
Efficient Timestamp-Based Cache Coherence Protocol for
Many-Core Architectures

Yuan Yao1, Guanhua Wang2, Zhiguo Ge3, Tulika Mitra2, Wenzhi Chen1 and Naxin Zhang3

1College of Computer Science and Technology, Zhejiang University
2School of Computing, National University of Singapore

3Huawei Singapore Research Centre
Email: yuanyao@zju.edu.cn, guanhua@comp.nus.edu.sg, ge.zhiguo@huawei.com,

tulika@comp.nus.edu.sg, chenwz@zju.edu.cn, naxin.zhang@huawei.com

ABSTRACT
As we enter the era of many-core, providing the shared mem-
ory abstraction through cache coherence has become pro-
gressively difficult. The de-facto standard directory-based
cache coherence has been extensively studied; but it does
not scale well with increasing core count. Timestamp-based
hardware coherence protocols introduced recently offer an
attractive alternative solution. In this paper, we propose a
timestamp-based coherence protocol, called TC-Release++,
that addresses the scalability issues of efficiently supporting
cache coherence in large-scale systems.

Our approach is inspired by TC-Weak, a recently pro-
posed timestamp-based coherence protocol targeting GPU
architectures. We first design TC-Release coherence in
an attempt to straightforwardly port TC-Weak to general-
purpose many-cores. But re-purposing TC-Weak for
general-purpose many-core architectures is challenging due
to significant differences both in architecture and the pro-
gramming model. Indeed the performance of TC-Release
turns out to be worse than conventional directory coher-
ence protocols. We overcome the limitations and overheads
of TC-Release by introducing simple hardware support to
eliminate frequent memory stalls, and an optimized life-
time prediction mechanism to improve cache performance.
The resulting optimized coherence protocol TC-Release++ is
highly scalable (overhead for coherence per last-level cache
line scales logarithmically with core count as opposed to lin-
early for directory coherence) and shows better execution
time (3.0%) and comparable network traffic (within 1.3%)
relative to the baseline MESI directory coherence protocol.

1. INTRODUCTION
A considerable consensus has been reached that cache co-

herence will continue to be employed in future large-scale
systems [1][2]. With the rapid increase in the number of
cores on chip, the scalability of a coherence protocol is highly

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICS ’16, June 01-03, 2016, Istanbul, Turkey
c© 2016 ACM. ISBN 978-1-4503-4361-9/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2925426.2926270

challenging — maintaining coherence across hundreds or
thousands of cores will be unprecedentedly difficult. Al-
though directory coherence protocols are currently the de-
facto standard, there is growing concern that simply apply-
ing the directory coherence to many-core architectures will
face serious power and area issues.

Significant effort has been invested to make the direc-
tory coherence more scalable by exploiting efficient sharer-
tracking representation [3][4][5][6][7], hierarchical directories
[8][9], and eliminating directory for private data [10]. Other
approaches like [9][11] investigate better directory organiza-
tion and management policy to achieve more efficient uti-
lization.

An alternative approach to directory coherence are the
recently proposed timestamp-based coherence protocols
[12][13][14][15] that remove the scalability burden associated
with directory coherence. In directory coherence, the direc-
tory maintains information about all the private caches that
share a memory line. On a write to a cache line, the direc-
tory sends out explicit invalidation requests to all the sharers
of the cache line and waits for the acknowledgments. Thus
after a write, there is only one cache line with the valid data.
The primary insight behind timestamp coherence is to elim-
inate the directory for tracking the sharers and instead rely
on timestamps to achieve the same effect as invalidations.
Timestamp coherence simply assigns a predicted lifetime to
each private cache line as it is allocated. A cache line self-
invalidates once its lifetime expires. On a write to a cache
line, timestamp coherence does not attempt to invalidate
the sharers immediately; instead, the write becomes visible
when all the private cache copies in the sharer cores have
been self-invalidated due to expired lifetime. This scheme
eliminates the invalidation traffic and potentially improves
performance. Furthermore, the O(N) sharer tracking in-
formation (for N cores) in the directory is not required in
timestamp coherence, making it much more scalable in terms
of area cost, which also translates to energy efficiency.

The principal drawback of timestamp coherence is the
overhead due to write stalls. For example, Library Cache
Coherence (LCC) [12][13] — a timestamp coherence proto-
col — maintains coherence by stalling a write at the L2 cache
controller until the timestamps of all the L1 private cache
copies have expired and thus they have been self-invalidated.
This write stall is necessary for Sequential Consistency (SC)
memory models because all the memory orderings have to be
maintained; a write is required to become globally visible be-
fore any of the following reads/writes. But relaxed memory

1

consistency models relax some of the ordering requirements.
For example, Release Consistency (RC) model [16] relaxes
all the memory orderings expect for synchronizations: an
acquire guarantees that all the subsequent reads/writes are
executed after it and a release guarantees that all the previ-
ous reads/writes have completed before it. In other words,
RC only requires writes to be visible before a release, and
only with respect to the corresponding core that acquires
the data protected by synchronization. Thus RC alleviates
the need to enforce coherence at every write as long as writes
are made globally visible at release points. As most modern
processors adopt relaxed memory consistency models, and
with the recent adoption of RC in high-level programming
languages like C++11 and Java [2], building a highly scal-
able coherence protocol by exploiting RC memory model is
desirable and worthwhile.

TC-Weak [14] leverages this idea to mitigate the write-
stalling cost in LCC in the context of GPU coherence where
the GPU adopts RC memory model. It achieves this by
only stalling on memory fences, ensuring all previously
written addresses have been self-invalidated in remote pri-
vate caches. Inspired by TC-Weak, we implement a simi-
lar timestamp-based coherence protocol called TC-Release
(Time Coherence at Release) for general-purpose many-core
architectures. However, due to significant distinctions be-
tween CPU and GPU architectures and the programming
models, we find that TC-Release shows subpar performance
than a conventional directory coherence protocol. To over-
come the disadvantages of TC-Release, we propose TC-
Release++ that adopts simple hardware support to eliminate
the significant memory stalls involved in TC-Release, and an
optimized lifetime prediction mechanism to improve cache
performance. The resulting coherence protocol has storage
requirement for timestamps per cache line that scales loga-
rithmically with core count, and shows better execution time
(by 3.0%) and comparable network traffic (within 1.3%) rel-
ative to a conventional MESI directory protocol.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the design of TC-Release. Section 3 details
the improved design TC-Release++. Section 4 presents the
methodology we use for experiments. Section 5 provides the
evaluation results. Section 6 discusses related work. Section
8 concludes this work.

2. TC-RELEASE
We first present our timestamp-based coherence protocol,

called TC-Release, designed for general-purpose many-core
architectures. TC-Release is inspired by TC-Weak [14] co-
herence protocol for GPU architectures. However, we will
observe that straightforward re-purposing of TC-Weak for
many-core architectures, as we do with TC-Release, incurs
significant performance overhead. In the next section, we
will propose a number of modifications and optimizations to
make TC-Release suitable for many-core architectures.

TC-Weak is a recently proposed timestamp-based coher-
ence protocol for GPU architectures. As mentioned earlier,
timestamp coherence assigns a predicted lifetime to each
private cache line as it is allocated. A cache line is self-
invalidated once its lifetime expires. On a write to a cache
line, timestamp coherence does not attempt to invalidate
the sharers immediately (in fact the sharer information is
not maintained at all unlike directory coherence); instead,
the write becomes visible when all the private cache copies

in the sharer cores have been self-invalidated due to expired
lifetime. To support strict memory consistency model, such
as Sequential Consistency, coherence has to be maintained
at each write. Thus timestamp-based coherence protocols
such as Library Cache Coherence (LCC) [12][13] stalls every
write at the L2 cache controller until all the remote copies
have been self-invalidated making the write visible. These
write stalls lead to serious performance loss for the protocol.

TC-Weak is based on the insight that for relaxed mem-
ory models, in particular, Release Consistency (RC) mem-
ory model, coherence need not be strictly enforced at every
write; making the writes coherent only at release points is
sufficient. TC-Weak accomplishes coherence at release point
in a core by tracking the largest global timestamp returned
by all the writes in the core so far. When a memory fence is
encountered (which is indicative of a release point), the pro-
tocol requires the memory fence to wait till the largest global
timestamp has expired (all remote stale copies have been
self-invalidated) ensuring that all the previous writes made
by the core have now become globally visible. TC-Weak
promises better performance and reduced network traffic
than conventional directory protocol for GPU architecture.

Our TC-Release (Time Coherence at Release) coherence
protocol brings this idea of making writes visible only at
release points to general-purpose many-core architectures.
However, the difference in architecture and programming
model between GPU and general-purpose many-core intro-
duces a number of challenges. TC-Weak uses write-through
L1 cache because it performs well for GPU workloads elim-
inating unnecessary L1 refills of write-once data [14], which
is quite common. However, general-purpose CPU workloads
show much higher re-use of the dirty lines, rendering a write-
back policy more suitable for TC-Release. Figure 1 shows
the breakdown of L1 reads in the baseline MESI directory
protocol for 15 multi-threaded workloads. Simulation de-
tails can be found in Section 4. We observe that L1 re-use
of modified data comprises a significant fraction (44.8% on
an average) of all L1 read accesses, which is orders of mag-
nitude higher compared to GPU workloads [17]. We also
take advantage of the distinction between private and shared
data in write-back caches such that private lines do not need
to maintain timestamps and self-invalidate upon expiration,
leading to higher L1 cache hit rate.

TC-Release assumes private L1 caches and a shared L2
cache, and the L2 cache is physically partitioned into tiles
and distributed on chip. Figure 2 shows the hardware ex-
tensions for TC-Release. Like LCC and TC-Weak, every L1
and L2 line in TC-Release is augmented with a timestamp.
The timestamp in an L1 line (local timestamp) indicates
the expiration time of the line, while an L2 line stores the
maximum timestamp (global timestamp) of all L1 copies.
Similar to TC-Weak, for each L1 cache (i.e., for each core),
TC-Release tracks the largest global timestamp returned by
the writes to that cache in the Global Write Completion
Time (GWCT). TC-Weak maintains one GWCT for each
warp in a GPU core. But in TC-Release, we consider simple
single-threaded CPUs (where the area and energy efficiency
is consistent with the prevailing trend towards many-core
scaling [18][19]) and only one GWCT is maintained per L1
cache.

Figure 3 shows a simplified example of TC-Release with
the execution of the code segment shown at the top of the
figure. In the given example, two cores communicate by

2

0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	

100%	

bla
ck
sch
ole
s	

bo
dy
tra
ck
	

fer
ret
	

flu
ida
nim

ate
	

sw
ap
Bo
ns
	

ba
rn
es
	

oc
ea
n_
cp
	

rad
ios
ity
	

ray
tra
ce
	

wa
ter
_n
s	

wa
ter
_s
p	 D

	

lu_
cb
	

lu_
nc
b	
rad
ix	

am
ea
n	

Pe
rc
en

ta
ge
	 o
f	 L
1	
Re

ad
s	

Read	 miss	 (Invalid)	 Read	 hit	 (Shared)	 Read	 hit	 (Exclusive)	 Read	 hit	 (Modified)	

Figure 1: L1 read hits and misses in the baseline
MESI directory protocol, with breakdown of reads
in different states.

GWCT

TagState DataLocal
Timesamp

TagState DataGlobal
Timesamp

L1 Cache

L2 Cache Tile

Owner

TB
bit

Figure 2: Hardware extensions for TC-Release. A
GWCT is added per L1 cache. Each L1 and L2 line
is extended with a timestamp. The owner field in
an L2 line tracks the exclusive owner. The use of
Timestamp Bypass (TB) bit added per L1 line is for
the RC-optimization, detailed in Section 2.2.

propagating values of A and B. Initially A and B are both
cached in the L1 cache of Core 1 (Line A and B) and have
timestamps of 60 and 80, respectively, while the L1 cache
of Core 0 does not contain these addresses. Thus the L2
cache lines for A and B also contain timestamps 60 and 80,
respectively. At Cycle 20, Core 0 has a write miss at address
A and sends a write request to the L2 (1). Upon receiving
the request, the L2 responds with data and a timestamp
of 60, corresponding to the expiration time of the copy of
Line A’s copy cached by Core 1. The L1 cache of core 0
updates its GWCT to 60 upon receiving the response (2).
Similarly, Core 0 performs another write to address B (3)
and subsequently updates the GWCT to 80 (4), which is
the global timestamp of Line B. At Cycle 50, Core 0 executes
the store-release instruction to release the synchronization
variable T (5). But as the GWCT at the L1 cache of Core
0 has not expired yet, the cache controller stalls the request
until the GWCT expires (6). At Cycle 60 and 80, Line A
and B are self-invalidated in the L1 cache of Core 1 (7 8).
At Cycle 80, Core 0 finally resumes from stalling the write-
release and performs the write part of the request, as all
previous writes have become globally visible (9). Finally,
Core 1 performs a load-acquire of T (10) and the following

reads to Line A and B (11 12) will get the correct values
since their stale copies have been self-invalidated by now,
and will obtain values from Core 0.

We now present the detailed protocol design of TC-
Release for write-back caches. We distinguish write-release

L2
A: 60
B: 80

L1 (Core 1)
A: 60
B: 80

L1 (Core 0)

@20 Write A

Data,
TS=60

@80 Write T

Stall until GWCT expires

@50 Write-release begins

Write req

Write req

Core 1
ld_acq T

ld A
ld B

Core 0
st A, 1
st B, 2

st_rel T, 0

@30 Update GWCT

@35 Write B

Data,
TS=80

@45 Update GWCT

Write req

@60 Line A
 self-invalidate

@80 Line B
self-invalidate

1 2

1

2

3 4

3

4

5 6 9

5

6

9

10

11

12

7

8

Figure 3: A simplified example of TC-Release with
the execution of the code segment shown at the top.

and read-acquire operations from normal writes and reads,
as required by the protocol.

2.1 Protocol design
The stable states of TC-Release are similar to a conven-

tional MESI directory protocol as we use write-back pol-
icy. The L1 controller in TC-Release has four stable states:
Invalid, Shared, Exclusive and Modified, while the L2 con-
troller has Invalid, Shared and Exclusive states. The Ex-
clusive state in the L2 corresponds to both Exclusive and
Modified state in the L1. For L1 Exclusive/Modified lines,
a pointer is maintained in the L2 line to keep track of the
exclusive ownership (as shown in Figure 2). However, the
sharing vector for L1 Shared lines are not stored in the L2.
As the exclusive ownership is tracked in the L2, L1 Exclu-
sive/Modified lines do not need to maintain timestamps. L2
Exclusive lines may or may not have a timestamp depending
on whether there are still unexpired shared copies in the L1
caches.
Write-Release: On a write-release, the L1 controller waits
(stalls the write-release request) till its GWCT expires. The
stalling guarantees that all the writes before the release have
become globally visible. After the GWCT expires, the write
part of the write-release is performed as a normal write de-
tailed below.
Normal writes: A normal write hits on L1 Exclu-
sive/Modified lines (Exclusive lines silently transition to
Modified). A write misses in the L1 cache for other states
and an exclusive request (GetX) is sent to L2. For a write
miss, along with data, a timestamp may be returned from
the L2 that captures the time when the write will become
globally visible.

If the L2 line receiving the GetX request is in Shared state,
it immediately responds with data and the global timestamp
stored in the line (unlike directory protocol where the other
L1 copies have to be invalidated immediately). If the L2
line is in Exclusive state, the request is forwarded to the
tracked owner who invalidates its line and sends the data to
the requester. Note that it is possible for an L2 Exclusive
line to have an unexpired global timestamp as there can still
be stale copies lingering around in L1 caches other than the
owner. In that case, the timestamp in the L2 line is also
transferred in the forwarded request, which is re-forwarded
to the original requester by the owner. For an access to an

3

L2 Invalid line, data is loaded from main memory and sent
to L1.

Upon receiving the response from the L2, the L1 cache
writes the data to its line and transitions to Modified state.
To track the global timestamps returned by writes, the
GWCT needs to be updated if the response contains a larger
timestamp. The L1 completes the transaction by sending an
acknowledgment to the L2, which transitions the line to Ex-
clusive state and changes the ownership of the line to the
requester.
Normal reads: A normal read hits on L1 lines in Ex-
clusive/Modified state. A read to L1 Shared lines need to
check the stored local timestamp: a tag match with an ex-
pired timestamp is treated as a read miss, the line is self-
invalidated and a read request is sent to the L2. Note that
self-invalidating an L1 line due to timestamp expiration does
not require explicit events; instead the read to that line is
simply treated as a miss after the timestamp expires. A read
also misses on L1 Invalid lines and the L2 has to be accessed.

Upon receiving a read request, the L2 will predict a life-
time (i.e., a fixed lifetime value) for the requester if it gets
a shared copy of the line. The choice of lifetime value is
important as too short predicted lifetime will result in pre-
mature expirations and repeated L2 accesses. On the other
hand, too long predicted lifetime will require long wait at re-
lease points. After every lifetime prediction, the L2 updates
the global timestamp of the line to maintain the maximum
timestamp among the copies. For an L2 read on Shared
lines, the L2 directly responds with the data and a predicted
timestamp to the requester. In the case of an L2 read on
Exclusive lines, the request with the predicted timestamp is
forwarded to the owner, who downgrades its exclusive copy
to Shared and changes the local timestamp in the line with
the predicted timestamp. The owner then sends the data
with the new predicted timestamp to the original requester
who updates its data and local timestamp, with a transi-
tion to Shared state. A read on L2 Invalid lines gives the
requester exclusive ownership, resulting both the L1 and L2
line in Exclusive state.
Read-Acquire: A read-acquire tests if the synchroniza-
tion variable has been released; otherwise it makes the core
to spin-wait until it observes a release performed by another
core. A read-acquire in TC-Release can be implemented
similar to a normal write (though a read-acquire does not
modify data), which gains the L1 line with exclusive owner-
ship. If the acquired synchronization variable has not been
released, the core will spin locally in L1 (reading the L1 line
again and again) just like a directory protocol. The spin-
waiting stops once another core performs a write-release.
This is because the core performing the release sends write
request to L2 cache, which is forwarded to the core that is
spin-waiting because it is the exclusive owner. The spin-
waiting core invalidates the line and hence it receives the
new value of the synchronization variable on the next read
in its spin-wait. This guarantees forward progress in the
presence of synchronization.
Evictions: Evictions of L1 Shared lines are silent. An L1
eviction of Exclusive/Modified line needs to inform the L2,
which changes the state to Shared (as there can be other
stale Shared copies in L1 caches with unexpired timestamp).
For L2 evictions, only lines with expired global timestamps
can be evicted to maintain inclusion property. Unexpired
timestamps are stored in L2 Miss Status Holding Register

(MSHR) entries to eliminate stalling on evictions. Note that
an eviction of L2 Exclusive line needs to invalidate the owner
in L1.

2.2 RC Optimization
In TC-Release, if a release has been observed by the cor-

responding acquire, the writes before the release are made
visible to the acquire core because the acquire core will self-
invalidate the stale lines with expired timestamps. However,
self-invalidating the lines again before the core performs an-
other acquire is not required. We illustrate this with an
example shown in Figure 4, in which two different cores com-
municate the value of A. In initial state, address A is located
in a Shared line in L1 cache of Core 1. As mentioned earlier,
the self-invalidation does not explicitly invalidate the copy;
instead any line with expired timestamp is considered an
invalid line. After Core 1 successfully acquires the synchro-
nization variable T, the first read to A (R1) finds the expired
timestamp and self-invalidates the line. R1 then gets the
up-to-date value with a predicted timestamp from the L2.
Before performing another acquire, Core 1 executes another
read to A (R2) and finds the newly obtained timestamp ex-
pired; but self-invalidating the line again is not necessary
because Core 1 has already obtained the up-to-date value
from Core 0 (via L2) on the first read of A.

Core 1
ld_acq T
R1: ld A

...
R2: ld A

Core 0
st A, 1

st_rel T, 0

Figure 4: Code segment for communication between
two cores. Assume there is no acquire between the
two loads of A in Core 1.

In order to reduce redundant self-invalidations due to
timestamp expirations, we add a Timestamp Bypass (TB)
bit per L1 line, as shown in Figure 2. The TB bit of an
L1 line is set after its self-invalidation. For a read on L1
Shared lines, the TB bit is examined first before the times-
tamp check: a read is allowed to hit in L1 when the TB bit
is set, bypassing the timestamp check even if it has expired.
We call this RC-optimization as it leverages the RC seman-
tics. To ensure the Acquire → Reads/Writes ordering, all
the TB bits are reset after a read-acquire operation.

2.3 TC-Release vs. TC-Weak
TC-Release and TC-Weak both implement Release Con-

sistency. Similar to TC-Weak, which stalls on memory fence
instructions, TC-Release stalls on a write-release operation.
This stalling guarantees that the memory locations modi-
fied by the core reach a coherent state before a release, with
respect to the other cores that want to communicate with
it.

In contrast to using write-through caches in TC-Weak,
TC-Releases uses write-back caches. A write-through cache
exploits streaming memory access commonly found in GPU
workloads. But it will not perform as efficiently for general-
purpose CPU workloads that exhibit significantly higher
temporal locality (on an average 96.9% of the reads hit in
the L1, as seen in Figure 1).

Taking advantage of a write-back cache, TC-Release fur-
ther decouples L1 private lines (lines in Exclusive/Modified)

4

0.9	

1	

1.1	

1.2	

1.3	

1.4	

1.5	

1.6	

1.7	

0	 500	 800	 1000	 5000	 8000	 12000	 30000	

N
or
m
al
iz
ed

	 E
xe
cu
;o

n	
Ti
m
e	

MESI	 TCR-‐Basic	 TCR	 TCR-‐Ideal	 TCR++	

Figure 5: Normalized execution time of TCR, TCR-
Basic, TCR-Ideal with various fixed lifetimes, with
respect to baseline MESI directory protocol and
TCR++.

from the timestamp-based coherence, as L1 lines in only
Shared state can incur timestamp expiration. By tracking
the exclusive ownership in the L2 and allowing the L1 to
indefinitely cache exclusive data, TC-Release eliminates the
L1 misses caused by self-invalidations of private data. As
shown in Figure 1, large portion of reads are to L1 Exclu-
sive/Modified lines (59.1% on an average), which are free
from timestamp expiration induced self-invalidations in TC-
Release.

TC-Release also implements the RC-optimization that
avoids redundant self-invalidations for L1 lines. For one ac-
quire, an L1 line can be self-invalidated up to once. In con-
trast, TC-Weak can potentially self-invalidate expired lines
multiple times per acquire. RC-optimization significantly
improves performance, as will be outlined in the following
subsection and in Section 5 with detailed performance re-
sults.

2.4 Bottleneck and Trade-offs of TC-Release
To identify the bottleneck of TC-Release, we present a

performance characterization of TC-Release with various
lifetime values.

Figure 5 shows the normalized execution time of TC-
Release with and without the RC-optimization (TCR and
TCR-Basic respectively) for increasing values of fixed life-
times, with respect to baseline MESI directory protocol (red
line in the figure). Note that MESI directory protocol does
not require timestamp and hence has the same performance
throughout. The results are the average of all workloads. As
shown in Figure 5, the performance improvement by RC-
optimization is remarkable, as it saves a lot of L1 misses.
The performance impact of RC-optimization is more signif-
icant for small lifetimes, because TCR-Basic suffers from
unnecessary L1 misses due to quick timestamp expirations
while RC-Optimization protects TC-Release from excessive
self-invalidations.

Nonetheless, we can see that TC-Release invariably per-
forms worse than the baseline MESI directory protocol re-
gardless of the different lifetimes used. There are two pri-
mary reasons that cause the performance gap between TC-
Release and a directory protocol. First, compared to GPU
workloads, general-purpose CPU workloads show signifi-
cantly higher data re-use rate, which requires much larger

lifetimes for the L1 lines, making the penalty for memory
stall on releases non-trivial. Second, synchronizations in
CPU workloads are more fine grained and thus more com-
mon, which leads to frequent release-stalling that further
exacerbates the performance overhead.

To quantify the performance loss due to stalling on re-
leases, we implement an idealized TC-Release protocol called
TCR-Ideal that makes the stalls costless. TCR-Ideal in-
stantaneously invalidates all unexpired L1 lines modified by
writes at releases without accounting for timing or traffic, in-
curring no penalty for release-stalling. In Figure 5, we add
the execution time of TC-Ideal with different lifetimes, nor-
malized to MESI. We can see that, with larger lifetimes, the
performance difference between TC-Ideal and TC-Release
enlarges, as the former is approaching the performance of
MESI while stalling on releases deteriorates TC-Release per-
formance.

Interestingly, the performance difference between TC-
Release and TCR-Ideal reveals the trade-off between cache
performance and the price paid for release-stalling. On one
hand, the high temporal locality of general-purpose CPU
workloads requires larger lifetimes. As shown in Figure 5,
the performance of TCR-Ideal continuously improves with
increasing lifetimes. The performance improvement comes
from increased L1 hit rate as larger lifetime reduces misses
caused by timestamp expirations. On the other hand, in
TC-Release, larger lifetimes can potentially be harmful to
the performance as the stalling on releases becomes the bot-
tleneck. In Figure 5, after increasing lifetime from 1000 to
5000 cycles, larger lifetimes in TC-Release begin to show a
dramatic downgrading of performance. This is because the
substantial performance loss due to release-stalling cannot
be offset by the performance gain from the increased cache
hit rate.

To make TC-Release adoptable for many-core architec-
tures, its performance gap with directory protocol must be
bridged. In the following section, with respect to the trade-
off discussed above, we propose TC-Release++, which shows
better performance than the baseline MESI directory proto-
col (plotted in dashed green line in Figure 5). TC-Release++
improves TC-Release by mitigating its overheads and pro-
vides excellent trade-off in performance, energy and scala-
bility. Note that the performance of TC-Release++ does not
change with lifetime values because it does not use a fixed
lifetime and instead dynamically predicts the lifetime.

3. TC-RELEASE++
In this section, we present the design of TC-Release++.

We first extend TC-Release to save the performance loss
due to release-stalling. Then we introduce an optimized life-
time prediction mechanism to meet distinct lifetime values
required by different workloads and thereby improve cache
performance.

3.1 Eliminating Release-Stalling with Bloom
filters

In TC-Release, writes are strictly obliged to be globally
visible at a release through the expiration of the GWCT.
We relax the write visibility constraint from the time of the
release to when another core actually acquires the synchro-
nization variable (that has been released). The idea is to
maintain the addresses of the writes that have happened so
far; but these writes are not forced to be coherent at a re-

5

L2 Cache Tile

W-FIFO
ld A

ld_acq T

ld B
st C

L1 Cache

GWS
TS

LWS
TS

RWS
TS

TS
C

Figure 6: Hardware extensions for the signature de-
sign. In the given code segment on the right, ini-
tially A and B are located in two L1 Shared lines.
The write to address C returns a timestamp.

lease. Instead, when other cores try to communicate with
the release core, they need to check if the address they are
trying to read belongs to the set of write addresses (of the re-
lease core) and in that case self-invalidate their stale copies.

At release points, we use a Bloom filter to generate a sig-
nature at releases that tracks the local writes with unexpired
global timestamps. Bloom filter is a space-efficient structure
to test if a member is in a set, where false positives are pos-
sible but false negatives are not permitted. On an acquire,
the L1 cache obtains the corresponding signature and for
subsequent reads in Shared state, the requested line is self-
invalidated if the address hits in the signature even if the
timestamp of the line has not expired. By keeping track
of uncompleted writes before release and selectively self-
invalidating stale lines, the heavy burden of release-stalling
is effectively removed.

In our timestamp-based coherence protocol TC-
Release++, using Bloom filter for write-tracking has a
big advantage: the signature naturally inherits a timestamp
from the coherence protocol, indicating the global comple-
tion time of the tracked writes. When the timestamp of the
signature expires, the filter field (a bit-vector) can be cleared
because all the writes tracked in the signature have become
globally visible. We call this operation signature clear. All
signatures in our proposal have the same structure: the
filter field and a timestamp that indicates the signature’s
expiration time.

3.1.1 Hardware extensions and protocol design
Figure 6 shows the hardware extensions for the signa-

ture design. Conceptually, in every L1, the Local Write Set
(LWS) signature tracks the locally completed yet not glob-
ally visible writes, and the Remote Write Set (RWS) signa-
ture contains the write-set created by other (remote) cores.
The Global Write Set (GWS) is maintained per L2 tile, and
behaves as the intermediary for signature communication.
We now explain the hardware structures with detailed op-
erations.
Normal writes: Identical with TC-Release, normal writes
hit on Exclusive/Modified lines in the L1. For an L1 write
miss that returns a timestamp, an entry is enqueued at the
tail of a write FIFO (W-FIFO), as shown in Figure 6. The
entry is constructed by combining the write address with the
returned timestamp. In the example code segment shown in
the right side of Figure 6, the write to address C returns

a global timestamp from the L2 and therefore enqueues a
new entry to the W-FIFO. If the entry reaches the head
of the W-FIFO, it will replace the old entry at the head.
If the replaced entry has an unexpired timestamp, the ad-
dress is inserted into the LWS. The LWS will also update
its timestamp if the replaced entry has a larger timestamp.
For an insertion to the LWS, the signature is cleared first if
its timestamp has expired. With the help of the W-FIFO,
the size of write-set tracked in the LWS is reduced.
Write-Release: On a write-release, the L1 controller trig-
gers a W-FIFO flush signal that dequeues the W-FIFO until
it reaches the head. Every evicted entry with unexpired
timestamp inserts its address into the LWS and updates
the timestamp of the signature. After the W-FIFO flush
completes, the L1 will send a release request (REL) con-
taining the LWS to the appropriate L2 tile, according to
the address of the released synchronization variable. Note
that if the RWS in the L1 has not expired, the protocol will
first perform an union of the RWS with the signature in the
REL. This guarantees the transitivity property some pro-
grams may rely on [2]. The timestamp of the signature will
be the maximum of the LWS and RWS timestamps, which
also applies to other signature unions discussed later.

The L2 tile, upon receiving the REL, unions the received
signature with the Global Write Set (GWS) signature. Note
that a signature clear is performed in the GWS first if it has
an expired timestamp. The L2 then sends an acknowledg-
ment to the requester, signaling the L1 to proceed to the
write part of the release operation, which is treated as a
normal write.
Read-Acquire: For a read-acquire, in order to make all
writes preceding the corresponding release visible to the ac-
quire core, it needs to obtain the relevant signature in the L2.
As mentioned earlier, a read-acquire may spin locally from
L1 if the synchronization data is still held by another core,
which may result in repeated L2 accesses for obtaining the
signature. To address this issue, we introduce two new sta-
ble states Exclusive A and Modified A in the L1 controller,
distinguishing normal private lines from those involved in
spin-waiting. A read-acquire on L1 lines in these two states
is not required to obtain the signature. A normal read or
write will hit on L1 lines in Exclusive A/Modified A, with
normal writes transitioning the line to Modified. The added
two states also help to reduce the Timestamp Bypass (TB)
bits resets in the RC-optimization (discussed in Section 2.2),
as a read-acquire involved in spin-waiting does not need to
reset the TB bits. Detailed operations are discussed below.

A read-acquire misses on L1 Invalid or Shared lines, and
an acquire request (ACQ) is sent to the L2 tile based on the
address of the acquired synchronization variable. An ACQ
is similar to a GetX, with the difference that the L2 also
needs to transfer the GWS in the exclusive data response.
After the L1 receives the response, the L1 line transitions to
Exclusive A state.

A read-acquire can hit on L1 Exclusive/Modified lines, but
an ACQ must be sent to the L2 first, as the synchronization
data may have been released but subsequently fetched to the
L1 by normal reads/writes. Since the L1 is the current owner
of the line, in this case the L2 only needs to respond with the
GWS (and no data is transferred). After receiving response
from the L2, the read hits in the L1 and transitions the line
from Exclusive or Modified to Exclusive A or Modified A,
respectively.

6

L1 lines in Exclusive A or Modified A allow a read-acquire
to hit locally without sending an ACQ to the L2, as the core
is probably spin-waiting. The L1 line will be eventually
invalidated by a release, hence a legitimate ACQ will be
sent for the following read (within read-acquire spinning) to
the Invalid line.

When the L1 receives the response for an ACQ, The L1
unions the obtained signature to the RWS, which will be
checked for subsequent normal reads on Shared lines.
Normal reads: In TC-Release, a normal read hits on L1
Shared lines with an unexpired timestamp. In contrast, TC-
Release++ also needs to check the RWS signature to deter-
mine if the data has been modified by a remote core. As
shown in the example in Figure 6, the reads to A and B
are required to consult the RWS. If the address hits in the
signature, the line is self-invalidated and a read request will
be sent to L2. On a check of the signature, a signature clear
is performed if possible. Operations for a normal read on
other L1 states are the same as TC-Release.

The usage of Timestamp Bypass (TB) bit in TC-Release
can be easily extended to TC-Release++. For a read on L1
Shared lines with the TB bit set, the read is considered as a
hit and the checks on both the timestamp and the signature
are bypassed.

3.1.2 Comparison with related works using signa-
ture

In the context of RC, the idea of using a signature to track
a the write set of a core before a release and conveying it to
the next core that performs the corresponding acquire has
been proposed in prior works [21][22]. A primary problem
associated with the signature design is when to clear the
signatures. Over the execution of the workloads, the write-
set tracked in the signature will grow very large, ultimately
causing it to be saturated. In the worst case, every signa-
ture lookup will result in a false positive hit, resulting in
unnecessary cache line self-invalidations. Prior works rely
on software or compiler to perform signature clear [21][22].
Ashby et al. [21] extensively modify the barrier primitive
to make sure that all the writes have become globally visi-
ble before the barrier is released. They propose to insert a
special Bloom filter reset instruction at the end of the bar-
rier primitive that informs the hardware to clear the Bloom
filter. As barrier primitives are infrequently invoked in par-
allel workloads [23][24], the signatures can still easily get
saturated, driving the false positive rate very high. DeN-
ovoND [22] requires heavy involvement from the application
programmer to provide the information regarding parallel
program phase boundaries and the read/write effects of the
memory regions manipulated in each phase. With explicit
software annotations, it clears all the signatures after a par-
allel phase ends or when a barrier primitive completes. De-
NovoND also proposes a signature clearing mechanism that
requires cache-wide self-invalidation of all potentially stale
data incurring additional overheads.

The major difference of our proposal with prior work is
that our signature design is built on top of timestamp-based
coherence protocol, which establishes the validity period of
the signature. The timestamp of a signature provides a time
bound by which the filter field can be safely cleared. There-
fore, the signature clearing in our proposal is entirely hard-
ware driven and does not require any programmer and/or
compiler involvement. Additionally, the timestamp coher-

ence also opens up further optimization opportunity — the
W-FIFO effectively reduces the write-set size because glob-
ally visible writes (i.e., ones with expired timestamps) from
the W-FIFO are not required to be tracked in the signature.

3.2 Lifetime Prediction and Shared Read-
Only Optimization

3.2.1 Workload characterizations

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

bla
ck
sch
ole
s	

bo
dy
tra
ck
	

fer
ret
	

flu
ida
nim

ate
	

sw
ap
Bo
ns
	

ba
rn
es
	

oc
ea
n_
cp
	

rad
ios
ity
	

ray
tra
ce
	

wa
ter
_n
s	

wa
ter
_s
p	 D

	

lu_
cb
	

lu_
nc
b	

rad
ix	

av
era
ge
	

Pe
rc
en

ta
ge
	 o
f	 S
ha
re
d	
D
at
a	
Re

ad
s	

Shared	 Read/Write	 Shared	 Read-‐Only	

(a) Breakdown of shared data read accesses into accesses
to shared read-only and shared read-write lines.

0	

0.2	

0.4	

0.6	

0.8	

1	

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100	 110	 120	 130	 140	 150	 160	 170	 180	 190	 200	 210	 220	 230	 240	 >250	

Cu
m
ul
a3

ve
	 P
ro
ba
bl
it
y	

Life3me	 (k	 cycle)	

blackscholes	
bodytrack	
ferret	
fluidanimate	
swap3ons	
barnes	
ocean_cp	
radiosity	
raytrace	
water_ns	
water_sp	
K	
lu_cb	
lu_ncb	
radix	
average	

(b) Cumulative probability distribution of the re-use of L1
shared read/write lines with respect to the lifetime of the
lines.

Figure 7: Workload characterization

We first perform workload characterizations to motivate
our lifetime prediction mechanism in TCR++.
Shared read-only lines: Figure 7a shows the breakdown
of all the shared data reads in the baseline MESI protocol
into shared read/write and shared read-only lines. A con-
siderable fraction (68% on an average) of shared reads ac-
cess read-only lines. The read-only lines do not suffer from
coherency issues. Therefore, in our timestamp-based coher-
ence, shared read-only lines should stay in the L1 caches as
long as possible similar to exclusive cache lines; these lines
do not need timestamps and consequently do not need life-
time prediction.
Lifetime and re-usability of shared read/write lines:
We also explore the re-usability of shared read/write lines
with respect to their lifetime. We first define the lifetime TL
of an L1 shared read/write line k in the baseline directory
protocol as the time from it transition to Shared state in
the L1 cache (TRk) until it gets invalidated or upgraded as
a result of a write to the line (TWk).

TLk = TWk − TRk

7

We define Nk as the number of re-uses throughout the life-
time of an L1 shared line k and dt is the sum of L1 re-uses
of all the lines with a lifetime of t:

dt =
∑

TLk=t

Nk

Assume MAX is the largest lifetime found among all L1
cache lines. The total number of re-uses of all L1 shared
read/write lines M can be denoted as:

M =

MAX∑
t=0

dt

We define ρt as the ratio of the re-uses of shared L1 cache
lines with a lifetime t to the total re-use of all L1 shared
read/write lines:

ρt = dt/M

Probability Distribution of ρ: To obtain the probabil-
ity distribution of ρ, we modify the baseline MESI directory
protocol to record the start and end of the lifetime of each
memory location. This is achieved by making L1 cache size
large enough to eliminate the perturbation due to L1 evic-
tions.

Figure 7b plots the cumulative probability distribution
of ρ for all workloads. The X-axis is the lifetime and the
Y-axis is the cumulative probability ρt≤x. The red bold
curve is the average cumulative probability distribution of
all 15 workloads. Figure 7b reveals huge variability in the
re-use of L1 shared read/write lines both within and across
applications.

For most workloads, large lifetimes is preferable, as over
50% (on an average) of the re-uses belong to cache lines
with lifetime greater than 100K cycles. However, a notable
fraction of re-uses of L1 shared read/write lines are to lines
with short- or medium-sized lifetimes. For example, lines
with lifetime less than 5K cycles cover more than 50% of re-
uses for fft and radix, because of frequent writes to shared
data in these workloads. On an average, 25% of all re-uses
fall to cache lines with less than 10K cycles lifetime. Note
that water_nsqured, water_spatial, blackscholes and
swaptions demonstrate significant re-use of cache lines with
extremely long lifetimes (longer than 250K cycles) because
their shared read/write lines are very infrequently written.

Overall, in order to cater to the differing lifetime pref-
erences across cache lines, the lifetime predictor should be
able to swiftly adjust lifetime values, and one single lifetime
value for all accesses as proposed in TC-Weak [14] may be
inadequate.

3.2.2 Lifetime prediction for access patterns
It is important to highlight the trade-offs in lifetime pre-

diction before we describe our prediction mechanism. Basi-
cally, the lifetime needs to be long enough to take advantage
of the high data re-use in the workloads. However, unnec-
essarily large lifetime may increase the lifetime of a signa-
ture, consequently degrading performance due to increased
false-positive matches in the bloom filter. To exploit the ob-
servations made in the previous subsection, we take access
patterns into account for lifetime prediction. We categorize
shared cache lines into four types: Write-frequent lines are
vulnerable in the L1 cache, hence short lifetime should be
enough to accommodate them. Some Read-frequent lines

have moderate re-use rate and are likely to favor medium
lifetimes. Read-frequent lines have greater tendency to stay
longer in L1 caches for further re-use, requiring long life-
times. In addition, we introduce another state SharedRO
for shared lines with read-only behavior to take advantage
of the significant percentage of accesses to the shared read-
only lines,. The SharedRO lines do not have timestamps
that dictates the expiration time for the lines, essentially
behaving as lines with infinite lifetime.

Instead of using a single lifetime value as proposed in TC-
Weak, we maintain three lifetime values for different access
patterns described above (SharedRO lines do not require a
lifetime value). To extract the access pattern at runtime for
the lifetime predictor, we exploit the owner bits in L2 lines
to record the read frequency of the line, as the owner bits
are not used for L2 lines in Shared state. A read to an L2
Exclusive line will make it transition to Shared state with the
read counter initialized to zero. Every subsequent L2 read to
a Shared line due to L1 timestamp expiration will increase
the read counter by one. When the read counter exceeds a
predefined threshold, the access pattern is deemed changed
and the next level lifetime value for higher read frequency
will be used for lifetime prediction. When the read counter
exceeds the last threshold, the Shared line transitions to
SharedRO state. To adjust the lifetime value within one
particular access pattern, a read will increase the lifetime
value by a fixed amount tR (if it does not exceed the lifetime
value for the next level). Similarly a write or an eviction of
an unexpired lines will decrease the corresponding lifetime
value by tW .

A write request to SharedRO line triggers a broadcast
of invalidation requests and subsequent acknowledgments
from the L1 caches. Our simulations results show that such
ShardRO mis-prediction induced invalidations are extremely
rare — only about one in every ten thousand shared writes
involves an invalidation broadcast.

4. METHODOLOGY
In this section, we provide the simulation infrastructure

and workloads used to carry out our evaluation.

4.1 Simulation Environment
For evaluation of our proposal, we use the gem5 full-

system simulator [25] with Ruby memory system enabled.
A 64-tile 2D mesh network-on-chip is modeled by Garnet
[26]. Table 1 lists detailed parameters of the simulated sys-
tem. We do not simulate more than 64 cores because gem5
currently only supports full-system simulation for up to 64
cores. We choose Alpha ISA with minor ISA extension to
explicitly provide acquire and release semantics for the hard-
ware (see Section 4.2 for details). We use the H3 Bloom filter
implementation, with four hashing functions and a 256-bit
filter. The chosen size of the Bloom filter offers a good com-
promise between the hardware overhead and the reduction
in the number of Bloom filter false-positive hits. Likewise,
we determine the W-FIFO size to be 16 entries. The size of
the timestamp used in our simulation is 32-bit, as none of the
workloads trigger a timestamp rollover. Timestamp rollover
solution has been discussed in [14] and further exploration
is reserved for future work.

The baseline protocol used in our evaluation is the MESI
directory protocol shipped with gem5, where the directory
information is embedded in the LLC (last-level cache, L2

8

in this case) tags. A full-map sharer vector (i.e., 64-bit in
our case) is stored in every LLC entry to precisely track the
sharers.

Table 1: Simulation parameters.

Cores 64 in-order cores at 2 GHz, Alpha
ISA, single-thread

L1 Cache Split I & D, 32KB, 4-way, 64B cache-
line, LRU, 2-cycle access latency

L2 Cache Shared, 32MB (64 slices of 512KB
each), 16-way, 64B cacheline, LRU,
9-cycle access latency

Network 2D Mesh, 8 rows, 16B-flit, 1/5-flit
control/data packets

Memory 2GB, DDR3, 16 channels
Timestamp size 32 bits
Bloom filter 256-bit filter, 4 H3 hashing function
W-FIFO size 16 entries

Table 2: Workloads and input size.

PARSEC

blackscholes
bodytrack
ferret
fluidanimate
swaptions

simmedium
simsmall
simsmall
simsmall
simsmall

SPALSH-2

barnes
ocean cp
radiosity
raytrace
water nsqured
water spatial
fft
lu cb
lu ncb
radix

16K particles, ts=0.25
514x514 Grid
BF refinement=1.5e-1
Teapot
153 molecules
153 molecules
4M points
512x512 matrix, block=16
512x512 matrix, block=16
16M keys, radix=4K

4.2 Workloads
We use PARSEC [23] and SPLASH-2 [24] workloads to

evaluate our proposal. Table 2 shows the 15 workloads
and input size used in simulation. For stable and faithful
measurements, we run each experiment multiple times and
bind each thread to a particular core by invoking the Linux
system function pthread setaffinity np when the threads are
spawned. All workloads run correctly to completion, and the
statistics are collected from start to the end of the parallel
phase. To obtain the acquire and release semantics from the
applications as required by our proposal, we extend the Al-
pha ISA with special read-acquire and write-release instruc-
tions and instrument the libraries used as synchronization
primitives in the workloads so that they are exposed to the
hardware architecture.

5. EVALUATION
In order to evaluate our proposal, besides the baseline

MESI directory protocol, we present detailed results for four
configurations. TCR-Basic is similar to TC-Weak but with
necessary adaptations for general-purpose many-core archi-
tectures as discussed in Section 2. TCR adds the important

Table 3: Storage requirements for TCR++ in an N-
core system.

TCR

Per L1/L2 line:
Timestamp, 32-bit
Timestamp Bypass bit (L1 line only), 1-bit
Owner pointer (L2 line only), log2(N)-bit
Per L1:
GWCT, 32-bit

Signature
design

Per L1:
RWS/LWS, 256-bit filter + 32-bit timestamp = 288-bit
W-FIFO: 16 entries * (32-bit for addr + 32-bit timestamp) = 128B
Per L2 tile:
GWS: 256-bit filer + 32-bit timestamp = 288-bit

Lifetime
prediction

Per L2 tile:
Lifetime values, 3 * 32-bit for each = 96-bit

0.00	

2.00	

4.00	

6.00	

8.00	

10.00	

12.00	

14.00	

16.00	

64-‐core	 128-‐core	 256-‐core	

No
rm

ali
ze
d	 S

to
ra
ge
	 O
ve
rh
ea
d	 MESI	 TCR++	

Figure 8: Storage overheads for cache coherence in
TCR++ and MESI, with up to 256 cores.

RC-optimization on top of TCR-Basic. TCR++ improves the
basic TCR protocol by applying techniques detailed in Sec-
tion 3 that reduces the stalls at release points and performs
better lifetime prediction. As an ideal reference design, we
also implement an infinite size bloom filter with TCR++ and
we denote this idealized configuration as TCR++Inf.

As TCR-Basic and TCR use fixed lifetime prediction,
we select the value to be 4,500 cycles and 900 cycles, re-
spectively, because these values yield the best performance.
Larger lifetime values begin to degrade performance with
increasing stalls at release points. We find that static life-
time for TCR-Basic and TCR performs better than dy-
namic lifetime prediction proposed in TC-Weak [14] be-
cause dynamic lifetime prediction attempts to accommo-
date the high L1 data re-use rate, which results in longer
lifetime and suffers more from stalls at release. The ini-
tial values for the three lifetimes used in TCR++ are 10K
(write-frequent), 85K (moderate read-frequent) and 160K
cycles (read-frequent) and the respective thresholds for read-
counter to upgrade the access patterns are 16 (upgrade to
moderate read-frequent), 32 (upgrade to read-frequent) and
64 (upgrade to shared read-only). We determine the lifetime
values as they evenly divide the re-uses of shared read/write
lines (refer to the average curve in Figure 7b). The lifetime
adjustment values tR and tW used within each type of access
pattern are 16 and 256 cycles, respectively.

In the following subsections, we first assess the hardware
storage required by TCR++ and compare it to conventional
directory coherence. Then we validate our proposal by pre-
senting detailed simulation results of execution time, net-
work traffic and cache performance.

5.1 Storage overheads
Table 3 shows the storage requirements for TCR++. The

per line storage requirement for maintaining the timestamp
has the most significant impact on hardware cost. The addi-

9

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1.8	

bla
cks
ch
ole
s	

bo
dy
tra
ck	

fer
ret
	

flu
ida
nim

ate
	

sw
ap
>o
ns
	

ba
rne
s	

oc
ea
n_
cp
	

rad
ios
ity
	

ray
tra
ce
	

wa
ter
_n
s	

wa
ter
_sp
	 @	

lu_
cb
	

lu_
nc
b	

rad
ix	

ge
om
ea
n	

N
or
m
al
ize

d	
Ex
ec
u>

on
	 T
im

e	
	

MESI	 TCR-‐Basic	 TCR	 TCR++	 TCR++Inf	

Figure 9: Execution time of all configurations, normalized to MESI.

3.
83
	

2.
11
	

5.
88
	

2.
32
	

2.
55
	

11
.5
3	

3.
77
	

2.
54
	

11
.3
8	

2.
33
	

2.
64
	

4.
44
	

2.
18
	

0	

0.5	

1	

1.5	

2	

bla
cks
ch
ole
s	

bo
dy
tra
ck	

fer
ret
	

flu
ida
nim

ate
	

sw
ap
Ao
ns	

ba
rne
s	

oc
ea
n_
cp
	

rad
ios
ity
	

ray
tra
ce	

wa
ter
_n
s	

wa
ter
_sp

	 C	
lu_
cb
	

lu_
nc
b	

rad
ix	

ge
om
ea
n	

No
rm

al
ize

d	
Ne

tw
or
k	
Tr
affi

c	

MESI	 TCR-‐Basic	 TCR	 TCR++	 TCR++Inf	

Figure 10: Network traffic of all configurations, normalized to MESI.

tional storage overheads for enabling the proposed signature
design and lifetime prediction is modest as it does not re-
quire any per line cost, adding up to less than 1% of storage
for the per line timestamp.

Compared to the baseline directory protocol, TCR++ only
requires O(logN) storage per line for an N-core system
rather than O(N) directory information. Figure 8 shows
the coherence storage overheads of TCR++ and MESI for
up to 256 cores. We can see TCR++ is significantly more
scalable, reducing as much as 83% of the coherence storage
overhead compared to MESI at 256 cores.

We do not provide a detailed study of area benefits from
the O(logN) coherence storage of TCR++ as it has been
well reasoned in [1]. When the on-chip core count grows
radically, say to 256 cores, the storage of a full directory
will require 256-bit sharer vector per LLC cache line, which
equals to 50% of the whole LLC storage for 64B cache line.
Moreover, the LLC occupies a considerable portion of the
chip area (as much as 50% in modern chips [27][28][29]). As
illustrated in Figure 8, TCR++ reduces the directory storage
overhead by 83% compared to MESI at 256-core, which can
directly translate to significant savings in chip area.

5.2 Performance results
Figure 9 and Figure 10 show the execution time and net-

work traffic for all the workloads for the five configurations,
normalized to the baseline MESI with directory. To further
evaluate the impact of our proposal on cache behavior, we
plot the normalized L1 miss rate (w.r.t. MESI with direc-
tory) and the breakdown of L1 hits for all evaluated config-

urations in Figure 11 and Figure 12, respectively.
TCR-Basic and TCR: On an average, TCR-Basic shows
26.6% slowdown compared to the baseline MESI. The best
case, ferret, performs 4.7% faster than the baseline, while
the worst case has a slowdown of 63.2% for fluidani-

mate. Benefiting from the RC-optimization, TCR is able
to speed up TCR-Basic by 14.2%. Three workloads (fer-
ret, swaptions and water_nsqured) show slightly better
performance compared to MESI, while the worst case per-
formance (fluidanimate) is still 30.0% slower than the base-
line MESI. The speedup of TCR over TCR-Basic primarily
results from the significant reduction in L1 misses due to
the RC-optimization (see Figure 11; on an average, TCR
has 50.1% decrease in L1 miss rate over TCR-Basic).

Nonetheless, on an average, TCR still performs 8.6%
worse than MESI. The main reason behind the subpar per-
formance of TCR is the performance penalty for stalling
on releases, and the performance loss gets exacerbated in
case of frequent synchronizations (e.g., fluidanimate with
the worst case performance). Moreover, substantial mem-
ory stalls on releases prohibits larger lifetime values, which
in turn hampers the L1 cache performance. Consequently,
TCR shows an average increase of 35.7% L1 miss rate over
MESI. The high percentage of shared reads in radiosity

suffers from timestamp expirations, causing 203% more L1
misses than the baseline, as shown in Figure 11. The sig-
nificant increase in L1 miss rate also affects the generated
network traffic. As we can see in Figure 10, TCR has an
average increase of 53.2% in network traffic over MESI.

TCR shows worse performance for workloads with lots of

10

5.
88

	

4.
34

	
3.
35

	

14
.0
4	

4.
13

	

2.
70

	

13
.9
7	

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

M
ES
I	

TC
R-‐
Ba

sic
	

TC
R	

TC
R+

+	
TC

R+
+I
nf
	

M
ES
I	

TC
R-‐
Ba

sic
	

TC
R	

TC
R+

+	
TC

R+
+I
nf
	

M
ES
I	

TC
R-‐
Ba

sic
	

TC
R	

TC
R+

+	
TC

R+
+I
nf
	

M
ES
I	

TC
R-‐
Ba

sic
	

TC
R	

TC
R+

+	
TC

R+
+I
nf
	

M
ES
I	

TC
R-‐
Ba

sic
	

TC
R	

TC
R+

+	
TC

R+
+I
nf
	

M
ES
I	

TC
R-‐
Ba

sic
	

TC
R	

TC
R+

+	
TC

R+
+I
nf
	

M
ES
I	

TC
R-‐
Ba

sic
	

TC
R	

TC
R+

+	
TC

R+
+I
nf
	

M
ES
I	

TC
R-‐
Ba

sic
	

TC
R	

TC
R+

+	
TC

R+
+I
nf
	

M
ES
I	

TC
R-‐
Ba

sic
	

TC
R	

TC
R+

+	
TC

R+
+I
nf
	

M
ES
I	

TC
R-‐
Ba

sic
	

TC
R	

TC
R+

+	
TC

R+
+I
nf
	

M
ES
I	

TC
R-‐
Ba

sic
	

TC
R	

TC
R+

+	
TC

R+
+I
nf
	

M
ES
I	

TC
R-‐
Ba

sic
	

TC
R	

TC
R+

+	
TC

R+
+I
nf
	

M
ES
I	

TC
R-‐
Ba

sic
	

TC
R	

TC
R+

+	
TC

R+
+I
nf
	

M
ES
I	

TC
R-‐
Ba

sic
	

TC
R	

TC
R+

+	
TC

R+
+I
nf
	

M
ES
I	

TC
R-‐
Ba

sic
	

TC
R	

TC
R+

+	
TC

R+
+I
nf
	

blackscholes	 bodytrack	 ferret	 fluidanimate	 swapKons	 barnes	 ocean_cp	 radiosity	 raytrace	 water_ns	 water_sp	 M	 lu_cb	 lu_ncb	 radix	

No
rm

al
ize

d	
L1
	 M

iss
es
	

Write	 miss	 Read	 miss	 (Invalid)	 Read	 miss	 (expiraKon)	 Read	 miss	 (Bloom	 filter	 hit)	

Figure 11: L1 miss rate of evaluated configurations, normalized to the baseline MESI. Misses are broken
down by writes and reads, with the latter split up by three causes: Invalid state, lifetime expiration, and
Bloom filter hit.

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

M
ES
I	

TC
R-‐
Ba

sic
	

TC
R	

TC
R+

+	
TC

R+
+I
nf
	

M
ES
I	

TC
R-‐
Ba

sic
	

TC
R	

TC
R+

+	
TC

R+
+I
nf
	

M
ES
I	

TC
R-‐
Ba

sic
	

TC
R	

TC
R+

+	
TC

R+
+I
nf
	

M
ES
I	

TC
R-‐
Ba

sic
	

TC
R	

TC
R+

+	
TC

R+
+I
nf
	

M
ES
I	

TC
R-‐
Ba

sic
	

TC
R	

TC
R+

+	
TC

R+
+I
nf
	

M
ES
I	

TC
R-‐
Ba

sic
	

TC
R	

TC
R+

+	
TC

R+
+I
nf
	

M
ES
I	

TC
R-‐
Ba

sic
	

TC
R	

TC
R+

+	
TC

R+
+I
nf
	

M
ES
I	

TC
R-‐
Ba

sic
	

TC
R	

TC
R+

+	
TC

R+
+I
nf
	

M
ES
I	

TC
R-‐
Ba

sic
	

TC
R	

TC
R+

+	
TC

R+
+I
nf
	

M
ES
I	

TC
R-‐
Ba

sic
	

TC
R	

TC
R+

+	
TC

R+
+I
nf
	

M
ES
I	

TC
R-‐
Ba

sic
	

TC
R	

TC
R+

+	
TC

R+
+I
nf
	

M
ES
I	

TC
R-‐
Ba

sic
	

TC
R	

TC
R+

+	
TC

R+
+I
nf
	

M
ES
I	

TC
R-‐
Ba

sic
	

TC
R	

TC
R+

+	
TC

R+
+I
nf
	

M
ES
I	

TC
R-‐
Ba

sic
	

TC
R	

TC
R+

+	
TC

R+
+I
nf
	

M
ES
I	

TC
R-‐
Ba

sic
	

TC
R	

TC
R+

+	

blackscholes	 bodytrack	 ferret	 fluidanimate	 swapLons	 barnes	 ocean_cp	 radiosity	 raytrace	 water_ns	 water_sp	 N	 lu_cb	 lu_ncb	 radix	

Pe
rc
en

ta
ge
	 o
f	 L
1	
Hi
ts
	

Write	 hit	 Read	 hit	 (E/M)	 Read	 hit	 (Shared)	 Read	 hit	 (SharedRO)	

Figure 12: L1 hits breakdown by writes and reads, with the latter split up by cache states: Exclusive/Modified,
Shared and SharedRO.

shared data accesses and frequent synchronizations. It re-
veals mediocre performance for workloads with small shared
data working set and predominant accesses to private data.
For example, fft, radix and ferret are less sensitive to
release-stalling because more than 80% of L1 hits are to
temporarily private states (Exclusive/Modified), referring to
Figure 12.
TCR++: By relaxing the write visiblity time from a release
to the corresponding acquire, in tandem with the optimized
lifetime prediction, TCR++ is rewarded with an average of
10.7% speedup over TCR. Compared to the baseline MESI,
TCR++ is on an average 3.0% faster. The best cases, ra-
diosity and radix, perform 14.0% and 8.3% better than
the baseline, respectively. The worst case is ocean_cp with
3.3% slowdown. TCR++ shows comparable or better per-
formance than MESI because of its faster writes as shared
lines are not explicitly invalidated and acknowledged as in
directory coherence protocols. As the writes can complete
faster, the cache line stays in the blocking state for shorter
duration, making the subsequent reads to the line faster.

In contrast to TCR with fixed lifetimes, TCR++ is able to
fully utilize the L1 caches, fueled by flexible lifetime choices.
As seen in Figure 11, TCR++ shows remarkable improve-
ment in L1 cache performance over TCR (with an average
of 25.4% decrease in L1 miss rate, within 1.2% of MESI).
Specifically, with the detailed read misses breakdown in Fig-
ure 11, we can see that the read misses due to lifetime expi-

ration is decreased significantly. In most workloads (9 out of
15), the lifetime expiration induced read misses are barely
noticeable. The small number of read misses on expired lines
well reflects the efficiency of the proposed lifetime prediction
mechanism. In particular, the SharedRO optimization con-
tributes significantly to the improved L1 cache performance,
as L1 hits on SharedRO state takes up a considerable part
of L1 shared read hits in Figure 12.

The reduction in L1 miss rate translates to less network
traffic. On an average, The network traffic of TCR++ is
within 1.3% of the baseline MESI (with the best case re-
duction of 18.2% for raytrace) and 33.9% reduction over
TCR. TCR++ shows similar network traffic compared to the
baseline MESI directory protocol. TCR++ does not have
invalidation traffic where a write needs to invalidate other
shared copies as in a directory protocol. But as we main-
tain ownership in the L2, TCR++ still has the network traffic
caused by ownership shift or downgrade requests. Besides,
TCR++ also incurs network traffic due to self-invalidations
and signature transfers.
Impact of infinite Bloom filter size: As shown in Fig-
ure 9, by varying the Bloom filter size from 256-bit to an
idealized infinite size, TCR++Inf shows little difference in
execution time and network traffic (both within 1%), com-
pared to TCR++. In fact, as we can see in Figure 11, for
TCR++ with a 256-bit filter implementation, the Bloom fil-
ter induced read misses are fairly small across all workloads.

11

TCR++Inf removes read misses caused by Bloom filter false
positive hits; however, the L1 miss rate reduction is minimal
(0.5%), which does not translate to performance improve-
ment. Thanks to the timestamp assigned to every signa-
ture that allows the signature to be cleared after its times-
tamp expiration, unnecessary L1 misses are saved. Overall,
TCR++ with a realistic Bloom filter configuration performs
nearly identical to an infinite size Bloom filter.

6. RELATED WORK
We have discussed in passing the closest works to our pro-

posal. Here we discuss the other related works.
Using timestamps for cache coherence has been explored

in software [30][31]. Nandy et al. [32] first investigated the
use of timestamps for hardware coherence. In addition to
the timestamp-based hardware coherence protocols we have
discussed [12][13][14], Tardis [15] is a recently proposed work
that relies on timestamps for maintaining coherence. Differ-
ent from our proposal, Tardis is implemented for Sequen-
tial Consistency, and it uses logical time and the novel time
travel mechanism to eliminate the stall on writes. Besides,
it proposes some valuable optimizations in timestamp-based
coherence: the performance loss due to its large number of
premature expirations of L1 lines is hidden by speculatively
making use of the data stored in the expired lines. It also
introduces a timestamp compression mechanism to reduce
the storage requirement. These optimizations are orthogo-
nal to our proposal. Elver et al. [33][34] also use timestamps
in the proposed coherence protocol for relaxed memory con-
sistency models, but different from the timestamps in our
proposal that indicates the lifetime of an L1 line, the pur-
pose of using timestamps in [33][34] is to transitively reduce
the number of self-invalidations at acquires.

Dynamic Self-Invalidation (DSI) [35] first proposed self-
invalidation of lines in private caches, reducing coherence
traffic as invalidations are no longer sent from the direc-
tory. The authors observed that for relaxed memory con-
sistency models, as long as private lines are eliminated be-
fore the next synchronization point, coherence is guaranteed.
Cache coherence for relaxed memory consistency has been
explored in more recent work [20][33][34][36][37][38][39]. In
contrast to our proposal that uses a signature to selectively
self-invalidate L1 lines, these approaches apply cache-wide
self-invalidations at acquires that may degrade performance.
Specifically, we expect the implementation of TC-Release
with fixed zero-cycle lifetime to perform similar to a simple
relaxed consistency coherence protocol that invalidates all
L1 Shared lines at acquires. As suggested by the resulting
performance (∼10% slower than MESI), a lot of shared lines
will be unnecessarily victimized due to cache-wide invalida-
tion.

7. CONCLUSION
In this paper, we propose a timestamp-based coherence

protocol for release consistency memory models that ad-
dresses the scalability issues in efficiently supporting cache
coherence in large-scale systems. Our protocol is inspired
by a recently proposed timestamp-based coherence proto-
col targeting GPU architectures [14]. However, we observe
that implementing a similar coherence protocol for general-
purpose many-core architectures leads to sub-par perfor-
mance compared to the de-facto standard directory coher-

ence protocols. To overcome the limitations and overheads,
we propose TC-Release++ that eliminates the expensive mem-
ory stalls and provides an optimized lifetime prediction mech-
anism. Compared to a conventional directory coherence pro-
tocol, TC-Release++ is highly scalable as it eliminates the
storage overhead for coherence substantially but at the same
time exhibits better execution time and comparable network
traffic.

8. ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their

helpful feedback. This work was supported by Huawei In-
ternational Pte. Ltd. research grant.

9. REFERENCES
[1] M. M. Martin, M. D. Hill, and D. J. Sorin, “Why

On-Chip Cache Coherence is Here to Stay,”
Communications of the ACM, 2012.

[2] D. J. Sorin, M. D. Hill, and D. A. Wood, “A Primer
on Memory Consistency and Cache Coherence,”
Morgan and Claypool Publishers, 2011.

[3] A. Gupta, W.-D. Weber, and T. Mowry, “Reducing
Memory and Traffic Requirements for Scalable
Directory-Based Cache Coherence Schemes.,” in
International Conference for Parallel Processing, 1990.

[4] Z. Hongzhou, A. Shriraman, and S. Dwarkadas,
“SPACE: Sharing Pattern-Based Directory Coherence
for Multicore Scalability,” in International Conference
on Parallel Architectures and Compilation Techniques,
2010.

[5] M. Alisafaee, “Spatiotemporal Coherence Tracking,” in
International Symposium on Microarchitecture, 2012.

[6] J. Zebchuk, B. Falsafi, and A. Moshovos, “Multi-Grain
Coherence Directories,” in International Symposium
on Microarchitecture, 2013.

[7] Y. Yao, G. Wang, Z. Ge, T. Mitra, W. Chen, and
N. Zhang, “SelectDirectory: A Selective Directory for
Cache Coherence in Many-Core Architectures,” in
Design, Automation and Test in Europe, 2015.

[8] L. Zhang, D. Strukov, H. Saadeldeen, D. Fan,
M. Zhang, and D. Franklin, “SpongeDirectory:
Flexible Sparse Directories Utilizing Multi-Level
Memristors,” in International Conference on Parallel
Architectures and Compilation Techniques, 2014.

[9] D. Sanchez and C. Kozyrakis, “SCD: A Scalable
Coherence Directory with Flexible Sharer Set
Encoding,” in International Symposium on
High-Performance Computer Architecture, 2012.

[10] B. A. Cuesta, A. Ros, M. E. Gómez, A. Robles, and
J. F. Duato, “Increasing the Effectiveness of Directory
Caches by Deactivating Coherence for Private
Memory Blocks,” in International Symposium on
Computer Architecture, 2011.

[11] M. Ferdman, P. Lotfi-Kamran, K. Balet, and
B. Falsafi, “Cuckoo Directory: A Scalable Directory
for Many-Core Systems,” in International Symposium
on High-Performance Computer Architecture, 2011.

[12] M. Lis, K. S. Shim, M. H. Cho, and S. Devadas,
“Memory Coherence in the Age of Multicores,” in
International Conference on Computer Design, 2011.

12

[13] K. S. Shim, M. H. Cho, M. Lis, and S. Devadas,
“Library Cache Coherence,” in Csail technical report,
2011.

[14] I. Singh, A. Shriraman, W. W. Fung, M. O’Connor,
and T. M. Aamodt, “Cache Coherence for GPU
Architectures,” in International Symposium on
High-Performance Computer Architecture, 2013.

[15] X. Yu and S. Devadas, “Tardis: Time Traveling
Coherence Algorithm for Distributed Shared Memory,”
in International Conference on Parallel Architectures
and Compilation Techniques, 2015.

[16] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. Hennessy, “Memory Consistency and
Event Ordering in Scalable Shared-memory
Multiprocessors,” International Symposium on
Computer Architecture, 1990.

[17] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,
S.-H. Lee, and K. Skadron, “Rodinia: A Benchmark
Suite for Heterogeneous Computing,” in International
Symposium on Workload Characterization, 2009.

[18] L. A. Barroso, K. Gharachorloo, R. McNamara,
A. Nowatzyk, S. Qadeer, B. Sano, S. Smith, R. Stets,
and B. Verghese, “Piranha: A Scalable Architecture
Based on Single-Chip Multiprocessing,” International
Symposium on Computer Architecture, 2011.

[19] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson,
and K. Chang, “The Case for A Single-Chip
Multiprocessor,” International Conference on
Architectural Support for Programming Languages and
Operating Systems, 1996.

[20] A. Ros and S. Kaxiras, “Complexity-Effective
Multicore Coherence,” International Conference on
Parallel Architectures and Compilation Techniques,
2012.

[21] T. J. Ashby, P. Diaz, and M. Cintra, “Software-Based
Cache Coherence with Hardware-Assisted Selective
Self-Invalidations Using Bloom Filters,” IEEE
Transactions on Computers, 2011.

[22] H. Sung, R. Komuravelli, and S. V. Adve,
“DeNovoND: Efficient Hardware Support for
Disciplined Non-Determinism,” in International
Conference on Architectural Support for Programming
Languages and Operating Systems, 2013.

[23] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The
PARSEC Benchmark Suite: Characterization and
Architectural Implications,” in International
Conference on Parallel Architectures and Compilation
Techniques, 2008.

[24] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta, “The SPLASH-2 Programs:
Characterization and Methodological Considerations,”
in International Symposium on Computer
Architecture, 1995.

[25] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower,
T. Krishna, and S. Sardashti, “The gem5 Simulator,”
Computer Architecture News, 2011.

[26] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha,
“GARNET: A Detailed On-Chip Network Model
inside A Full-System Simulator,” in International

Symposium on Performance Analysis of Systems and
Software, 2009.

[27] D. Wendel, R. Kalla, R. Cargoni, J. Clables,
J. Friedrich, R. Frech, J. Kahle, B. Sinharoy,
W. Starke, S. Taylor, S. Weitzel, S. G. Chu, S. Islam,
and V. Zyuban, “The Implementation of POWER7
TM: A Highly Parallel and Scalable Multi-Core
High-End server Processor,” in International
Solid-State Circuits Conference, 2010.

[28] A. Basu, D. R. Hower, M. D. Hill, and M. M. Swift,
“Freshcache: Statically and Dynamically Exploiting
Dataless Ways,” in International Conference on
Computer Design, 2013.

[29] C. Wilkerson, A. R. Alameldeen, Z. Chishti, W. Wu,
D. Somasekhar, and S.-l. Lu, “Reducing Cache Power
with Low-Cost, Multi-Bit Error-Correcting Codes,”
International Symposium on Computer Architecture,
2010.

[30] S. L. Min and J.-L. Baer, “Design and Analysis of A
Scalable Cache Coherence Scheme Based on Clocks
and Timestamps,” IEEE Transactions on Parallel and
Distributed Systems, 1992.

[31] X. Yuan, R. Melhem, and R. Gupta, “A
Timestamp-Based Selective Invalidation Scheme for
Multiprocessor Cache Coherence,” in International
Conference for Parallel Processing, 1996.

[32] S. Nandy and R. Narayan, “An Incessantly Coherent
Cache Scheme for Shared Memory Multithreaded
Systems,” in International Workshop on Parallel
Processing, 1994.

[33] M. Elver and V. Nagarajan, “TSO-CC: Consistency
Directed Cache Coherence for TSO,” International
Symposium on High-Performance Computer
Architecture, 2014.

[34] M. Elver and V. Nagarajan, “RC3: Consistency
Directed Cache Coherence for x86-64 with RC
Extensions,” International Conference on Parallel
Architectures and Compilation Techniques, 2015.

[35] A. R. Lebeck and D. A. Wood, “Dynamic
Self-Invalidation: Reducing Coherence Overhead in
Shared-Memory Multiprocessors,” in International
Symposium on Computer Architecture, 1995.

[36] S. Kaxiras and G. Keramidas, “SARC Coherence:
Scaling Directory Cache Coherence in Performance
and Power,” IEEE Micro, 2010.

[37] A. Ros and S. Kaxiras, “Callback: Efficient
Synchronization without Invalidation with A
Directory Just for Spin-Waiting,” International
Symposium on Computer Architecture, 2015.

[38] B. Choi, R. Komuravelli, H. Sung, R. Smolinski,
N. Honarmand, S. V. Adve, V. S. Adve, N. P. Carter,
and C.-T. Chou, “DeNovo: Rethinking the Memory
Hierarchy for Disciplined Parallelism,” in International
Conference on Parallel Architectures and Compilation
Techniques, 2011.

[39] H. Sung and S. V. Adve, “DeNovoSync: Efficient
Support for Arbitrary Synchronization without
Writer-Initiated Invalidations,” in International
Conference on Architectural Support for Programming
Languages and Operating Systems, 2015.

13

