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ABSTRACT

How to automatically generate realistic and heterogeneous traffic behaviors has been a much needed yet challenging
problem for numerous traffic simulation and urban planning applications. In this paper, we propose a novel approach to
model heterogeneous traffic behaviors by adapting a well-established personality trait model (i.e., Eysenck’s PEN (psy-
choticism, extraversion and neuroticism) model) into widely used traffic simulation approaches. First, we collected a large
amount of user feedback while users watch a variety of computer-generated traffic simulation video clips. Then, we trained
regression models to bridge low-level traffic simulation parameters and high-level perceived traffic behaviors (i.e.,
adjectives according to the PEN model and the three PEN traits). We also conducted an additional user study to validate the
effectiveness and usefulness of our approach, in particular, high correlation coefficients and the Pearson values between
users’ feedback and our model predictions prove the effectiveness of our approach. Furthermore, our approach can also
produce interesting emergent traffic patterns including faster-is-slower effect and sticking-in-a-pin-wherever-there-is-room

effect. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Traffic simulation plays a useful role in studying traffic
problems. The usefulness of traffic simulation becomes
more obvious when a traffic system is too complex to
describe using abstract mathematical models. For example,
traffic simulation can dynamically reproduce realistic
traffic flows, traffic accidents, and other traffic phenomena
in a low-cost and efficient manner. It can also reproduce the
spatio-temporal variations of traffic flows and is of great
help in quantitatively analyzing vehicles, drivers, pedes-
trians, roads, and traffic characteristics. Traffic simulation
can visually present the dynamic conditions of vehicular
flows in the road network, for example, whether there is
congestion at specific locations, whether there are traffic
accidents, and what measures should be taken when facing
such problems. As a result, traffic simulation is an effi-
cient and flexible tool in assisting and optimizing traffic
plan, design, regulation, and even urban development. In
addition, traffic simulation has been increasingly used in

Copyright © 2014 John Wiley & Sons, Ltd.

entertainment applications, such as racing games, virtual
tourism, driving training, and special effects in movies
and games, thus leading to an increasing need to incorpo-
rate realistic and immersive traffic scenarios into various
virtual worlds.

A significant portion of existing traffic simulation effort
has been focused on physics-based traffic models; only
limited works have been centered on incorporating human
factors into existing traffic models [1-3]. However, in
real-world scenarios, human factors play a critical part to
form distinct driving patterns, and different drivers typi-
cally have their own driving styles (i.e., driving behaviors),
thus giving rise to heterogeneous traffic flows. In practice,
traffic simulation in graphics has reached a point where
heterogeneous and lifelike traffic behavioral animation is
warranted, as the ultimate target is to simulate traffic as
realistic as possible and facilitate other visual applications.
Therefore, it is important for traffic simulation systems to
produce realistic and heterogeneous traffic flows in virtual
worlds. To this end, in this paper, we choose personality
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traits as the main factor to govern drivers’ overall driving
behaviors although we admit that many other human
factors also come to play, because personality traits
are relatively easy to identify and trait theories have been
well established. We focus on generating heterogeneous
traffic behaviors by creating differences in drivers’ under-
lying personalities.

Recently, several research efforts have been conducted
to incorporate human personality traits into the simula-
tion of autonomous agents [4,5]. Surprisingly, to the best
of our knowledge, no similar effort has been attempted to
incorporate personality traits to traffic simulation applica-
tion to date. Following the lead of [4,5], in this paper, we
aim to generate heterogeneous and realistic driving behav-
iors by incorporating the PEN (psychoticism, extraversion
and neuroticism) model into the simulation of traffic flows.
Specifically, we emulate drivers’ personality traits by tun-
ing these low-level simulation parameters of a modern
physics-based traffic model [6] and explore the resulting
effects of personality traits on the overall traffic simula-
tion. Conventionally, users need to first understand a traffic
model and then set the low-level simulation parameters in
a trial-and-error manner to achieve the desired diversity of
traffic flows. This method is time-consuming, inaccurate
and inefficient.

In this work, we automatically map low-level traffic
simulation parameters to established high-level behavior
descriptors including the three factors of the PEN model
and six adjective descriptors, by training an optimal regres-
sion model. The used training data set is collected via a
deliberately designed user study. With our approach, users
can be relieved from tedious and time-consuming effort
of manually tuning low-level traffic simulation parameters.
To demonstrate the usefulness of our method, we fur-
ther apply our method to various urban traffic scenes. We
also conducted an additional user study, and high corre-
lation coefficients and their significance between users’
feedback and our model predictions prove the effec-
tiveness of our approach. Besides generating realistic
heterogeneous traffic flows, emergent traffic patterns
including the faster-is-slower effect [7] and the sticking-
in-a-pin-wherever-there-is-room effect (Figure 7) can be
well observed in the simulation results by our approach.

2. RELATED WORK
2.1. Traffic Simulation

Traffic modeling approaches can be roughly divided into
three categories, namely, microscopic methods, macro-
scopic methods, and mesoscopic methods. Interested read-
ers are referred to the latest traffic simulation survey [8].
The most popular traffic simulation methods are
microscopic traffic models, in which the fundamental
assumption is that the acceleration of an individual vehi-
cle is determined by the neighboring vehicles in the
same driveway, especially the closest vehicle. In 1950,
Reuschel [9] introduced early microscopic traffic models.
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Gerlough [10] described some form of car-following set
of rules. Newell [11] explored the nonlinear effects in the
dynamics of car following. Nagel and Schreckenberg [12]
simulated traffic by means of cellular automata, and the
resulting Nagel-Schreckenberg model has been extended
widely. Recently, the intelligent driver model (IDM) [13]
has been proposed by Treiber er al. and enhanced by
Kesting et al. [6].

In the direction of macroscopic traffic models [14],
Lighthill and Whitham [15] and Richards [16] indepen-
dently proposed the same traffic model as the oldest
macroscopic traffic model. This fluid-dynamic model was
also termed the LWR model, in which the key assumption
is no vehicles are entering or leaving the freeway and the
traffic velocity relies merely on traffic density. To improve
this model, Payne [17] and Whitham [18] developed a
traffic model with two variables thus leading to the PW
model. The PW model has been proven to have negative
velocities under some conditions. Zhang [19] made some
improvements to the PW model by removing incorrect
behaviors. In addition, researchers also proposed meso-
scopic gas kinetic approaches. Prigogine and Andrews [20]
first proposed a Boltzmann-like model for traffic dynam-
ics. Later improvements were made by Nelson and his
colleagues [21] and some other researchers.

Recently, there has been a number of interesting devel-
opments in traffic simulations. For example, Sewall et
al. proposed a hybrid technique by coupling continuum
and agent-based traffic models [22], but simulation types
can not be alternated quickly. Lu er al. [23] presented
an accident-avoidance full velocity difference model to
animate traffic flows in rural scenes. Wilkie et al. [24]
introduced a fast technique to reconstruct traffic flows
from in-road sensor measurements or procedurally gener-
ated data for interactive 3D graphics applications, but it is
limited by the available data.

2.2. Modeling Driving Behaviors with
Human Factors

To date, most of existing traffic simulation works model
driving characteristics and behaviors without taking human
factors into consideration. A few traffic models have been
proposed to handle human factors [1-3]. However, none of
them is aimed to simulate driving behaviors with human
factor aspects for computer animation applications. The
main difference between our work and the aforementioned
human factor-incorporated traffic models is, they typi-
cally model human factors within existing physics-based
frameworks; instead, our work incorporates an indepen-
dent personality model to a mainstream traffic simulation
model in order to tailor the resulting driving behaviors.

2.3. Personality Trait Models

Psychologists develop trait theories to study human
personalities. The big three-factor model [25] was pro-
posed in 1985, which claimed that personality can be
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reducible to three major traits that categorize personality
as psychoticism, extraversion, and neuroticism. Therefore,
this three-factor model is also dubbed as the PEN model.
The psychoticism trait is a personality pattern typified by
aggression and egocentricity. The extraversion factor is a
personality characterized by projecting one’s personality
outward, and it is typically associated with high levels on
positive behaviors (e.g., active, responsible, and sociable).
The last factor, the neuroticism, describes an individual’s
tendency to become upset or emotional, and it is charac-
terized by high levels of negative affect such as anger and
tension.

Another widely known personality model is the big
five-factor model, which was developed by Costa and
Mccrae [26]. The five factors are openness, conscientious-
ness, extraversion, agreeableness, and neuroticism; there-
fore, the five-factor model is also called OCEAN, NEOAC,
or CANOE. Both the PEN model and the CANOE model
treat extraversion and neuroticism as central dimensions of
human personalities. Although these two well-known per-
sonality trait models are depictive, only the PEN model
offers a detailed explicit causal explanation: it suggests that
different personality traits are caused by the properties of
the brain, as the result of genetic factors [25]. In contrast,
the CANOE model just presumes that there is a role of
genetics and environment but offers no clear explanation of
causality. More importantly, the CANOE model has been
criticized for losing the full orthogonality among those five
factors [27].

3. PRELIMINARIES
3.1. Underlying Traffic Model

The IDM [13] is regarded as a modern simulation method
[22]. However, it sometimes generates unrealistic behav-
ior in cut-in situations (lane changing manoeuvres) [6].
Motivated by this, Kesting ef al. [6] proposed an enhanced
intelligent driver model (abbreviated as E-IDM) based
on IDM, which performs better than IDM and is there-
fore considered as a modern, advanced traffic simulation
method. In this work, we take advantage of the E-IDM as
the underlying traffic simulation model.

Animating heterogeneous traffic behaviors

The IDM considers not only the actual speed v of the
current vehicle but also the distance s and the velocity
difference Av between the current vehicle and the leader.
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where s*(v, Av) = vAv

so +vI +
information can be referred to Table II.

In order to prevent unnecessarily strong braking reac-
tions due to lane changes, Kesting et al. [6] formulated a
constant-acceleration heuristic (CAH) that could obtain an

upper limit of a safe acceleration. The CAH is given by
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Kesting e? al. [6] combined the IDM and the CAH to obtain
an enhanced traffic simulation model—E-IDM—where ¢
is the coolness factor (Eq. (3)).

3.2. Lane-Changing Model

The lane-changing model we use is a simplified gap
acceptance model, please refer to [28] for more informa-
tion. In a gap acceptance model, drivers typically check
the feasibility of performing lane changes by comparing
the lead and lag gaps with their corresponding critical gaps
(minimum acceptable space gaps).

As seen in Figure 1, djeqq is the longitudinal distance
between the current vehicle and the lead vehicle in the left
or right lane, and dj,, is the longitudinal distance between
the current vehicle and the lag vehicle in the adjacent lanes.

l——— le—l
ILag car I I I left lane
- r————7T— - 1T - rvr__—_ — — = =
Subject car :m: traffic direction
Ty v currentlane
Lag car_ ! ! ! ! Lead car
Nl [ |
{ lag | | dlead |- .
j—> je——> right lane

Figure 1. The lead, subject, lag vehicles and the lead, lag gaps in the presented gap acceptance model.
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d;ﬁi’t‘i and d;;;" are the corresponding minimum acceptable

gaps, and we set d"" = ;ZZZI = l’Z;" in this study.

Gap acceptance Sformulation: djeqq > d?ﬁi'lz and dj;g >
dmm .
la"él]"his formulation indicates that the lead and lag gaps are
acceptable if they are equal or greater than the correspond-
ing critical gaps, which means the present driver can make
a lane change.

We combine the lateral lane-changing behavior with the
longitudinal traffic model described earlier (E-IDM), thus
leading to a full traffic model for our simulation.

4. OUR METHOD
4.1. Perceptual Study for Driving Behaviors

Variation in low-level simulation parameters influences
the perceived behaviors of vehicles in traffic flows. In
this section, we conduct a user study to achieve a plau-
sible mapping from low-level simulation parameters to
perceived driving behaviors. We carefully select two

Table I. Adjective descriptors for the three personality traits in
the PEN model.

Personality traits Adjectives

Psychoticism
Extraversion
Neuroticism

Aggressive, egocentric
Active, risk-taking
Tense, shy

Table Il. Ranges of low-level simulation parameters used in

this work.

Parameter Symbol Min Max
Desired speed vo(m/s) 25 35
Free acceleration exponent § 4 4
Desired time gap T(s) 1.0 3.0
Jam distance so(m) 1.0 5.0
Maximum acceleration a(m/s?) 0.5 25
Desired deceleration b(m/s%) 1.0 3.0
Coolness factor c 0.99 0.99

Minimum acceptable gap d™mn(m) 5.0 95.0

X. Lu etal.

adjectives for each factor in the PEN model, and the adjec-
tives are chosen from EPQ [29] and [30] according to
the most common driving behaviors, shown in Table I.
Low-level simulation parameters and the corresponding
value ranges are summarized in Table II. The ranges are set
to fully contain the corresponding parameter values in [6].

For the user study, we recruited 50 participants who
are between 18 and 50 years old (30% female, 40%
drivers). All participants were asked to watch a few
computer-generated video clips. Two video clips were
played to participants at the same time: one is the reference
clip as a baseline for comparison, using the default sim-
ulation parameter values for all vehicles; the other clip is
generated using random parameter values for marked vehi-
cles and default parameter values for unmarked ones. To be
consistent for contrast, the reference video clip is the same
in one traffic scenario for all user study questions. After
that, participants were asked a few questions, for example,
“Do you think the driving behaviors of the marked vehi-
cles in the tested video are more aggressive than that in
the reference video?” Participants chose answers on a scale
from 1 to 9; “1” denotes totally disagree, “5” denotes either
agree or disagree, and “9” denotes totally agree.

To gain a wide range of sights, we design three traffic
scenarios: freeway traffic, narrowing traffic, and crowded
traffic (Figure 2). The first scenario is a freeway traffic,
which simulates diverse driving behaviors on freeway. The
second is a narrowing traffic scenario, where a section of
a lane is under construction and vehicles have to move
into other lanes to get through. The last scenario we
choose is a crowded traffic scenario, where all vehicles
move slowly.

We deliberately select six parameters (vo, T, So, a, b and
d™ny from Table I1, because all of them have intuitive inter-
pretation [31]. The other two parameters, § = 4,¢ = 0.99,
are consistent with [6]. To generate a variety of video
clips describing high-level driving behaviors, the under-
lying low-level parameter values (regardless of § and c)
are randomly chosen for the marked vehicles. The marked
vehicles in one single clip have the same randomly cho-
sen simulation parameter values, while the unmarked ones
share the default simulation parameter values, which are
set to be (min + max)/2.

(a) (b) Narrowing traffic scenario

Figure 2. Three traffic scenarios used in our study.
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Table lll. The mean square error (MSE) and the normalized root
mean square error (NRMSE) between the predicted data and
the real data for four different regression models.

Regression model MSE NRMSE
MLR 0.9123 0.1588
PR 1.4839 0.2028
GPR 1.8532 0.2826
SVMR 2.0624 0.2982

MLR, multiple linear regression; PR, polynomial regression; GPR,
Gaussian process regression; SVMR, support vector machine regression.

Table IV. Sampled simulation parameters for six adjectives and
three PEN traits.

Animating heterogeneous traffic behaviors

Random values are assigned to the simulation parame-
ters in different settings, and we generate a total number of
110 video clips for our user study. Each participant is asked
to rate the driving behaviors of six randomly chosen video
clips in each scenario (18 clips in total). Because there are
six questions for each clip and 18 clips for each participant,
we obtain a rich set of 5400 (6 x 18 x 50) data points.

4.2. Regression Model Training and
Validation

Through empirical analysis of the user study data, we
found that there could exist a linear or nonlinear regres-
sion between perceived behaviors and low-level simulation

Personality traits Vo T s a b gmin parameters. To find an optimal regression model, we use
the collected data to train and test different models. Four
Aggressye 33 1 3 25 1 9 regression models are chosen: multiple linear regression
qucentnc 30 2 S 25 & 13 (MLR), polynomial regression, Gaussian process regres-
Active 30 1 4 25 3 36 . . .
) . sion, and support vector machine regression. We use 80%
Risk taking 34 2 2 2.5 1 8 .. .
Tense 26 3 4 1 ) 63 of the collected data to train different regression models.
Shy 27 3 5 08 3 79 T}.le rest .200/? data are retalneq for validation, to deter-
Psychoticism 3 9 3 21 2 10 mlpe which is the best regression model among all the
Extraversion 33 2 2 1.8 1 16 trained models.
Neuroticism 28 3 4 06 3 78 For the sake of completeness and readability, we present
the relationship in a concise way (Eq. (4)). The value
0 0 0
E -1000 E -1000 E -1000
= = =
=) =1 =
S S S
2 2 2
‘&0 ‘B0 2h
g g g
S —2000 3 —2000 3 —2000
-3000 -3000 -3000
-3320 -3315 -3310 -3305 -3320 -3315 -3310 -3305 -3315 -3310 -3305 -3300
Lateral (m) Lateral (m) Lateral (m)
0 0 0
E -1000 E -1000 E -1000
= = =
A= g g
k=l =] kel
2 2 2
= R )
5 g g
S —2000 S 2000 S 2000
Risk—Tuting]
-3000 -3000 -3000
-3320 -3315 -3310 -3305 -3315 -3310 -3305 -3300 -3315 -3310 -3305 -3300

Lateral (m)

Lateral (m)

Lateral (m)

Figure 3. The trajectories of vehicular agents with different personalities.
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ranges of the six adjectives and the three PEN factors are
1~09.

y =X “

where y indicates one of the six adjectives or one of
the three PEN factors and X is a vector concatenating
vo, T, $0, a, b, and d™".

After training these four regression models, we utilize
them to make predictions with the retained 20% test data,
respectively. And then we do some comparisons between
the predicted data and the real data by computing their
mean square error (MSE) and the normalized root mean
square error (NRMSE), and finally pick out the optimal
regression model. The NRMSE is computed by Eq. (5),
where Ymax — Ymin 1S the range of observed values of the
dependent variable being predicted. Table III shows the
MSE and the NRMSE between the predicted data and the
real data for different regression models.

MSE
NRMSE = ———— )

Ymax — Ymin

As observed from Table III, the best fitting model is the
MLR model. With any given simulation parameters, the
MLR model allows us to compute the corresponding val-
ues of high-level behaviors (six adjectives and three PEN
traits), thus being capable of predicting related driving
behaviors.

With the MLR model, we obtain the linear mapping Bq;
between the six adjective descriptors and the low-level sim-
ulation parameters. Here X = (1,vg, T, 59, a, b, d’”i”), and
1 represents the offset term.

639 640 473 620 4.05 290
0.03 0.02 0.06 0.05 —0.04 —0.04
—0.77 —0.50 —0.35 —0.66 0.67 0.86
Bagi=|-0.10 0 —0.05 —0.10 0.04 0.15
021 0.04 0.17 0.10 —-0.17 —0.29
0.10 0.19 0.07 0.04 —-0.05 0.02
—-0.03 —0.03 -0.01 —-0.03 0.01 0.02

6.39 547 3.48
0.02 0.05 —0.04
—0.63 —0.51 0.77
—0.05 —0.07 0.09
0.13 0.13 —-0.23
0.15 0.06 —0.02
—0.03 —-0.02 0.02

ﬁpen =

In a similar way, we also derive a linear mapping fBpe,
for the PEN model. Two adjectives are mapped to one
corresponding factor of the model, shown in Table I.

5. RESULTS

With the computed mappings, we can simulate traffic that
exhibits high or low levels of the six personality adjectives

X. Lu etal.

or the three PEN factors. To be consistent, we limit all six
simulation parameters within their corresponding ranges.
Probably there are a few groups of parameters for a single
adjective, and we just choose one sample for each adjective
in this work, shown in Table IV.

5.1. Simulation Results

Scenario 1 is a freeway situation, in which rich driving
behaviors are observed, and we show the trajectories and
velocities of the marked vehicular agents with different
personalities in Figures 3 and 4, respectively.

35 :
—— Aggressive
—— Egocentric
— Active
30l Risk—Taking]]|
— Tense
—— Shy
2 25
E
=y
b3)
2
S 20t
15F
10 : ’ : ' y
0 5 10 15 20 25 30

Time (s)

Figure 4. The velocity variations of vehicular agents with differ
ent personalities.

30F
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201
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S ¥

Figure 5. The passing times of vehicular agents with different
personalities.
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Aggressive agents usually make invasive behaviors and
frequently change lanes. Egocentric agents, which are
less aggressive than aggressive ones, typically try to find
benefits by inserting themselves into some place wherever
there is room. Risk-taking agents do not feel afraid to do
things with danger, with little consideration about their
own and others’ situations. Active agents often do things
actively: accelerating, decelerating, overtaking, changing
lanes, or other behaviors with considering their own con-

| == Faster—Is—Slower Effect

Passing Time (s)

0% 20% 40% 60% 80% 100%
Percentage of Aggressive Vehicles

Figure 6. The fasteris-slower effect.

Animating heterogeneous traffic behaviors

ditions and the surrounding environments. Tense and shy
agents always strictly move along a single lane and hardly
perform lane changing, thus leading to more smooth
velocity variations (Figure 4) and a longer interval (see the
video in the Supporting information).

Scenario 2 is a specially designed traffic situation, in
which vehicular agents with different traits exhibit diverse
behaviors. Figure 5 illustrates the passing times of agents
with different traits: aggressive agents, having the short-
est passing time, are the fastest to get through, while tense
and shy agents are the slowest to pass through the under
construction section because they keep a longer distance
from the leading vehicles and move less quickly.

We also observed the emergent faster-is-slower effect [7]
when the percent of aggressive agents grows. The passing
time becomes longer when the percent of aggressive
agents exceeds a critical threshold (Figure 6). This effect
is typically related with impatience: aggressive agents
always perform impatient behaviors. When there are a few
aggressive agents in the narrowing traffic scenario, they
will seize the opportunity to quickly pass through the under
construction section. However, when the percent of aggres-
sive agents exceeds a threshold, they fight with each other
and then the clogging appears, thus leading to the increase
of the passing time.

In scenario 3, all vehicles encounter a traffic conges-
tion: tense and shy agents may cut speed slowly when
there is a long gap, while aggressive and risk-taking ones
may decelerate more suddenly at a short interval. We also
found the sticking-in-a-pin-wherever-there-is-room effect:
some vehicular agents are egoistical and always try to
insert themselves into positions wherever there is space.
As shown in Figure 7, the red arrow indicates that the car

Figure 7. The sticking-in-a-pin-wherever-there-is-room effect.
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Figure 8. Simulating heterogeneous traffic by adapting our method to an urban scene. Vehicles with different colors have different
kinds of personality traits.

Table V. Timing results for all traffic scenarios.

Frames per
Scenarios Vehicles Faces second
Freeway traffic 60 1446949 659.433
Narrowing traffic 56 838660 505.895
Crowded traffic 45 1572782 589.857
Urban traffic 459 4372694 285.440

surrounded by a red ellipse is moving from one lane to
another to insert itself into a new position, even if there is a
little space.

5.2. Heterogeneous Traffic

Using the derived mappings from the MLR model, we are
capable of generating different traffic behaviors in sim-
ulation, thus leading to heterogeneous traffics. Here, we
apply our method to an urban scene, shown in Figure 8.
Different colors are assigned to vehicular agents by their
personality traits; as an example, agents with red color are
aggressive. Please see animation results in video from the
Supporting information.

5.3. Performance Statistics

Strictly speaking, our technique is a data-driven approach.
The user study data can be processed in advance; therefore,
our method does not add extra cost to the performance of
runtime simulations.

All the timing results were collected on an Intel
Core(TM) 17-3770 3.40-GHz CPU with a GeForce GTX
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670 (CPU: Intel Corporation, Santa Clara, CA, U.S. graph-
ics card: Nvidia Corporation, Santa Clara, CA, U.S.)
graphics card. The runtime results of different traffic sce-
narios are shown in Table V.

5.4. Evaluation Study

To validate and evaluate our approach, we also conducted
an additional user study. New video clips were created
in this study to reduce bias. It involved 27 participants
(ages 18 to 45 years, 12 female, and 15 male). The par-
ticipants randomly selected a pair of clips: one using the
sampled simulation values in Table IV and the other using
the default values. Compared with the reference clip, the
participants were asked to choose which traits the other
clip better exhibits. Note that before asking questions, the
three factors in the PEN model were explained concisely
and explicitly to the participants.

We classified all the answers and calculated the Pear-
son correlation coefficients between users’ answers and
the model’s predictions. Furthermore, to demonstrate that
the results were not induced by accident, we also com-
puted the correlation coefficients’ significance. p is the
two-tailed probability, and 1 — p is the significance. Note
that the coefficient and significance of active trait are lower
than others’ (Figure 9), because for users, this trait is
somewhat difficult to identify and distinguish. The high
correlation coefficients, as well as the high significance
for other five adjectives (> 0.95) and three PEN traits
(> 0.99), validate the strong correlations between partic-
ipants’ perception and the model predictions. Therefore,
this study demonstrates the effectiveness and usefulness of
our method.
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Figure 9. The correlation coefficients between the participants’

answers and the model's predictions for all traits, and the

corresponding correlation coefficients’ significance. * denotes

non-significantly correlated (p > 0.05).

6. CONCLUSION

In this paper, we have presented a novel approach to sim-
ulate heterogeneous traffic by training an optimal regres-
sion model between low-level simulation parameters and
high-level personality traits. Our method is able to create
inhomogeneous traffic, where vehicular agents exhibit high
or low levels of the six adjectives (aggressive, egocentric,
active, risk-taking, tense, and shy) and the three PEN traits
(psychoticism, extraversion, neuroticism).

To the best of our knowledge, our parameter-
to-personality approach is the first-of-its-kind method to
animate traffic behaviors with various personality traits.
Our method allows users to be relieved from tedious and
time-consuming work—manually tuning traffic simulation
parameters. It should be noted that the default parameter
values for the baseline video clips could be chosen in var-
ious ways, and our goal is to enable an easy comparison
between the default video clips and the other video clips.
The results in our work show that the average form is a
decent choice. Our method is not limited to the E-IDM traf-
fic model, and it can also be straightforwardly extended to
other microscopic traffic models, but needs to derive new
mappings between traffic behaviors and new simulation
parameters.

Some limitations exist in our current approach. First of
all, computer-generated video clips for user study may be
insufficient. Probably, we can combine this with real-world
traffic video clips that can display more rich, intuitive,
and realistic behaviors. Moreover, a more precisely trained
model may be sought out if we find more adjectives.
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The future work would be to focus on combining
real-world traffic video with our current framework and
to explore the applicability of our method in real-world
traffic. We would like to find more adjective descrip-
tors to more accurately depict high-level traffic behaviors.
Another interesting direction we would also like to pursue
is to train an optimal regression model from traffic simu-
lation parameters to other trait theories (e.g., the CANOE
model).
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