
Lecture 2 for pipelining

• The pipelining hazard

• How to solve the
structure hazard

• How to solve the data
hazard

What we knew about pipeline

• Pipelining
– implementation technique to execute

instructions in a overlapped way to make fast
CPUs(decrease CPUtime, improve throughput)

• Ideal speedup of pipeline equal to
Number of pipe stages

• If the starting point is a multiple clock
cycle per instruction machine then

– pipelining decreases CPI.

Recall the MIPS 5 stage pipeline

• IF (Instruction fetch cycle)
– IRMem[PC];

– NPC PC=PC+4;

• ID (Instruction decode/register fetch cycle)
– A Regs[rs];

– B Regs[rt];

– Imm sign-extended immediate field of IR;

• Note: The first two stages of MIPS pipeline do
the same functions for all kinds of instructions.

The third stage of MIPS pipeline

• EX (Execution/effective address cycle)
– Memory reference:

 ALUoutput A+Imm

– Register-Register ALU instruction:
 ALUoutput A func B;

– Register-Immediate ALU instruction:
 ALUoutput A op Imm;

– Branch:
 ALUoutput NPC+(Imm <<2);

 Cond (A==0)

The last two stages of
MIPS pipeline

• MEM(Memory acces/branch completion cycle)
– Memory reference:

 LMD Mem[ALUoutput] or
 Mem[ALUoutput] B

– Branch:
 If (cond) PC ALUoutput

• WB (Write back cycle)
– Register-Register ALU instruction

 Regs[rd] ALUoutput;

– Register-Immediate ALU instruction
 Regs[rt] ALUoutput;

– Load Instruction:
 Regs[rt] LMD;

Table: Events on every stage

Stage Any instruction

IF IF/ID.IRMem[PC];

IF/ID.NPC, PC (if ((EX/MEM.opcode==branch)&EX/MEM.cond)

{ EX/MEM.ALUoutput} else {PC+4});

ID ID/EX.A Regs[IF/ID.IR[rs]]; ID/EX.B Regs[IF/ID.IR[rt]];

ID/EX.NPC IF/ID.NPC; ID/EX.IR IF/ID.IR;

ID/EX.Imm sign-extend(IF/ID.IR[immediate field]);

ALU instruction Ld/st instruction Branch instruction

EX EX/MEM.IR ID/EX.IR;

EX/MEM.ALUoutput ID/EX.A func ID/EX.B;

or

EX/MEM.ALUoutput ID/EX.A op ID/EX.Imm;

EX/MEM.IR ID/EX.IR;

EX/MEM.ALUoutput ID/EX.A +
ID/EX.Imm;

EX/MEM.B ID/EX.B;

EX/MEM.ALUoutp

ut ID/EX.NPC +

(ID/EX.Imm<<2);

EX/MEM.cond

(ID/EX.A==0);

MEM MEM/WB.IR EX/MEM.IR;

MEM/WB.ALUoutput EX/MEM.ALUoutput;

MEM/WB.IR EX/MEM.IR;

MEM/WB.LMD Mem[EX/MEM.ALUoutput];

Or Mem[EX/MEM.ALUoutput EX/MEM.B];

WB Regs[MEM/WB.IR[rd]] MEM/WB.ALUoutput;

or

Regs[MEM/WB.IR[rt]] MEM/WB.ALUoutput;

For Load only;

Regs[MEM/WB.IR[rt]] MEM/WB.LMD

The MIPS pipelining

数
据
存
储
器

M
U

X

 S
ig

n

ex
te

nd

M
U

X

M
U

X

0 ?

A
L

U

寄
存
器

32 16

 P

C

数
据
存
储
器

A
D

D

M
U

X

IF/ID

转移

发生

ID/EX EX/MEM MEM/WB

IR6..10

IR11..15

MEM/

WB .IR

4

IR

Pipeline hazard: the major hurdle

• A hazard is a condition that prevents an instruction in
the pipe from executing its next scheduled pipe stage

• Taxonomy of hazard
– Structural hazards

These are conflicts over hardware resources.
– Data hazards

 Instruction depends on result of prior computation
which is not ready (computed or stored) yet

– Control hazards
 branch condition and the branch PC are not

available in time to fetch an instruction on the
next clock

Hazards can always be resolved
by Stall

• The simplest way to "fix" hazards is to stall the
pipeline.

• Stall means suspending the pipeline for some
instructions by one or more clock cycles.

• The stall delays all instructions issued after the
instruction that was stalled, while other
instructions in the pipeline go on proceeding.

• A pipeline stall is also called a pipeline bubble or
simply bubble.

• No new instructions are fetched during a stall .

Performance of pipeline with stalls

• Pipeline stalls decrease performance from the
ideal

• Recall the speedup formula:

Case of multi-cycle implementation

• The ideal CPI on a pipelined processor is almost
always 1. (may less than or greater that)

 So

• Ignore the overhead of pipelining clock cycle.

• Pipe stages are ideal balanced.

Case of multi-cycle
implementation

 So: Clock cycle unpipelined = Clock cycle
pipelining

 CPl unpipelined = pipeline depth

 Case of single-cycle
implementation

• CPI unpipelined = 1

 Clock cycle pipelined =

Clock cycle unpipelined
pipeline depth

Structural hazard:
Pipe Stage Contention

• Structural hazards
– Occurs when two or more instructions want

to use the same hardware resource in the
same cycle

– Causes bubble (stall) in pipelined machines

– Overcome by replicating hardware resources
Multiple accesses to the register file

Multiple accesses to memory

 some functional unit is not fully pipelined.

Not pipelined functional units

Multi access to the register file

• Simply insert a stall , speedup will be decreased.

• We have resolved it with “ double bump”

Double Bump Works !

Multi access to Single Memory
Port

• Insert stall

• provide another memory port

• split instruction memory and data memory

• use instruction buffer

Mem

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Ld/St

Instr 1

Instr 2

Instr 3

A
L

U

Mem Reg Mem Reg

A
L

U

Mem Reg Mem Reg

A
L

U

Mem Reg Mem Reg

A
L

U

Reg Mem Reg

Insert Stall

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

Ld/St

Instr 1

Instr 2

Instr 3
A

L
U

Mem Reg Mem Reg

A
L

U

Mem Reg Mem Reg

A
L

U

Mem Reg Mem Reg

A
L

U
 Mem Reg Mem Reg

Bubble Bubble Bubble Bubble Bubble Stall

IM

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Ld/St

Instr 1

Instr 2

Instr 3

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

Reg DM Reg

Split instruction and data
memory

• Split instruction and data memory / multiple memory
port / instruction buffer means:

 fetch the instruction and data inference using different
hardware resources.

Not fully pipelined function unit :
may cause structural hazard

 Unpipelined Float Adder
 ADDD IF ID ADDD WB

 ADDD IF ID stall stall stall stall stall ADDD
 Not fully pipelined Adder
 ADDD IF ID A1 A2 A3 WB

 ADDD IF ID stall A1 A2 A3

 Fully pipelined Adder
 ADDD IF ID A1 A2 A3 A4 A5 A6 WB
 ADDD IF ID A1 A2 A3 A4 A5 A6 WB
 Or multiple unpipelined Float Adder
 ADDD IF ID ADDD1 WB

 ADDD IF ID ADDD2 WB

Machine without structural hazards
will always have a lower CPI

• Example (pA-14)
– Data reference constitute 40% of the mix

– Ideal CPI ignoring the structural hazard is 1

– The processor with the structural hazard has a clock
rate that is 1.05 times higher than that of a processor
without structural hazard.

• Answer
– Average instruction time = CPIClock cycle time
 =(1+0.4 1) CCideal/1.05
 = 1.3 Ccideal

– Clearly, the processor without the structural hazard
is faster.

Why allow machine with
structural hazard ?

• To reduce cost .
– i.e. adding split caches, requires twice the memory bandwidth.
– also fully pipelined floating point units costs lots of gates.
– It is not worth the cost if the hazard does not occur very

often.

• To reduce latency of the unit.
– Making functional units pipelined adds delay
 (pipeline overhead -> registers.)
– An unpipelined version may require fewer clocks per operation.
– Reducing latency has other performance benefits, as we will

see.

Example: impact of structural
hazard to performance

• Example

– Many machines have unpipelined float-point multiplier.

– The function unit time of FP multiplier is 6 clock cycles

– FP multiply has a frequency of 14% in a SPECfp

benchmark

– Will the structural hzard have a large performance

impact on the SPECfp benchmark?

Answer to the example

• In the best case: FP multiplies are distributed
uniformly.
– There is one multiply in every 7 clock. 1/14%
– Then there will be no structural hazard,then there is

no performance penalty at all.

• In the worst case: the multiplies are all clustered
with no intervening instructions.
– Then every multiply instruction have to stall 5 clock

cycles to wait for the multiplier be released.
– The CPI will increase 70% to 1.7, if the ideal CPI is 1.

• Experiment result:
– This structural hazard increase execution time by less

than 3%.

Summary of Structural hazard

• Taxonomy of Hazards
– Structural hazards

These are conflicts over hardware resources.
OK, maybe add extra hardware resources;
 or full pipelined the functional units;
 otherwise still have to stall

– Data hazards
 Instruction depends on result of prior computation which is

not ready (computed or stored) yet

– Control hazards
 branch condition and the branch PC are not available in time

to fetch an instruction on the next clock

Data hazard

• Data hazards occur when the pipeline
changes the order of read/write accesses
to operands comparing with that in
sequential executing .

• Let’s see an Example
DADD R1, R1, R3

DSUB R4, R1, R5

AND R6, R1, R7

OR R8, R1, R9

XOR R10, R1, R11

Data hazard

• Basic structure
– An instruction in flight wants to use a data value that’s not

“done” yet
– “Done” means “it’s been computed” and “it’s located where I

would normally expect to go look in the pipe hardware to find it”

• Basic cause
– You are used to assuming a purely sequential model of

instruction execution
– Instruction N finishes before instruction N+k, for k >= 1
– There are dependencies now between “nearby” instructions

(“near” in sequential order of fetch from memory)

• Consequence+
– Data hazards -- instructions want data values that are not

done yet, or in the right place yet

Coping with data hazards:example

Time (clock cycle)

 IM

A

L
U

DM
Reg R1 w

 IM

A

L
U

DM
Reg

R1,

 read

ADD R1,R2,R3

SUB R4, R1, R5

AND R6,R1,R7

OR R8,R1,R9

XOR R10,R1,R11 No Hazrd

I

n

s

t

r.

.

O

r

d

e

r

A

L
U

 IM DM
R1,

 read

 IM

A

L
U

R1,

 read

 IM
R1,

 read

Somecases “Double Bump” can do !

Time (clock cycle)

 IM

A

L
U

DM
Reg R1 w

 IM

A

L
U

DM
Reg

R1,

 read

ADD R1,R2,R3

SUB R4, R1, R5

AND R6,R1,R7

OR R8,R1,R9 double bump can do !

XOR R10,R1,R11 No Hazard

I

n

s

t

r.

.

O

r

d

e

r

A

L
U

 IM DM
R1,

 read

 IM

A

L
U

R1,

 read

 IM
R1,

 read

Proposed solution

• Proposed solution
– Don’t let them overlap like this…?

• Mechanics
– Don’t let the instruction flow through the pipe

– In particular, don’t let it WRITE any bits anywhere
in the pipe hardware that represents REAL CPU
state (e.g., register file, memory)

– Let the instruction wait until the hazard resolved.

– Name for this operation: PIPELINE STALL

Bubble Bubble Bubble Bubble Bubble

Bubble Bubble Bubble Bubble

Time (clock cycle)

 IM

A

L
U

DM
Reg R1 wADD R1,R2,R3

NOP

NOP (ADD R0, R0, R0)

SUB R4,R1,R5 double bump can do !

AND R6, R1,R7 No Hazard

I

n

s

t

r.

.

O

r

d

e

r

 IM

A

L
U

R1,

 read

 IM
R1,

 read

How do we stall ?
Insert nop by compiler

How do we stall?
Add hardware Interlock !

• Add extra hardware to detect stall situations
– Watches the instruction field bits
– Looks for “read versus write” conflicts in particular

pipe stages
– Basically, a bunch of careful “case logic”

• Add extra hardware to push bubbles thru pipe
– Actually, relatively easy
– Can just let the instruction you want to stall GO

FORWARD through the pipe…
– …but, TURN OFF the bits that allow any results to get

written into the machine state
– So, the instruction “executes” (it does the work), but

doesn’t “save”

Interlock: insert stalls

Time (clock cycle)

 IM

A

L
U

DM
Reg R1 wADD R1,R2,R3

DSUB, R4, R1,R5

AND R6,R1,R7 No Hazard

I
n
s
t
r.

.
O
r
d
e

r

 IM
R1,

 read

 IM

A

L
U

R1,

 read
Bubble Bubble

Empty slots in the
pipe called bubbles;
means no real
instruction work
getting saved here

How the interlock is implementated ?

Recall MIPS Instruction format

• add R8, R17, R18
– is stored in binary format as

– 00000010 00110010 01000000 00100000

• MIPS lays out instructions into “fields”
– op operation of the instruction
– rs first register source operand
– rt second register source operand
– rd register destination operand
– shamt shift amount
– funct function (select type of operation)

Detect: Data Hazard Logic

Rs

Rt Rd Rd Rd

Rs =? Rd
Rt =? Rd

between IF/ID and
ID/EX, EX/MEM Stages

Example

DSUB R2, R1, R3 Rd = R2 Rs = R1 Rt = R3

AND R12, R2, R5 Rd = R12 Rs = R2 Rt = R5

OR R13, R6, R2 Rd = R13 Rs = R6 Rt = R2

DADD R14, R2, R2 Rd = R14 Rs = R2 Rt = R2

SW R15, 100(R2) Rd = R15 Rs = R2 Rt = XX

• SUB-AND Hazard
– ID/EX.RegRd(sub) == IF/ID. RegRs(and) == R2

• SUB-OR Hazard
– EX/MEM.RegRd(sub) == IF/ID. RegRt(or) == R2

• AND-OR: No Hazard

– ID/EX.RegRd(and)==R12 IF/ID.RegRt Or IF/ID.RegRs

How to delay the instruction ?

• The Interlock can simulate the NOP:
Once it is detected need to add a stall, then

– Clear the ID/EX.IR to be the instruction of
NOP.

– Reserve the IF/ID.IR unchanged for one
more clock cycle.

Bubble Bubble Bubble Bubble

Bubble Bubble Bubble

Hardware simulates NOP

Time (clock cycle)

 IM

A

L
U

DM
Reg R1 wADD R1,R2,R3

NOP

NOP (ADD R0, R0, R0)

SUB R4,R1,R5 double bump can do !

AND R6, R1,R7 No Hazard

I

n

s

t

r.

.

O

r

d

e

r

 IM

A

L
U

R1,

 read

 IM
R1,

 read

 IM

 IM

Forwarding:
reduce data hazard stalls

• If the result you need does not exist AT ALL yet,
– you are out of luck, sorry.

• But, what if the result exists, but is not stored
back yet?
– Instead of stalling until the result is stored back in its

“natural” home…

– grab the result “on the fly” from “inside” the pipe,
and send it to the other instruction (another pipe
stage) that wants to use it

Forwarding

• Generic name: forwarding (bypass, short-
circuiting)
– Instead of waiting to store the result, we forward it

immediately (more or less) to the instruction that
wants it

– Mechanically, we add buses to the datapath to move
these values

– around, and these buses always “point backwards” in
the datapath, from later stages to earlier stages

Forwarding:
reduce data hazard stalls

• Data may be already computed - just not in the
Register File

Time (clock cycle)

 IM

A

L
U

DM
Reg R1 w

 IM

A

L
U

DM
Reg

R1,

 read

ADD R1,R2,R3

SUB R4, R1, R5

AND R6,R1,R7

I
n
s
t
r.

.
O
r
d
e
r

A
L

U

 IM DM
R1,

 read

R1
R1

EX/MEM.ALUoutput ALU input port

MEM/WB.ALUoutput ALU input port

Hardware Change for Forwarding

M
E

M
/W

R

ID
/E

X

E
X

/M
E

M

Data
Memory

A
L
U

m
ux

m

ux

R
e
giste

rs

NextPC

Immediate

m
ux

EX/Mem.ALUoutput ALU input
MEM/WB.ALUoutput ALU input

MEM/WB.LMD ALU input

How to select the forwarding
path: the forwarding logic

• P161 in Edition 2; PA-36 in Edition 3

Forwarding path to other input
entry

store

load MEM/WB.LMD DM input

Forwarding Doesn’t Always Work

So we have to insert stall:
Load stall

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and

r6,r1,r7

Reg

A
L
U

DMem Ifetch Reg

Reg Ifetch

A
L
U

DMem Reg Bubble

Ifetch

A
L
U

DMem Reg Bubble Reg

Ifetch

A
L
U

DMem Bubble Reg or

r8,r1,r9

How to implement Load Interlock

• Detect when should use Load Interlock
situation Example code sequence Action

No dependence LD R1, 45(R2)

DADD R5,R6,R7

DSUB R8,R6,R7

OR R9,R6,R7

No hazard possible because of no
dependence

Dependence
requiring stall

LD R1, 45(R2)

DADD R5,R1,R7

DSUB R8,R6,R7

OR R9,R6,R7

Comparators detect the use of R1 in
the DADD and stall the DADD (and
DSUB and OR) before the DADD begins
EX

Dependence
overcome by
forwarding

LD R1, 45(R2)

DADD R5,R6,R7

DSUB R8,R1,R7

OR R9,R6,R7

Comparators detect the use of R1 in
DSUB and forward result of load to
ALU in time for DSUB to begin EX

Dependence with
accesses in
order

LD R1, 45(R2)

DADD R5,R6,R7

DSUB R8,R6,R7

OR R9,R1,R7

No action required because read of R1
by OR occurs in the second half of the
ID phase, while the write of the loaded
data occurred in the first half.

The logic to detect for Load
interlock

Opcode field
of ID/EX

Opcode Field of
IF/ID

Matching operand fields

Load Reg-Reg ALU ID/EX.IR[rt]==IF/ID.IR[rs]

Load Reg-Reg ALU ID/EX.IR[rt]==IF/ID.IR[rt]

Load Load,store, ALU
immediate, branch

ID/EX.IR[rt]==IF/ID.IR[rs]

Example of
Forwarding and Load Delay

• Why forwarding?

– ADD R4, R5, R2

– LW R15, 0(R4)

– SW R15, 4(R2)

• Why load delay?

– ADD R4, R5, R2

– LW R15, 0(R4)

– SW R15, 4(R2)

Solution (without forwarding)

Solution (with forwarding)

The performance influence of
load stall

• Example
– Assume 30% of the instructions are loads.

– Half the time, instruction following a load instruction
depends on the result of the load.

– If hazard causes a single cycle delay, how much
faster is the ideal pipeline ?

• Answer
– CPI = 1+30%50% 1=1.15

– The performance decrease about 15% due to
load stall.

Fraction of load
that cause a stall

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

24%

41%

12%

23% 24%

20% 20%

10% 10%

4%

F
r
a
c
t
i
o
n
 o
f
 l

o
a
d
s

t
h
a
t
 c

a
u
s
e
 a

 s
t
a
l
l

Instruction reordering by
compiler to avoid load stall

• Try producing fast code for
 a = b + c;

 d = e – f;
 assuming a, b, c, d ,e, and f in memory.
• Slow code:
 LW Rb,b
 LW Rc,c
 ADD Ra,Rb,Rc
 SW a,Ra
 LW Re,e
 LW Rf,f
 SUB Rd,Re,Rf
 SW d,Rd

Fast code:
 LW Rb,b
 LW Rc,c
 LW Re,e
 ADD Ra,Rb,Rc
 LW Rf,f
 SW a,Ra
 SUB Rd,Re,Rf
 SW d,Rd

Summary of Data Hazard

• Taxonomy of Hazards
– Structural hazards

These are conflicts over hardware resources.
– Data hazards

 Instruction depends on result of prior computation which is
not ready (computed or stored) yet

OK, we did these, Double Bump, Forwarding path,

 software scheduling, otherwise have to stall

– Control hazards
 branch condition and the branch PC are not available in time

to fetch an instruction on the next clock

