems. [10] proposed a
user-level scheduler on NUMA systems to help design NUMA-aware scheduling
algorithms.

Virtualization poses additional challenges on performance optimizations of
NUMA multicore systems. [3] proposed a technique that allows a guest OS to
be aware of its virtual NUMA topology by reading the emulated ACPI (Ad-
vanced Configuration and Power Interface) SRAT (Static Resource Affinity Ta-
ble). [14] presented a method that allows the guest OS to query the VMM
via para-virtualized hypercalls about the NUMA topology. [11] proposed an-
other approach that does not assume any program or system-level optimizations
and directly works in the VMM layer by using Performance Monitoring Unit
(PMU) to dynamically adjust VCPU-to-core mappings on NUMA multicore
systems.

In contrast, our NUMA-aware virtual machine scheduler uses the novel BNN
algorithm to dynamically find the “Best NUMA Node” for each active VM and
allows these VMs running on their BNN nodes and their memory also allocated
in their BNN nodes. Our approach does not need modify the VMM or guest
OS, and has a low overhead that only uses system runtime information available
from the Linux pseudo file systems to make scheduling decisions.

6 Conclusion

In this paper, we proposed a “Best NUMA Node” based virtual machine schedul-
ing algorithm and implemented it in a user-level scheduler in the KVM virtual-
ized systems. The experimental results show that the BNN algorithm
improves virtual machine performance. Optimizing virtual machine performance
on NUMA multicore systems faces a lot of challenges, our solution tries to im-
prove memory access locality and at the same time maintain system load balance.
In the future work, we try to (1) find metrics for predicting data sharing among
VMs and using these metrics to aid VM scheduling on NUMA systems; and (2)
design a more adaptive memory migration strategy to further improve memory
access locality on NUMA systems.

46 Y. Cheng et al.

References

1. The NAS Parallel Benchmarks,
http://www.nas.nasa.gov/publications/npb.html

2. Intel 64 and IA-32 Architectures Software Developer’s Manual. Volume 3: System
Programming Guide

3. Ali, Q., Kiriansky, V., Simons, J., Zaroo, P.: Performance Evaluation of HPC
Benchmarks on VMware’s ESXi Server. In: Alexander, M., et al. (eds.) Euro-Par
2011, Part I. LNCS, vol. 7155, pp. 213–222. Springer, Heidelberg (2012)

4. Bae, C.S., Xia, L., Dinda, P., Lange, J.: Dynamic Adaptive Virtual Core Mapping
to Improve Power, Energy, and Performance in Multi-socket Multicores. In: HPDC
(2012)

5. Marathe, J., Mueller, F.: Hardware Profile-Guided Automatic Page Placement for
ccNUMA Systems. In: PPoPP (2006)

6. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the Art of Virtualization. In: ACM SIGOPS
Operating Systems Review (2003)

7. Blagodurov, S., Zhuravlev, S., Dashti, M., Fedorova, A.: A Case for NUMA-Aware
Contention Management on Multicore Systems. In: USENIX ATC (2011)

8. Ghosh, M., Nathuji, R., Lee, M., Schwan, K., Lee, H.S.: Symbiotic Scheduling for
Shared Caches in Multi-core Systems using Memory Footprint Signature. In: ICPP
(2011)

9. Ogasawara, T.: NUMA-Aware Memory Manager with Dominant-Thread-Based
Copying GC. In: OOPSLA (2009)

10. Blagodurov, S., Fedorova, A.: User-Level Scheduling on NUMA Multicore Systems
under Linux. In: Proceedings of Linux Symposium (2011)

11. Rao, J., Wang, K., Zhou, X., Xu, C.: Optimizing Virtual Machine Scheduling in
NUMA Multicore Systems. In: HPCA (2013)

12. Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A.: KVM: the Linux Virtual
Machine Monitor. In: Proceedings of the Linux Symposium (2007)

13. Majo, Z., Gross, T.R.: Memory Management in NUMA Multicore Systems:
Trapped between Cache Contention and Interconnect Overhead. ACM SIGPLAN
Notices (2011)

14. Rao, D.S., Schwan, K.: vNUMA-mgr: Managing VMMemory on NUMA Platforms.
In: HiPC (2010)

15. Tang, L., Mars, J., Vachharajani, N., Hundt, R., Soffa, M.: The Impact of Memory
Subsystem Resource Sharing on Datacenter Applications. In: ISCA (2011)

16. Zhuravlev, S., Blagodurov, S., Fedorova, A.: Addressing Shared Resource Con-
tention in Multicore Processors via Scheduling. In: ASPLOS (2010)

http://www.nas.nasa.gov/publications/npb.html

	A User-Level NUMA-Aware Scheduler
for Optimizing Virtual Machine Performance

	1 Introduction
	2 NUMA Performance Impact
	2.1 Memory Distribution on NUMA Nodes
	2.2 Remote Memory Access Penalty

	3 The NUMA-Aware VM Scheduler
	3.1 Main Idea
	3.2 The BNN Scheduling Algorithm
	3.3 Implementation of User-Level Scheduler

	4 Performance Evaluation
	4.1 Improvement on VM Performance
	4.2 Improvement on Performance Stability
	4.3 Overhead Analysis

	5 Related Work
	6 Conclusion
	References

