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TC-Release++: An Efficient Timestamp-Based
Coherence Protocol for Many-Core Architectures
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Abstract—
As we enter the era of many-core, providing the shared memory abstraction through cache coherence has become progressively
difficult. The standard directory-based coherence does not scale well with increasing core count. Timestamp-based hardware
coherence protocols introduced recently offer an attractive alternative solution.
This paper proposes a timestamp-based coherence protocol, called TC-Release++, that efficiently supports cache coherence in
large-scale systems. Our approach is inspired by TC-Weak, a recently proposed timestamp-based coherence protocol targeting GPU
architectures. We first design TC-Release in an attempt to straightforwardly port TC-Weak to general-purpose many-cores. But
re-purposing TC-Weak for general-purpose many-core architectures is challenging due to significant differences both in architecture
and the programming model. Indeed the performance of TC-Release turns out to be worse than conventional directory protocols. We
overcome the limitations and overheads of TC-Release by exploiting simple hardware support to eliminate frequent memory stalls, and
an optimized lifetime prediction mechanism to improve cache performance. The resulting optimized coherence protocol TC-Release++
is highly scalable (storage scales logarithmically with core count) and shows better performance (3.0%) and comparable network traffic
(within 1.3%) relative to the baseline MESI directory protocol. We use Murphi to formally verify that TC-Release++ is error-free and
imposes small verification cost.

Index Terms—Cache coherence, Many-core architecture, Timestamp-based system, Memory consistency model.
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1 INTRODUCTION

A Considerable consensus has been reached that cache
coherence will continue to be employed in future

large-scale systems [1] [2]. With the rapid increase in the
number of cores on chip, the scalability of a coherence
protocol is highly challenging — maintaining coherence
across hundreds or thousands of cores will be unprecedent-
edly difficult. Although directory coherence protocols are
currently the de-facto standard, there is growing concern
that simply applying the directory coherence to many-core
architectures will face serious power and area issues.

An alternative approach to directory coherence are the
recently proposed timestamp-based coherence protocols [3]
[4] [5] that remove the scalability burden associated with
directory coherence. The primary insight behind timestamp
coherence is to eliminate the directory for tracking the
sharers and instead rely on timestamps to achieve the same
effect as invalidations. Timestamp coherence simply assigns
a predicted lifetime to each private cache line as it is allo-
cated. A cache line self-invalidates once its lifetime expires.
On a write to a cache line, timestamp coherence does not
attempt to invalidate the sharers immediately; instead, the
write becomes visible when all the private cache copies in
the sharer cores have been self-invalidated due to expired
lifetime. This scheme eliminates the invalidation traffic and
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potentially improves performance. Furthermore, the O(N)
sharer tracking information (for N cores) in the directory is
not required in timestamp coherence, making it much more
scalable in terms of area cost, which also translates to energy
efficiency.

The principal drawback of timestamp coherence is the
overhead due to write stalls. For example, Library Cache
Coherence (LCC) [3] — a timestamp coherence protocol
— maintains coherence by stalling a write at the L2 cache
controller until all the L1 cache copies have expired their
timestamps and thus self-invalidated. This write stall is
necessary for Sequential Consistent (SC) memory models
because all the memory orderings have to be maintained;
a write is required to become globally visible before any
of the following reads/writes. But relaxed memory consis-
tency models relax some of the ordering requirements. For
example, Release Consistency (RC) model [6] relaxes all the
memory orderings expect for synchronizations: an acquire
guarantees that all the subsequent reads/writes are exe-
cuted after it and a release guarantees that all the previous
reads/writes have completed before it. In other words, RC
only requires writes to be visible before a release, and only
with respect to the corresponding core that acquires the data
protected by synchronization. Thus RC alleviates the need
to enforce coherence at every write as long as writes are
made globally visible at release points.

TC-Weak [4] leverages this idea to mitigate the write-
stalling cost in LCC in the context of GPU coherence where
the GPU adopts RC memory model. It achieves this by
only stalling on memory fences, ensuring all previously
written addresses have been self-invalidated in remote pri-
vate caches. Inspired by TC-Weak, we implement a simi-
lar timestamp-based coherence protocol called TC-Release
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(Time Coherence at Release) for general-purpose many-
core architectures. However, due to significant distinctions
between CPU and GPU architectures and the programming
models, we find that TC-Release shows subpar performance
than a conventional directory coherence protocol. To over-
come the disadvantages of TC-Release, we propose TC-
Release++ which exploits simple hardware support to elim-
inate the significant memory stall involved in TC-Release,
and an optimized lifetime prediction mechanism to improve
cache performance. The resulting coherence protocol’s stor-
age per cache line scales logarithmically with core count,
and shows better execution time (by 3.0%) and comparable
network traffic (within 1.3%) relative to a conventional MESI
directory protocol. Additionally, we also use Murphi to
formally verify that TC-Release++ is error-free and impose
small verification cost.

2 TC-RELEASE

We first present our timestamp-based coherence protocol,
called TC-Release, designed for general-purpose many-core
architectures. TC-Release is inspired by TC-Weak [4] co-
herence protocol for GPU architectures. However, we will
observe that straightforward re-purposing of TC-Weak for
many-core architectures, as we do with TC-Release, incurs
significant performance overhead. In the next section, we
will propose a number of modifications and optimizations
to make TC-Release suitable for many-core architectures.

TC-Weak is a recently proposed timestamp-based coher-
ence protocol for GPU architectures. As mentioned earlier,
timestamp coherence assigns a predicted lifetime to each
private cache line as it is allocated. A cache line is self-
invalidated once its lifetime expires. On a write to a cache
line, timestamp coherence does not attempt to invalidate
the sharers immediately (in fact the sharer information is
not maintained at all unlike directory coherence); instead,
the write becomes visible when all the private cache copies
in the sharer cores have been self-invalidated due to expired
lifetime. To support strict memory consistency model, such
as Sequential Consistency, coherence has to be maintained at
each write. Thus timestamp-based coherence protocols such
as Library Cache Coherence (LCC) [3] stalls every write at
the L2 cache controller until all the remote copies have been
self-invalidated making the write visible. These write stalls
lead to serious performance loss for the protocol.

TC-Weak [4] is based on the principals of Eager Release
Consistency implementation, which is previously proposed
to reduce communication in distributed shared memory
(DSM) systems [7]. The insight is that for relaxed memory
models, in particular, Release Consistency (RC) memory
model, coherence need not be strictly enforced at every
write; making the writes coherent only at release points is
sufficient. TC-Weak accomplishes coherence at release point
in a core by tracking the largest global timestamp returned
by all the writes in the core so far. When a memory fence
is encountered (which is indicative of a release point), the
protocol requires the memory fence to wait till the largest
global timestamp has expired (all remote stale copies have
been self-invalidated) ensuring that all the previous writes
made by the core have now become globally visible. TC-
Weak promises better performance and reduced network
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Fig. 1: Hardware extensions for TC-Release.

traffic than conventional directory protocol for GPU archi-
tecture.

Our TC-Release (Time Coherence at Release) coherence
protocol brings this idea of making writes visible only at
release points to general-purpose many-core architectures.
However, the difference in architecture and programming
model between GPU and general-purpose many-core intro-
duces a number of challenges. TC-Weak uses write-through
L1 cache because it performs well for GPU workloads elimi-
nating unnecessary L1 refills of write-once data [4], which is
quite common. However, general-purpose CPU workloads
show much higher re-use of the dirty lines, rendering a
write-back policy more suitable for TC-Release. We observe
that L1 re-use of modified data comprises a significant
fraction (44.8% on an average) of all L1 read accesses,
which is orders of magnitude higher compared to GPU
workloads [8]. We also take advantage of the distinction
between private and shared data in write-back caches such
that private lines do not need to maintain timestamps and
self-invalidate upon expiration, leading to higher L1 cache
hit rate.

TC-Release assumes private L1 caches and a shared
L2 cache, and the L2 cache is physically partitioned into
tiles and distributed on chip. Figure 1 shows the hardware
extensions for TC-Release. Like LCC and TC-Weak, every L1
and L2 line in TC-Release is augmented with a timestamp.
The timestamp in an L1 line (local timestamp) indicates
the expiration time of the line, while an L2 line stores the
maximum timestamp (global timestamp) of all L1 copies.
Similar to TC-Weak, for each L1 cache (i.e., for each core),
TC-Release tracks the largest global timestamp returned by
the writes to that cache in the Global Write Completion Time
(GWCT). TC-Weak maintains one GWCT for each warp in
a GPU core. But in TC-Release, we consider simple single-
threaded CPUs and only one GWCT is maintained per L1
cache.

Figure 2 shows a simplified example of TC-Release with
the execution of the code segment shown at the top of the
figure. In the given example, two cores communicate by
propagating values of A and B. Initially A and B are both
cached in the L1 cache of Core 1 (Line A and B) and have
timestamps of 60 and 80, respectively, while the L1 cache
of Core 0 does not contain these addresses. Thus the L2
cache lines for A and B also contain timestamps 60 and 80,
respectively. At Cycle 20, Core 0 has a write miss at address
A and sends a write request to the L2 ( 1 ). Upon receiving
the request, the L2 responds with data and a timestamp
of 60, corresponding to the expiration time of the copy of
Line A’s copy cached by Core 1. The L1 cache of core 0
updates its GWCT to 60 upon receiving the response ( 2 ).
Similarly, Core 0 performs another write to address B ( 3 )
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Fig. 2: A simplified example of TC-Release with the
execution of the code segment shown at the top.

and subsequently updates the GWCT to 80 ( 4 ), which is
the global timestamp of Line B. At Cycle 50, Core 0 executes
the store-release instruction to release the synchronization
variable T ( 5 ). But as the GWCT at the L1 cache of Core
0 has not expired yet, the cache controller stalls the request
until the GWCT expires ( 6 ). At Cycle 60 and 80, Line A
and B are self-invalidated in the L1 cache of Core 1 ( 7 8 ).
At Cycle 80, Core 0 finally resumes from stalling the write-
release and performs the write part of the request, as all
previous writes have become globally visible ( 9 ). Finally,
Core 1 performs a load-acquire of T ( 10 ) and the following
reads to Line A and B ( 11 12 ) will get the correct values
since their stale copies have been self-invalidated by now,
and will obtain values from Core 0.

We now present the detailed protocol design of TC-
Release for write-back caches. We distinguish write-release
and read-acquire operations from normal writes and reads,
as required by the protocol.

2.1 Protocol design
The stable states of TC-Release are similar to a conventional
MESI directory protocol as we use write-back policy. The
L1 controller in TC-Release has four stable states: Invalid,
Shared, Exclusive and Modified, while the L2 controller has
Invalid, Shared and Exclusive states. The Exclusive state in
the L2 corresponds to both Exclusive and Modified state in
the L1. For L1 Exclusive/Modified lines, a pointer is main-
tained in the L2 line to keep track of the exclusive ownership
(as shown in Figure 1). However, the sharing vector for
L1 Shared lines are not stored in the L2. As the exclusive
ownership is tracked in the L2, L1 Exclusive/Modified lines
do not need to maintain timestamps. L2 Exclusive lines may
or may not have a timestamp depending on whether there
are still unexpired shared copies in the L1 caches.
Write-Release: On a write-release, the L1 controller waits
(stalls the write-release request) till its GWCT expires. The
stalling guarantees that all the writes before the release have
become globally visible. After the GWCT expires, the write
part of the write-release is performed as a normal write
detailed below.
Normal writes: A normal write hits on L1 Exclu-
sive/Modified lines (Exclusive lines silently transition to
Modified). A write misses in the L1 cache for other states
and an exclusive request (GetX) is sent to L2. For a write

miss, along with data, a timestamp may be returned from
the L2 that captures the time when the write will become
globally visible.

If the L2 line receiving the GetX request is in Shared state,
it immediately responds with data and the global timestamp
stored in the line (unlike directory protocol where the other
L1 copies have to be invalidated immediately). If the L2
line is in Exclusive state, the request is forwarded to the
tracked owner who invalidates its line and sends the data
to the requester. Note that it is possible for an L2 Exclusive
line to have an unexpired global timestamp as there can
still be stale copies lingering around in L1 caches other than
the owner. In that case, the timestamp in the L2 line is also
transferred in the forwarded request, which is re-forwarded
to the original requester by the owner. For an access to an
L2 Invalid line, data is loaded from main memory and sent
to L1.

Upon receiving the response from the L2, the L1 cache
writes the data to its line and transitions to Modified state.
To track the global timestamps returned by writes, the
GWCT needs to be updated if the response contains a larger
timestamp. The L1 completes the transaction by sending
an acknowledgment to the L2, which transitions the line
to Exclusive state and changes the ownership of the line to
the requester.
Normal reads: A normal read hits on L1 lines in Exclu-
sive/Modified state. A read to L1 Shared lines need to
check the stored local timestamp: a tag match with an
expired timestamp is treated as a read miss, the line is
self-invalidated and a read request is sent to the L2. Note
that self-invalidating an L1 line due to timestamp expiration
does not require explicit events; instead the read to that line
is simply treated as a miss after the timestamp expires. A
read also misses on L1 Invalid lines and the L2 has to be
accessed.

Upon receiving a read request, the L2 will predict a
lifetime (i.e., a fixed lifetime value) for the requester if it
gets a shared copy of the line. The choice of lifetime value
is important as too short predicted lifetime will result in
premature expirations and repeated L2 accesses. On the
other hand, too long predicted lifetime will require long
wait at release points. After every lifetime prediction, the
L2 updates the global timestamp of the line to maintain the
maximum timestamp among the copies. For an L2 read on
Shared lines, the L2 directly responds with the data and
a predicted timestamp to the requester. In the case of an
L2 read on Exclusive lines, the request with the predicted
timestamp is forwarded to the owner, who downgrades its
exclusive copy to Shared and changes the local timestamp in
the line with the predicted timestamp. The owner then sends
the data with the new predicted timestamp to the original
requester who updates its data and local timestamp, with a
transition to Shared state. A read on L2 Invalid lines gives
the requester exclusive ownership, resulting both the L1 and
L2 line in Exclusive state.
Read-Acquire: A read-acquire tests if the synchronization
variable has been released; otherwise it makes the core to
spin-wait until it observes a release performed by another
core. A read-acquire in TC-Release can be implemented
similar to a normal write (though a read-acquire does not
modify data), which gains the L1 line with exclusive owner-
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ship. If the acquired synchronization variable has not been
released, the core will spin locally in L1 (reading the L1 line
again and again) just like a directory protocol. The spin-
waiting stops once another core performs a write-release.
This is because the core performing the release sends write
request to L2 cache, which is forwarded to the core that
is spin-waiting because it is the exclusive owner. The spin-
waiting core invalidates the line and hence it receives the
new value of the synchronization variable on the next read
in its spin-wait. This guarantees forward progress in the
presence of synchronization.
Evictions: Evictions of L1 Shared lines are silent. An L1
eviction of Exclusive/Modified line needs to inform the L2,
which changes the state to Shared (as there can be other
stale Shared copies in L1 caches with unexpired timestamp).
For L2 evictions, only lines with expired global timestamps
can be evicted to maintain inclusion property. Unexpired
timestamps are stored in L2 Miss Status Holding Register
(MSHR) entries to eliminate stalling on evictions. Note that
an eviction of L2 Exclusive line needs to invalidate the
owner in L1.

2.2 RC Optimization

In TC-Release, if a release has been observed by the cor-
responding acquire, the writes before the release are made
visible to the acquire core because the acquire core will self-
invalidate the stale lines with expired timestamps. However,
self-invalidating the lines again before the core performs
another acquire is not required. We illustrate this with an
example shown in Figure 3, in which two different cores
communicate the value of A. In initial state, address A is
located in a Shared line in L1 cache of Core 1. As mentioned
earlier, the self-invalidation does not explicitly invalidate
the copy; instead any line with expired timestamp is con-
sidered an invalid line. After Core 1 successfully acquires
the synchronization variable T, the first read to A (R1)
finds the expired timestamp and self-invalidates the line. R1
then gets the up-to-date value with a predicted timestamp
from the L2. Without performing another acquire, Core 1
subsequently encounters another read to A (R2) and finds
the newly obtained timestamp expired; but self-invalidating
the line again is not necessary because Core 1 has already
obtained the up-to-date value from Core 0 (via L2) on the
first read of A.

Core 1
ld_acq T
R1: ld  A 

...
R2: ld  A

Core 0
st  A, 1

st_rel T, 0

Fig. 3: Code segment for communication between two
cores. Assume there is no acquire between the two loads
of A in Core 1.

In order to reduce redundant self-invalidations due to
timestamp expirations, we add a Timestamp Bypass (TB) bit
per L1 line, as shown in Figure 1. The TB bit of an L1 line is
set after its self-invalidation. For a read on L1 Shared lines,
the TB bit is examined first before the timestamp check: a
read is allowed to hit in L1 when the TB bit is set, bypassing
the timestamp check even if it has expired. We call this RC-
optimization as it leverages the RC semantics. To ensure the
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TCR-Ideal with various fixed lifetimes, with respect to
baseline MESI directory protocol and TCR++.
read-acquire → reads/writes ordering, all the TB bits are
reset after a read-acquire operation.

2.3 Bottleneck and Trade-offs of TC-Release

To identify the bottleneck of TC-Release, we present a
performance characterization of TC-Release with various
lifetime values.

Figure 4 shows the normalized execution time of TC-
Release with and without the RC-optimization (TCR and
TCR-Basic respectively) for increasing values of fixed life-
times, with respect to baseline MESI directory protocol (red
line in the figure). Note that MESI directory protocol does
not require timestamp and hence has the same performance
throughout. The results are the average of all workloads. As
shown in Figure 4, the performance improvement by RC-
optimization is remarkable, as it saves a lot of L1 misses.
The performance impact of RC-optimization is more sig-
nificant for small lifetimes, because TCR-Basic suffers from
unnecessary L1 misses due to quick timestamp expirations
while RC-Optimization protects TC-Release from excessive
self-invalidations.

Nonetheless, we can see that TC-Release invariably per-
forms worse than the baseline MESI directory protocol
regardless of the different lifetimes used. There are two
primary reasons that cause the performance gap between
TC-Release and a directory protocol. First, compared to
GPU workloads, general-purpose CPU workloads show
significantly higher data re-use rate, which requires much
larger lifetimes for the L1 lines, making the penalty for
memory stall on releases non-trivial. Second, synchroniza-
tions in CPU workloads are more fine grained and thus
more common, which leads to frequent release-stalling that
further exacerbates the performance overhead.

To quantify the performance loss due to stalling on
releases, we implement an idealized TC-Release protocol
called TCR-Ideal that makes the stalls costless. TCR-Ideal
instantaneously invalidates all unexpired L1 lines modified
by writes at releases without accounting for timing or traffic,
incurring no penalty for release-stalling. In Figure 4, we add
the execution time of TC-Ideal with different lifetimes, nor-
malized to MESI. We can see that, with larger lifetimes, the
performance difference between TC-Ideal and TC-Release
enlarges, as the former is approaching the performance
of MESI while stalling on releases deteriorates TC-Release
performance.

Interestingly, the performance difference between TC-
Release and TCR-Ideal reveals the trade-off between cache
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performance and the price paid for release-stalling. On one
hand, the high temporal locality of general-purpose CPU
workloads requires larger lifetimes. As shown in Figure 4,
the performance of TCR-Ideal continuously improves with
increasing lifetimes. The performance improvement comes
from increased L1 hit rate as larger lifetime reduces misses
caused by timestamp expirations. On the other hand, in
TC-Release, larger lifetimes can potentially be harmful to
the performance as the stalling on releases becomes the
bottleneck. In Figure 4, after increasing lifetime from 1000
to 5000 cycles, larger lifetimes in TC-Release begin to show
a dramatic downgrading of performance. This is because the
substantial performance loss due to release-stalling cannot
be offset by the performance gain from the increased cache
hit rate.

To make TC-Release adoptable for many-core architec-
tures, its performance gap with directory protocol must
be bridged. In the following section, with respect to the
trade-off discussed above, we propose TC-Release++, which
shows better performance (by 3.0%) than the baseline MESI
directory protocol (plotted in dashed green line in Figure
4). TC-Release++ improves TC-Release by mitigating its
overheads and provides excellent trade-off in performance,
energy and scalability. Note that the performance of TC-
Release++ does not change with lifetime values because
it does not use a fixed lifetime and instead dynamically
predicts the lifetime.

3 TC-RELEASE++
In this section, we present the design of TC-Release++. We
first extend TC-Release to save the performance loss due
to release-stalling. Then we introduce an optimized lifetime
prediction mechanism to meet distinct lifetime values re-
quired by different workloads and thereby improve cache
performance.

3.1 Eliminating Release-Stalling with Bloom filters

As described earlier, TC-Release lazily makes writes visible
to remote cores. However, the propagation of dirty data
is still triggered at the writing core (when a release is
performed). TC-Release++ takes laziness a step further by
delaying the propagation of written data until a remote
acquire succeeds. In this respect, TC-Release++ more closely
resembles Lazy Release Consistency, which has been pro-
posed for DSM systems to further reduce wasteful commu-
nication associated with Eager Release Consistency [7].

Specifically, in TC-Release writes are strictly obliged to
be globally visible at a release through the expiration of the
GWCT. We relax the write visibility constraint from the time
of the release to when another core actually acquires the
synchronization variable (that has been released). The idea
is to maintain the addresses of the writes that have hap-
pened so far; but these writes are not forced to be coherent
at a release. Instead, when other cores try to communicate
with the release core, they need to check if the address they
are trying to read belongs to the set of write addresses (of
the release core) and in that case self-invalidate their stale
copies.

At release points, we use a Bloom filter to generate a
signature at releases that tracks the local writes with un-
expired global timestamps. Bloom filter is a space-efficient
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TS
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TS
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Fig. 5: Hardware extensions for the signature design.

structure to test if a member is in a set, where false positives
are possible but false negatives are not permitted. On an
acquire, the L1 cache obtains the corresponding signature
and for subsequent reads in Shared state, the requested line
is self-invalidated if the address hits in the signature even if
the timestamp of the line has not expired. By keeping track
of uncompleted writes before release and selectively self-
invalidating stale lines, the heavy burden of release-stalling
is effectively removed.

In our timestamp-based coherence protocol TC-
Release++, using Bloom filter for write-tracking has a big
advantage: the signature naturally inherits a timestamp
from the coherence protocol, indicating the global comple-
tion time of the tracked writes. When the timestamp of the
signature expires, the filter field (a bit-vector) can be cleared
because all the writes tracked in the signature have become
globally visible. We call this operation signature clear. All
signatures in our proposal have the same structure: the
filter field and a timestamp that indicates the signature’s
expiration time. We also provide a detailed example of how
the signatures are cleared in the supplemental material.

3.1.1 Hardware extensions and protocol design

Figure 5 shows the hardware extensions for the signature
design. Conceptually, in every L1, the Local Write Set (LWS)
signature tracks the locally completed yet not globally
visible writes, and the Remote Write Set (RWS) signature
contains the write-set created by other (remote) cores. The
Global Write Set (GWS) is maintained per L2 tile, and
behaves as the intermediary for signature communication.
We now explain the hardware structures with detailed op-
erations. Detailed state transition tables of TC-Release++ can
be found in the supplemental material.
Normal writes: Identical with TC-Release, normal writes
hit on Exclusive/Modified lines in the L1. For an L1 write
miss that returns a timestamp, an entry is enqueued at the
tail of a write FIFO (W-FIFO), as shown in Figure 5. The
entry is constructed by combining the write address with the
returned timestamp. In the example code segment shown in
the right side of Figure 5, the write to address C returns a
global timestamp from the L2 and therefore enqueues a new
entry to the W-FIFO. If the entry reaches the head of the W-
FIFO, it will replace the old entry at the head. If the replaced
entry has an unexpired timestamp, the address is inserted
into the LWS. The LWS will also update its timestamp if the
replaced entry has a larger timestamp. For an insertion to
the LWS, the signature is cleared first if its timestamp has
expired. With the help of the W-FIFO, the size of write-set
tracked in the LWS is reduced.
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Write-Release: On a write-release, the L1 controller triggers
a W-FIFO flush signal that dequeues the W-FIFO until
it reaches the head. Every evicted entry with unexpired
timestamp inserts its address into the LWS and updates
the timestamp of the signature. After the W-FIFO flush
completes, the L1 will send a release request (REL) con-
taining the LWS to the appropriate L2 tile, according to the
address of the released synchronization variable. Note that
if the RWS in the L1 has not expired, the protocol will first
perform an union of the RWS with the signature in the REL.
This guarantees the transitivity property some programs
may rely on [2]. The timestamp of the signature will be
the maximum of the LWS and RWS timestamps, which also
applies to other signature unions discussed later.

The L2 tile, upon receiving the REL, unions the received
signature with the Global Write Set (GWS) signature. Note
that a signature clear is performed in the GWS first if it has
an expired timestamp. The L2 then sends an acknowledg-
ment to the requester, signaling the L1 to proceed to the
write part of the release operation, which is treated as a
normal write.
Read-Acquire: For a read-acquire, in order to make all
writes preceding the corresponding release visible to the ac-
quire core, it needs to obtain the relevant signature in the L2.
As mentioned earlier, a read-acquire may spin locally from
L1 if the synchronization data is still held by another core,
which may result in repeated L2 accesses for obtaining the
signature. To address this issue, we introduce two new sta-
ble states Exclusive A and Modified A in the L1 controller,
distinguishing normal private lines from those involved in
spin-waiting. A read-acquire on L1 lines in these two states
is not required to obtain the signature. A normal read or
write will hit on L1 lines in Exclusive A/Modified A, with
normal writes transitioning the line to Modified. The added
two states also help to reduce the Timestamp Bypass (TB)
bits resets in the RC-optimization (discussed in Section 2.2),
as a read-acquire involved in spin-waiting does not need to
reset the TB bits. Detailed operations are discussed below.

A read-acquire misses on L1 Invalid or Shared lines, and
an acquire request (ACQ) is sent to the L2 tile based on the
address of the acquired synchronization variable. An ACQ
is similar to a GetX, with the difference that the L2 also
needs to transfer the GWS in the exclusive data response.
After the L1 receives the response, the L1 line transitions to
Exclusive A state.

A read-acquire can hit on L1 Exclusive/Modified lines,
but an ACQ must be sent to the L2 first, as the synchro-
nization data may have been released but subsequently
fetched to the L1 by normal reads/writes. Since the L1
is the current owner of the line, in this case the L2 only
needs to respond with the GWS (and no data is transferred).
After receiving response from the L2, the read hits in the
L1 and transitions the line from Exclusive or Modified to
Exclusive A or Modified A, respectively.

L1 lines in Exclusive A or Modified A allow a read-
acquire to hit locally without sending an ACQ to the L2,
as the core is probably spin-waiting. The L1 line will be
eventually invalidated by a release, hence a legitimate ACQ
will be sent for the following read (within read-acquire
spinning) to the Invalid line.

When the L1 receives the response for an ACQ, The L1

unions the obtained signature to the RWS, which will be
checked for subsequent normal reads on Shared lines.
Normal reads: In TC-Release, a normal read hits on L1
Shared lines with an unexpired timestamp. In contrast,
TC-Release++ also needs to check the RWS signature to
determine if the data has been modified by a remote core.
As shown in the example in Figure 5, the reads to A and B
are required to consult the RWS. If the address hits in the
signature, the line is self-invalidated and a read request will
be sent to L2. On a check of the signature, a signature clear
is performed if possible. Operations for a normal read on
other L1 states are the same as TC-Release.

The usage of Timestamp Bypass (TB) bit in TC-Release
can be easily extended to TC-Release++. For a read on L1
Shared lines with the TB bit set, the read is considered as a
hit and the checks on both the timestamp and the signature
are bypassed.

3.2 Lifetime Prediction and Shared Read-Only Opti-
mization

It is important to highlight the trade-offs in lifetime predic-
tion before we describe our prediction mechanism. Basically,
the lifetime needs to be long enough to take advantage of
the high data re-use in the workloads. However, unneces-
sarily large lifetime may increase the lifetime of a signature,
consequently degrading performance due to increased false-
positive matches in the bloom filter. To exploit the obser-
vations made in the previous subsection, we take access
patterns into account for lifetime prediction. We categorize
shared cache lines into four types: Write-frequent lines are
vulnerable in the L1 cache, hence short lifetime should be
enough to accommodate them. Some Read-frequent lines
have moderate re-use rate and are likely to favor medium
lifetimes. Read-frequent lines have greater tendency to stay
longer in L1 caches for further re-use, requiring long life-
times. In addition, we introduce another state SharedRO for
shared lines with read-only behavior to take advantage of
the significant percentage of accesses to the shared read-
only lines,. The SharedRO lines do not have timestamps
that dictates the expiration time for the lines, essentially
behaving as lines with infinite lifetime.

Instead of using a single lifetime value as proposed in
TC-Weak, we maintain three lifetime values for different
access patterns described above (SharedRO lines do not
require a lifetime value). To extract the access pattern at
runtime for the lifetime predictor, we exploit the owner bits
in L2 lines to record the read frequency of the line, as the
owner bits are not used for L2 lines in Shared state. A read
to an L2 Exclusive line will make it transition to Shared state
with the read counter initialized to zero. Every subsequent
L2 read to a Shared line due to L1 timestamp expiration will
increase the read counter by one. When the read counter
exceeds a predefined threshold, the access pattern is deemed
changed and the next level lifetime value for higher read
frequency will be used for lifetime prediction. When the
read counter exceeds the last threshold, the Shared line
transitions to SharedRO state. To adjust the lifetime value
within one particular access pattern, a read will increase
the lifetime value by a fixed amount tR (if it does not
exceed the lifetime value for the next level). Similarly a
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write or an eviction of an unexpired lines will decrease the
corresponding lifetime value by tW .

A write request to SharedRO line triggers a broadcast
of invalidation requests and subsequent acknowledgments
from the L1 caches. Our simulations results show that
such ShardRO mis-prediction induced invalidations are ex-
tremely rare — only about one in every ten thousand shared
writes involves an invalidation broadcast.

In a real system, it is non-trivial to accurately predict the
lifetime of a cache line. Here, we build a simple predictor
based on reference patterns in the L2 cache. It is possible
to do this more accurately with other metrics. For example,
the live time metric proposed in Timekeeping [9] can be
useful in our lifetime prediction, such explorations are left
for future work.

3.3 Timestamp rollover

In TC-Release++, the global time counters monotonically
increase and may roll over. Here we propose one possible
solution to this issue.

For every lifetime prediction in the L2, we do not predict
any timestamp that rolls over. Specifically, if the current
time added by the predicted lifetime causes rollover, the
maximum timestamp (that does not roll over) is predicted.
This guarantees that when the global time counters roll
over, every timestamp in the system should be expired.
The expired timestamps can be in cache lines, W-FIFOs,
signatures and network messages. We will discuss how to
deal with these expired timestamps when rollover happens.

First, when the global time counters roll over, all the L1s
stop receiving requests from cores, so no more requests can
be issued to the cache hierarchy. Conservatively, we wait
10k cycles to make sure there is no outstanding network
messages. During this period of time, if the L2 receives
any read request, it predicts an expired timestamp (e.g., a
timestamp of 0) for the request. After sinking the network
messages, we flash-invalidate the L1 Shared lines since they
are expired. Simultaneously, all the W-FIFOs and signatures
are cleared, because writes tracked in either W-FIFOs or
signatures have become globally visible. Finally, the L1s are
resumed from blocking requests from cores. Note that 10k
cycles of L1 stalling seems expensive but it happens fairly
infrequently and therefore is acceptable (e.g., for a 32-bit
timestamp, 10k in every 232 cycles is negligible).

3.4 Memory consistency

RC has been adopted at least partially by ARM [10], Alpha
[11], and Itanium [12] because it is adequately weak for
many hardware designs, but strong enough to reason easily
about data races [13]. A processor supporting RC provides
SC where the software guarantees data-race-free [14].

The RC model TC-Release models is RCSC, one variant
of RC [6]. Like other variants of RC, it defines acquire
and release semantics for synchronization. These semantics
order reads with respect to an acquire (read-acquire →
reads) and writes with respect to a release (writes→ write-
release). In addition, it requires synchronization accesses to
be sequentially consistent.

Synchronization accesses are coherent and sequentially
consistent among themselves in our coherence protocols.

Both TC-Release and TC-Release++ track and serialize ac-
cesses to each synchronization variable. This is accom-
plished by obtaining exclusive ownership for every syn-
chronization access. Thus, they are coherent because cores
cannot observe different write orders, only the order in
which writes register their ownership in the L2. They are SC
because, in addition to the above, read-acquires and write-
releases are blocking in the core so no later synchronization
operations can be initiated until they complete.

4 VERIFICATION

We formally verify TC-Release++ described above using the
explicit-state model checking tool Murphi [15], a widely-
used tool for verifying cache coherence protocols.

4.1 Abstract model
We adopt the standard method for debugging cache co-
herence protocols: we build the abstract model of the TC-
Release++ protocol detailed in Section 3 and perform an
exhaustive state enumeration of the model for a small-sized
configuration [17].

To limit the state space, we leverage the symmetry re-
duction in Murphi by modeling processors, addresses and
data values as scalarset (a data type in Murphi), as the
operations involving these structures do not depend on the
ordering of the elements. A core is modeled as an array
of cache entries consisting of L1 state information along
with protocol-specific fields like the local timestamp and the
Timestamp Bypass (TB) bit for TC-Release++. Similarly, L2 is
also modeled as an array of cache entries, each with L2 state
information, an owner pointer and other protocol-specific
fields like the global timestamp. The on-chip network is
modeled as an unordered buffer. The Bloom filters are
modeled as perfect filters which incur no false-positive hits.
False-positives are modeled in full-system simulation on
gem5 [18], which we will show in Section 6.

The above strategies reduce the state space, nevertheless,
the fundamental differences between TC-Release++ and a
conventional coherence protocol (i.e., eagerly providing SC,
without timestamps, etc.) renders canonical abstract models
difficult to be straightforwardly reused (e.g., the DASH
protocol model shipped with the Murphi release). The rest
of this subsection highlights the challenges of verifying TC-
Release++, followed by our solutions.

4.1.1 DRF model and DRF-relaxed model
In contrast to a coherence protocol that strictly models SC
like the baseline MESI directory protocol, TC-Release++
models RC, providing SC where the program is free of
data races (DRF [14] or properly labeled [6]). On the other
hand, though our protocol guarantees correctness for DRF
programs, as data races can still occur in software, we also
need to verify that TC-Release++ introduces no deadlock
or livelock for racy programs. To this end, we conduct
two versions of verification using Murphi: one models DRF
guarantee from software whereas the other relaxes it.
DRF model: To model the data-race-free guarantee from
software for TC-Release++, our DRF-based verification
makes the following efforts.

First, cores need to provide ordering guarantee for syn-
chronization accesses, which are sequentially consistent and
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also enforce a downward or upward fence. This is achieved
by 1) a core cannot issue a synchronization access until it
completes all the pending memory requests; 2) a core is
stalled from issuing any more memory requests until the
current synchronization access is completed. In Murphi, this
is implemented simply by checking the L1 request queue of
the core.

Second, to correctly model acquire and release, we need
to define when an acquire is deemed successful and when
a core is allowed to issue a release. In our model, every
synchronization variable can be one of three values: the ini-
tial undefined value, AcquiredValue and ReleasedValue. Upon
receiving the data response for an acquire, if the value of the
data is ReleasedValue or undefined, the acquire is successful.
Otherwise, another core has not released the synchroniza-
tion variable, so our verification will model the spin-waiting
behavior of the acquire core. Once the core successfully
acquires the synchronization variable, it modifies the data
value to AcquiredValue. In addition, every core records the
synchronization variable it has acquired. A core can perform
a release to an acquired synchronization variable, which
modifies its data to ReleasedValue.

Third, cores can generate normal read/write requests
only when they are properly synchronized. Specifically, a
core needs to acquire the corresponding synchronization
variable before it can access the data propagated by the syn-
chronization. To prevent the core from issuing racy accesses,
if a core has not acquired a synchronization variable, it al-
ways acquires one before issuing any normal reads/writes.
In addition, for every synchronization variable, we imple-
ment a set of addresses that it should propagate, which we
call the guard set. After a core has acquired a synchroniza-
tion variable, it can 1) issue reads or writes to addresses in
the obtained guard set, or 2) an unaccessed address which
is not in the guard set of any synchronization variable. In
the second case, the address will be added to the guard set
of the acquired synchronization variable. Figure 6 illustrates
our scheme. As shown in Figure 6, Core 0 acquires syn-
chronization variable A ( 1 ) and attempts to write address
x. Since x is unaccessed (not in any guard set), this write is
race-free and x is added to the guard set of A ( 2 ). Then Core
0 releases A ( 3 ). Similarly, Core 2 acquires B ( 4 ), writes y
and adds it to guard set of B ( 5 ), before it releases B ( 6 ). As
A has been released by Core 0, Core 1 successfully acquires
A ( 7 ). Core 1 is allowed to access x ( 8 ) and z ( 10 ), which
are in A’s guard set and unaccessed, respectively. However,
access to y (which is in B’s guard set) is not guaranteed in
the model since it violates the data-race-freedom guarantee
( 9 ). Note that our model does not generate programs using
fine-grained locks (e.g., nested locks). Fine-grained locking
is error-prone as it can lead to deadlock [19]. Generating
error-free fine-grained locks in Murphi is out of the scope of
our verification. Also note that before a release, with respect
to other cores, our DRF model only orders accesses after the
acquire, because it does not allow a core to generate normal
accesses until it performs a successful acquire. In this sense,
it makes our modeled consistency somehow weaker than
RC, which orders all normal accesses before a release ( [6],
condition 3.1, A and B).

Finally, to satisfy the data correctness invariant (which
will be discussed in Section 4.1.3), we also record the last

Core 0

Core 1

acq(A) w(x) rel(A)

acq(A) r(x) r(y) r(z) rel(A)

Core 2
acq(B) w(y) rel(B)

1 2 3

4 5 6

7 8 9 10 11

Guard setsync variables
x       zA

y   B
2

5

10

Fig. 6: Data-race-free guarantee.

written value for every address (including synchronization
addresses). This will be check against the received data for
every read request.

TABLE 1: Dekker’s algorithm (the code for priority control
when both cores intend to enter CS is omitted).

Core 1 Core 2
R1: st rel x, 1
A1: ld acq r1, y

beqz r1, CS1
// priority control
...
jmp A1

CS1:
// critical section

R2: st rel y, 1
A2: ld acq r2, x

beqz r2, CS2
// priority control
...
jmp A2

CS2:
// critical section

Initially, x = y = 0.

Particularly, our verification model also tests the SC
behavior among synchronization accesses. For example, our
model will emit and test Dekker’s algorithm shown in Table
1, which is a legal DRF program and should revert to SC
behavior (r1 and r2 cannot both read 0, thus at least one core
will enter the pooling loop, guaranteeing mutual exclusion
for the critical sections). We first explain that our coherence
protocol prohibits the infeasible states (both r1 and r2 are set
to 0) after executing release/acquire in Dekker’s algorithm
on two cores in parallel (in any order), then we show that
our verification model allows the program to be emitted.

As aforementioned in Section 3.4, synchronization ac-
cesses in TC-Release++ need to obtain exclusive ownership
(similar to [20] [21]), thus cores cannot observe different
write orders, only the order in which writes register their
ownership in the L2. Also, acquires and releases are block-
ing in the core so no later synchronization accesses can be
issued until they complete. With respect to the registration
order of acquire/release in Table 1, Figure 7 illustrates three
execution sequences of them. The registration order dictates
the order cores see the writes. For example, in Figure 7a, the
outcome is (r1, r2) = (0, 1) because A1 registers before R2
while A2 registers after R1, so A1 will read the initial value
0 while A2 can see the written value of R1. Similarly, the
outcomes of Figure 7b and Figure 7c are (r1, r2) = (1, 0) and
(1, 1), respectively. Note that Figure 7c depicts only one of
the four possible execution sequences that lead to (r1, r2)
= (1, 1); this execution is {R1, R2, A1, A2}, and the others
are {R1, R2, A2, A1}, {R2, R1, A1, A2}, and {R2, R1, A2,
A1}. Thus, across all possible six execution sequences, our
protocol does not produce the non-SC outcome where (r1,
r2) = (0, 0).

Our DRF model will emit Dekker’s algorithm, because
1) the modeled spin-waiting behavior guarantees normal
accesses be emitted after a successful acquire, but it imposes
no constrain on emitting synchronization accesses. There-
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Core 2Core 1

R1 x = 1
A1 r1 = y

R2 y =1
A2 r2 = x

Outcome:
(r1, r2) = (0, 1)

L2 registry

(a)

Core 2Core 1

R1 x = 1
A1 r1 = y

R2 y =1
A2 r2 = x

Outcome:
(r1, r2) = (1, 0)

L2 registry

(b)

Core 2Core 1

R1 x = 1

A1 r1 = y
R2 y =1

A2 r2 = x

Outcome:
(r1, r2) = (1, 1)

L2 registry

(c)
Fig. 7: Execution sequences of Dekker’s algorithm

fore, the acquires and releases in Table 1 are allowed to
be emitted. 2) Similarly, the introduced guard set prevents
normal accesses to racy addresses, which does not affect
synchronization accesses. That is, A1 and A2 are considered
as race-free and therefore can be emitted in our model. 3)
Though we do not handle nested locking, Dekker’s algo-
rithm is still tested as it does not contain any nested locks
(new acquires A1 and A2 are performed after releases R1
and R2, respectively).
DRF-relaxed model: For the DRF-relaxed verification, we
let Murphi generate racy accesses (the third scheme of the
DRF model is not used). As correctness is not guaranteed
in this case, we do not check the last two invariants in
Section 4.1.3 (i.e., Bloom filter correctness and data transfer
correctness). In other words, this verification is only used
for proving that our protocol imposes no deadlock/livelock
under racy programs.

4.1.2 Timestamp abstraction
One major challenge in verifying our coherence protocols
is to avoid the state explosion problem [22] caused by
timestamp modeling.

If we simply model a timestamp as a counter, in an
explicit state model checker like Murphi, any change to the
timestamp value will result in a new state. For example,
considering the case when all the L1 lines have expired,
monotonically incrementing the global counter will conse-
quently lead to an infinite-state system.

However, this is unnecessary, as the behavior of a times-
tamp is limited to check if it has expired by comparing
it to the global clock. Therefore, the operations on the
timestamps depend on, rather than their absolute values, the
relative order of the timestamps. That is to say, if change to
a timestamp does not alter the relative order of them, it has
no effect on triggering any timestamp induced events in our
protocols, thus no new system state should be generated.

In order to achieve state reduction, we implement a
version of timestamp abstraction scheme similar to [23] [24]
which exploits the relative order of the timestamps. Let
{TS1, TS2, TS3, · · · , TSn} be the set of all timestamps in
the system. Instead of modeling timestamps as counters, we
map the timestamps {TS1, TS2, TS3, · · · , TSn} into con-
secutive integers {1, 2, 3, · · · , n}. For instance, if we have 5
timestamps of {1, 2, 5, 8, 10}, they will be reduced to {1, 2, 3,
4, 5}. Specifically, every rule fired by the model checker that
causes change to the timestamps (e.g., lifetime prediction,
global clock tick, etc.), a function (implemented in less than
100 lines of Murphi code) will be invoked to adjust the
relative representation of the timestamps. The function sorts
the timestamps of the system, and then assigns them the
new relative values.

For lifetime prediction in the L2, we model a simple
static ∆ = 1 algorithm which predicts a timestamp as the
global clock added by one. Expired timestamps are denoted
as undefined state in Murphi, so they will be excluded
from state enumeration. We also model global clock tick by
having a rule that increments it by one.

Note that more sophisticated methods like translating
the timestamp-based system into timed automata [25] can
be used to address the infinite-state issue, but in this work
we use a simple state reduction scheme.

4.1.3 Invariants

As maintained earlier, TC-Release++ lazily makes writes
visible to other cores, therefore the conventional invariants
(e.g., sharer vector based checks) used for write-invalidating
protocols cannot be used. Instead, we develop four invari-
ants to verify our protocol.
Only one exclusive copy exits. As our protocols tracks the
exclusive ownership in the L2, there can exist only one
L1 copy (the owner) in Exclusive/Modified states. This
invariant checks the exclusivity of L1 modified data, any
violation to it can obviously lead to data inconsistency.
Timestamp validity. If an L2 line has an expired timestamp,
then all its L1 shared copies should have expired. This
invariant checks that the global timestamp in the L2 is
correct, which always tracks the largest timestamp of the
L1 copies.
Bloom filter correctness. This invariant is only used for the
DRF model. If the value of a synchronization variable is
ReleasedValue, for every address in its guard set, if the value
of any L1 copy is different from the recorded last written
value, then the address must hit in the Bloom filter in the
L2. This is because an L1 line in Shared state can potentially
be stale, but when the core that modifies the data has
performed the release, the Bloom filter stored in the L2 must
track the written address. This invariant checks that after a
core leaves the critical section and performs a release, the
Bloom filter is correctly generated.
Data transfer correctness. This invariant is only used for the
DRF model. To check the data correctness of the protocols,
upon data receipt of a read request, the received data will be
compared to the recorded last written value of the address.
This invariant checks if there is any data error in commu-
nication among cores, which is of crucial importance to the
correctness of the TC-Release++ coherence protocol.

4.2 Verification results

We run Murphi on a Xeon E5620 CPU with 32GB of memory
limit, with Murphi’s -c compilation option to use hash
compaction of the state descriptor. Thanks to our state
reduction strategies, with a configuration of 3-core model,
the DRF model checking process reaches 22.1 million states
in 1200 seconds. For the DRF-relaxed model, it reaches
91.1 million states in 1.4 hours. The DRF-relaxed model
generates more states because it allows racy programs to be
tested. Verification results reveal that TC-Release++ does not
violate any of the conceived invariants, introduce deadlocks
or livelocks or have race conditions that violate correctness.

5 METHODOLOGY

In this section, we provide the simulation infrastructure and
workloads used to carry out our evaluation.
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5.1 Simulation Environment

For evaluation of our proposal, we use the gem5 full-system
simulator [18] with Ruby memory system enabled. We simu-
late A 64-tile 2D mesh network-on-chip. Table 2 lists detailed
parameters of the simulated system. We do not simulate
more than 64 cores because gem5 currently only supports
full-system simulation for up to 64 cores. We choose Alpha
ISA with minor ISA extension to explicitly provide acquire
and release semantics for the hardware (see Section 5.2 for
details). We use the H3 Bloom filter implementation, with
four hashing functions and a 256-bit filter. We use H3 for
its low-complexity and easy implementation. The chosen
size of the Bloom filter offers a good compromise between
the hardware overhead and the reduction in the number of
Bloom filter false-positive hits. Likewise, we determine the
W-FIFO size to be 16 entries. The size of the timestamp used
in our simulation is 32-bit.

The baseline protocol used in our evaluation is the MESI
directory protocol shipped with gem5, where the directory
information is embedded in the LLC (last-level cache, L2
in this case) tags. A full-map sharing vector (i.e., 64-bit in
our case) is stored in every LLC entry to precisely track the
sharers.

TABLE 2: Simulation parameters.
Cores 64 in-order cores at 2 GHz, Alpha ISA,

single-thread, IPC-1 except on L1 misses
L1 Cache Split I & D, 32KB, 4-way, 64B cacheline,

LRU, 2-cycle access latency
L2 Cache Shared, 32MB (64 slices of 512KB each),

16-way, 64B cacheline, LRU, 9-cycle ac-
cess latency

Network 2D Mesh, 8 rows, 16B-flit, 1/5-flit con-
trol/data packets

Memory 2GB, DDR3, 16 channels
Timestamp size 32 bits
Bloom filter 256-bit filter, 4 H3 hashing function
W-FIFO size 16 entries

TABLE 3: Workloads and input size.

PARSEC

blackscholes
bodytrack
ferret
fluidanimate
swaptions

simmedium
simsmall
simsmall
simsmall
simsmall

SPALSH-2

barnes
ocean cp
radiosity
raytrace
water nsqured
water spatial
fft
lu cb
lu ncb
radix

16K particles, ts=0.25
514x514 Grid
BF refinement=1.5e-1
Teapot
153 molecules
153 molecules
4M points
512x512 matrix, block=16
512x512 matrix, block=16
16M keys, radix=4K

5.2 Workloads

We use PARSEC [26] and SPLASH-2 [27] workloads to
evaluate our proposal. Table 3 shows the 15 workloads
and input size used in simulation. For stable and faithful
measurements, we run each experiment multiple times and
bind each thread to a particular core by invoking the Linux
system function pthread setaffinity np when the threads are
spawned. All workloads run correctly to completion, and
the statistics are collected from start to the end of the
parallel phase. To obtain the acquire and release semantics
from the applications as required by our proposal, we

TABLE 4: Storage requirements for TCR++ in an N-core
system.

TCR

Per L1/L2 line:
Timestamp, 32-bit
Timestamp Bypass bit (L1 line only), 1-bit
Owner pointer (L2 line only), log2(N)-bit
Per L1:
GWCT, 32-bit

Signature
design

Per L1:
RWS/LWS, 256-bit filter + 32-bit timestamp = 288-bit
W-FIFO: 16 entries * (32-bit for addr + 32-bit timestamp) = 128B
Per L2 tile:
GWS: 256-bit filer + 32-bit timestamp = 288-bit

Lifetime
prediction

Per L2 tile:
Lifetime values, 3 * 32-bit for each = 96-bit

extend the Alpha ISA with special read-acquire and write-
release instructions and instrument the libraries used as
synchronization primitives in the workloads so that they
are exposed to the hardware architecture.

6 EVALUATION

In order to evaluate our proposal, besides the baseline
MESI directory protocol, we present detailed results for four
configurations. TCR-Basic is similar to TC-Weak but with
necessary adaptations for general-purpose many-core archi-
tectures as discussed in Section 2. TCR adds the important
RC-optimization on top of TCR-Basic. TCR++ improves the
basic TCR protocol by applying techniques detailed in Sec-
tion 3 that reduces the stalls at release points and performs
better lifetime prediction. As an ideal reference design, we
also implement an infinite size bloom filter with TCR++ and
we denote this idealized configuration as TCR++Inf.

As TCR-Basic and TCR use fixed lifetime prediction,
we select the value to be 4,500 cycles and 900 cycles, re-
spectively, because these values yield the best performance.
Larger lifetime values begin to degrade performance with
increasing stalls at release points. We find that static lifetime
for TCR-Basic and TCR performs better than dynamic life-
time prediction proposed in TC-Weak [4] because dynamic
lifetime prediction attempts to accommodate the high L1
data re-use rate, which results in longer lifetime and suffers
more from stalls at release. The initial values for the three
lifetimes used in TCR++ are 10K (write-frequent), 85K (mod-
erate read-frequent) and 160K cycles (read-frequent) and
the respective thresholds for read-counter to upgrade the
access patterns are 16 (upgrade to moderate read-frequent),
32 (upgrade to read-frequent) and 64 (upgrade to shared
read-only). We determine the lifetime values as they evenly
divide the re-uses of shared read/write lines. The lifetime
adjustment values tR and tW used within each type of
access pattern are 16 and 256 cycles, respectively.

In the following subsections, we first assess the hardware
storage required by TCR++ and compare it to conventional
directory coherence. Then we validate our proposal by
presenting detailed simulation results of execution time,
network traffic and cache performance.

6.1 Storage overheads

Table 4 shows the storage requirements for TCR++. The per
line storage requirement for maintaining the timestamp has
the most significant impact on hardware cost. The additional
storage overheads for implementing the proposed signature
design and lifetime prediction is modest as it does not
require any per line cost, adding up to less than 1% of
storage for the per line timestamp.
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Fig. 8: Execution time of all configurations, normalized to MESI.
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Fig. 9: Network traffic of all configurations, normalized to MESI.
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Fig. 10: Storage overheads for cache coherence in TCR++
and MESI, with up to 256 cores.

As aforementioned, a plethora of works have investi-
gated minimizing the directory footprints [28] [29], here
we choose a standard full-map directory as our baseline.
Compared to the baseline directory protocol, TCR++ only
requires O(logN) storage per line for an N-core system
rather than O(N) directory information. Figure 10 shows
the coherence storage overheads of TCR++ and MESI for
up to 256 cores. We can see TCR++ is significantly more
scalable, reducing as much as 83% of the coherence storage
overhead compared to MESI at 256 cores. Compared to the
chip caches, the storage overheads of TC-Release++ are less
than 7.2% of the storage of the private cache plus the shared
L2 at 256 cores.

We do not provide a detailed study of area benefits from
the O(logN) coherence storage of TCR++ as it has been
well reasoned in [1]. When the on-chip core count grows
radically, say to 256 cores, the storage of a full directory
will require 256-bit sharer vector per LLC cache line, which
equals to 50% of the whole LLC storage for 64B cache
line. Moreover, the LLC occupies a considerable portion of
the chip area (as much as 50% in modern chips [30]). As
illustrated in Figure 10, TCR++ reduces the directory storage
overhead by 83% compared to MESI at 256-core, which can
directly translate to significant savings in chip area.

6.2 Performance results

Figure 8 and Figure 9 show the execution time and network
traffic for all the workloads for the five configurations,
normalized to the baseline MESI with directory. To further

evaluate the impact of our proposal on cache behavior,
we plot the normalized L1 miss rate (w.r.t. MESI with
directory) and the breakdown of L1 hits for all evaluated
configurations in Figure 11 and Figure 12, respectively.
TCR-Basic and TCR: On an average, TCR-Basic shows
26.6% slowdown compared to the baseline MESI. The
best case, ferret, performs 4.7% faster than the base-
line, while the worst case has a slowdown of 63.2% for
fluidanimate. Benefiting from the RC-optimization, TCR
is able to speed up TCR-Basic by 14.2%. Three work-
loads (ferret, swaptions and water_nsqured) show
slightly better performance compared to MESI, while the
worst case performance (fluidanimate) is still 30.0%
slower than the baseline MESI. The speedup of TCR over
TCR-Basic primarily results from the significant reduction
in L1 misses due to the RC-optimization (see Figure 11; on
an average, TCR has 50.1% decrease in L1 miss rate over
TCR-Basic).

Nonetheless, on an average, TCR still performs 8.6%
worse than MESI. The main reason behind the subpar per-
formance of TCR is the performance penalty for stalling on
releases, and the performance loss gets exacerbated in case
of frequent synchronizations (e.g., fluidanimate with the
worst case performance). Moreover, substantial memory
stalls on releases prohibits larger lifetime values, which in
turn hampers the L1 cache performance. Consequently, TCR
shows an average increase of 35.7% L1 miss rate over MESI.
The high percentage of shared reads in radiosity suffers
from timestamp expirations, causing 203% more L1 misses
than the baseline, as shown in Figure 11. The significant
increase in L1 miss rate also affects the generated network
traffic. As we can see in Figure 9, TCR has an average
increase of 53.2% in network traffic over MESI.

TCR shows worse performance for workloads with lots
of shared data accesses and frequent synchronizations. It
reveals mediocre performance for workloads with small
shared data working set and predominant accesses to pri-
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Fig. 13: Performance improvement by speculation.

vate data. For example, fft, radix and ferret are less
sensitive to release-stalling because more than 80% of L1
hits are to temporarily private states (Exclusive/Modified),
referring to Figure 12.
TCR++: By relaxing the write visiblity time from a release
to the corresponding acquire, in tandem with the optimized
lifetime prediction, TCR++ is rewarded with an average
of 10.7% speedup over TCR. Compared to the baseline
MESI, TCR++ is on an average 3.0% faster. The best cases,
radiosity and radix, perform 14.0% and 8.3% better
than the baseline, respectively. The worst case is ocean_cp
with 3.3% slowdown. TCR++ shows comparable or better
performance than MESI because of its faster writes as shared
lines are not explicitly invalidated and acknowledged as in
directory coherence protocols. As the writes can complete
faster, the cache line stays in the blocking state for shorter
duration, making the subsequent reads to the line faster.

In contrast to TCR with fixed lifetimes, TCR++ is able to
fully utilize the L1 caches, fueled by flexible lifetime choices.
As seen in Figure 11, TCR++ shows remarkable improve-
ment in L1 cache performance over TCR (with an average
of 25.4% decrease in L1 miss rate, within 1.2% of MESI).
Specifically, with the detailed read misses breakdown in
Figure 11, we can see that the read misses due to lifetime
expiration is decreased significantly. In most workloads (9
out of 15), the lifetime expiration induced read misses are
barely noticeable. The small number of read misses on
expired lines well reflects the efficiency of the proposed
lifetime prediction mechanism. In particular, the SharedRO
optimization contributes significantly to the improved L1

cache performance, as L1 hits on SharedRO state takes up a
considerable part of L1 shared read hits in Figure 12.

The reduction in L1 miss rate translates to less network
traffic. On an average, The network traffic of TCR++ is
within 1.3% of the baseline MESI (with the best case re-
duction of 18.2% for raytrace) and 33.9% reduction over
TCR. TCR++ shows similar network traffic compared to
the baseline MESI directory protocol. TCR++ does not have
invalidation traffic where a write needs to invalidate other
shared copies as in a directory protocol. But as we maintain
ownership in the L2, TCR++ still has the network traffic
caused by ownership shift or downgrade requests. Besides,
TCR++ also incurs network traffic due to self-invalidations
and signature transfers.
Impact of infinite Bloom filter size: As shown in Figure 8,
by varying the Bloom filter size from 256-bit to an idealized
infinite size, TCR++Inf shows little difference in execution
time and network traffic (both within 1%), compared to
TCR++. In fact, as we can see in Figure 11, for TCR++ with
a 256-bit filter implementation, the Bloom filter induced
read misses are fairly small across all workloads. TCR++Inf
removes read misses caused by Bloom filter false positive
hits; however, the L1 miss rate reduction is minimal (0.5%),
which does not translate to performance improvement.
Thanks to the timestamp assigned to every signature that
allows the signature to be cleared after its timestamp ex-
piration, unnecessary L1 misses are saved. Overall, TCR++
with a realistic Bloom filter configuration performs nearly
identical to an infinite size Bloom filter.
Speculation: Although we evaluate our coherence protocols
with simple cores, they can also be used to advantage
with complex cores that support speculation and dynamic
execution. In this case, a new possibility for optimization
opens up. When an L1 Shared line has expired its timestamp
and the Timestamp-Bypass (TB) bit is not set, TC-Release++
needs to access the L2 for a new lease. With speculative
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execution mechanisms available, the latency of these L1
misses can be hidden by speculatively using the expired
data in the L1 and the protocol reloads expired cache lines
with their latest version from the L2. If the self-invalidated
data and the L2 data differ (i.e., the line has been modified),
speculation is squashed. This optimization is similar to [31]
[5]. In Figure 13, we show the performance improvement by
speculation using gem5’s in-order core model with specula-
tion mechanisms implemented and fluidanimate which
has the most expiration-induced L1 misses. We can see
that speculation improves the performance of TCR++ from
within 0.5% of MESI to outperform it by 3.2%.
7 RELATED WORK

We have discussed in passing the closest works to our
proposal. Here we discuss other related work and provide a
broader overview of more scalable approaches to coherence.

7.1 Timestamp-based coherence

Using timestamps for cache coherence has been explored
in software [32] [33], significant software support increases
burden to programmer beyond simple synchronization an-
notation. Nandy et al. [34] first investigated the use of
timestamps for hardware coherence, but important aspects
like the target memory consistency model and lifetime
prediction are not discussed. In addition to the timestamp-
based hardware coherence protocols we have discussed [3]
[4], Tardis [5] [35] is a recently proposed work that relies on
timestamps for maintaining coherence. Different from our
proposal, Tardis is implemented for stronger consistency
models (i.e., Tardis [5] models SC and Tardis 2.0 [35] models
TSO), and it uses logical time and the novel time travel
mechanism to eliminate the stalls on writes. Nevertheless,
its logical time use incurs drawbacks like livelocks and
legion L1 timestamp renewal requests, the proposed solu-
tions [35] increase complexity in the protocol. Tardis also
proposes some valuable optimizations in timestamp-based
coherence: the performance loss due to its large number of
premature expirations of L1 lines is hidden by speculatively
making use of the data stored in the expired lines. It also
introduces a timestamp compression mechanism to reduce
the storage requirement. These optimizations are orthogonal
to our proposal.

Elver et al. [36] [37] also use timestamps in the proposed
coherence protocol for relaxed memory consistency models,
but different from the timestamps in our proposal that
indicates the lifetime of an L1 line, the purpose of using
timestamps in [36] [37] is to transitively reduce the number
of self-invalidations at acquires.

7.2 Coherence for relaxed consistency

Dynamic Self-Invalidation (DSI) [38] first proposed self-
invalidation of lines in private caches, reducing coherence
traffic as invalidations are no longer sent from the directory.
The authors observed that for relaxed memory consistency
models, as long as private lines are eliminated before the
next synchronization point, coherence is guaranteed. Cache
coherence for relaxed memory consistency has been ex-
plored in more recent work [39] [36] [37] [40] [41] [?].
VIPS-M [39] investigates coherence simplification fueled by
relaxed consistency semantics. With proper private/shared
data classification and a write-through cache, it builds a

coherence protocol that brings down the need of coher-
ence states to two rudimentary valid/invalid states. Sim-
ilarly, Denovo protocols [41] [42] [?] achieve comparable
complexity-efficiency and performance with however, more
software involvement. Callback [40] proposes an elegant
approach to eliminating the spin-waiting races in coherence
protocols based on self-invalidation.

TSO-CC [36] make a major step toward adopting self-
invalidating coherence protocols for more practical consis-
tency models (i.e., TSO), while previous work commonly
assume a RC consistency model. RC3 [37] explores the
intersection of stricter consistency models (such as x86-64)
and the recent convergence toward the adoption of RC
consistency model by high-level programming languages.

In contrast to our proposal that uses a signature to
selectively self-invalidate L1 lines, these approaches apply
cache-wide self-invalidations at acquires that may degrade
performance. Specifically, we expect the implementation of
TC-Release with fixed zero-cycle lifetime to perform similar
to a simple relaxed consistency coherence protocol that
invalidates all L1 Shared lines at acquires. As suggested by
the resulting performance (∼10% slower than MESI), a lot of
shared lines will be unnecessarily victimized due to cache-
wide invalidation.

7.3 Using signatures in coherence

Signatures have been used in transactional memory systems
as conflict detectors [43]. In the context of RC, the idea of
using a signature to track a the write set of a core before
a release has been proposed in prior works [44] [42]. A
primary problem associated with the signature design is
when to clear the signatures. Over the execution of the
workloads, the write-set tracked in the signature will grow
very large, ultimately causing it to be saturated, where every
signature lookup will result in a false positive hit. Prior
works rely on software or compiler to perform signature
clear [44] [42].

The major difference of our proposal with prior work is
that our signature design is built on top of timestamp-based
coherence protocol, which establishes the validity period
of the signature. The timestamp of a signature provides a
time bound by which the filter field can be safely cleared.
Therefore, the signature clearing in our proposal is entirely
hardware driven and does not require any software involve-
ment. Additionally, the timestamp coherence also opens up
further optimization opportunity — the W-FIFO effectively
reduces the write-set size because globally visible writes
(i.e., ones with expired timestamps) from the W-FIFO are
not required to be tracked in the signature.

8 CONCLUSION

In this paper, we propose a timestamp-based coherence
protocol for release consistency memory models that ad-
dresses the scalability issues in efficiently supporting cache
coherence in large-scale systems. Our protocol is inspired
by a recently proposed timestamp-based coherence proto-
col targeting GPU architectures [4]. However, we observe
that implementing a similar coherence protocol for general-
purpose many-core architectures leads to sub-par perfor-
mance compared to the de-facto standard directory coher-
ence protocols. To overcome the limitations and overheads,
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we propose TC-Release++ that eliminates the expensive
memory stalls and provides an optimized lifetime pre-
diction mechanism. Compared to a conventional directory
coherence protocol, TC-Release++ is highly scalable as it
eliminates the storage overhead for coherence substantially
but at the same time exhibits better execution time and
comparable network traffic.
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