I
BT SR R Z5 R

PROCHE WL K AL B
chenwz@zju.edu.cn
201459 H

mailto:chenwz@zju.edu.cn

AR R RERIE (1)

© 19465F: 1E IR F7 X5 IRV Bt il B
A B — & BT THENLENIAC

(Electronic Numerical Intergrator and

Ca Culator)IE:tuXT’?l‘fﬁo

1%, &

AFR - 1009&)?{: 8.5 R RFExnF R
Hik: 18000E 5%,

HE: DRL0K, %, SRR

R & RERE (2)

0 60% —%ﬁﬁﬂﬁ*ﬁ?%k%ﬁ%
Mg k) BERE T >51MN8&E
#r 1% AR $5001141L %ﬁ*ﬁé—*SOr—ﬁE

$107pLAS, XEFRMERETHEILFUELE,
EE T IS NN EL

SR .
e i | s

[P:\>dir
Uolume in drive P has no
Uolune Serial Mumber is 6f

Directory of Pi\

Ciproad

EnEEm
e r— =

Hyfipps
HyDo

tenp

WINDOWS

WINREK
g

<
File(s>

Incredible performance improvement

Intel ¥eon, 3.6 GHz __ 64-bit Intel Xeon, 3.6 GHz
BE05

PowerPC 604, 0.1GHz g+
Alpha 21064, 0.2 GHz

=)
==}
&=
3
=
w
=
i}
L5}
g
=
z
2

VAX 8700 o’

VAX-1/780 -
T2 5, VAX-11/785

1 1 1 S

1880 1884 1986 15888 1890 1642 1994 1995 1998 2000 2006

IR L RERid

&)

o HEHSIARRER BHEDHIREZ —

,‘757l<12 O — — BN ORI RS, G
CHLFENAME) A RIME R

fF'E FREPE AR, Bli%Moore e A RE,

NIAL BE A P RE (420 B B i iR E H0E X

181 H %ﬂkﬂ%, HIESES

SR =158% .

D(T) = D(T;)

o(T-To)/15

R & RERE (4)

o T

SARRIE K

RS HIREZ

iﬁﬁ;{?’%m&ﬁﬁd%ﬁ, RIS 28 45 A4 1 AN W
BT o

o &,

i1 T HE >R R>MEERS>HESE SR>

e

R RHIZ

o BHTER, BH18(1977EKVAX/7804 1 MIPSHL

i

BT o
s BIRZLIR, A EREER, CBEHEES.

19854EVAS/785/X°N1.5 MIPS, JLPfEIEAR

HEIRAR L RERE (5)
o & Kt B F 45 4 HITT I 2

#E— 2P

A

25

SRR ALE

(£

=Y, 1,

E A AL AR R TR RR . Ot AR PR 18] AR
BT E SRS A BESEREH .

ST ENLR R GUTERE: A

" [H] 1 |I=J ,‘ﬁ, E‘I‘éﬁ:ﬁlri,
A] 48 T

LT

X 32 H T DNATHEHL),

1.2 THEHVE RS E X (1)

o EN1:

VR R HURR S R

B: Mm%

GR: RS

BEE: 55

FIB K.

Wit AR EXREENER
@m TR (ERHRAD) .
LA E A RDLES, HERE

EXAFERM: STHEVRTIgERIT, Z8iX

T A R SEHR:

AR

215

K, RABHFER.

THREAE R G E X (2)

® & N2:

TEIVE RGN ERERESERTH, THEIARR
T (B 5EBR) .

B RE AR BIBIT

j:bx?\gt*ﬁ ﬁ ’ zﬂﬁ‘ZT ﬁ .
VAX11/780-- SPARC2;

VAX8600--SPARC20;

TRSEMA, HBWHER, EWAR:
VAX11/780--VAX11/785 (ICTZZAHE

ARESHIndy (B #F I Cache A [F)D

10

1.3 B RG SR 973

—. GEITHFEALRIFNER

1989IEEEF A5 M 7 TR 2 fA 2= 12 H B TH L7028
. MAIFEHL Personal Computer (PC)
. LAF%% WorkStation (WS)
. /NHL Mini Computer

. AP, Mainframe

. /NERHL Minisupercomputer

. BEHL Supercomputer

*MR 55 4

* LT

ARG

*] 2% 3471+ ML (Cluster. Grid Computer)

S EL ETE. B SHEK

11

—. Flynn4p2k

*;%%E sz fg PRI B Z Az X AL R
TR SRAR R T SO AR R R 2 45 U A A

;
AT ANE PRI B AL
?ﬁ@fﬁ: Ml2sHAT T8 2 751

#aEA: i BR8] (AR
ERIRHEIEAP)

ZfEE: LRGN P T L A i U
EQEI’JTE @Z%XTEEI’JW?(.

12

1. BIgSHR—BHIBAR SISD
& 48 B 1 AL 1S

L |_S— DS

PU

1/0-—- CU

CU: #HlEH 1S: 584
PU: Ab¥EAH DS: FidEin
MU: A7 384

13

BLRYZE R (G0 L

ERZA ST

2. BIRSHR—ZHIER SIMD gt
AR gE . 2 AL BT 2 X B AT AL B

DS DS
PE, LM,

IS

M ML
TN % 72
52

PE: AbFEHEIT
LM: KA FEES (it

16

prev instruct

load A(2)

prev instruct

load B(2)

load A(n)

C(2)=A(2)*B(2)

store C(2)

next instruct

17

LA L) R B AL

H.J. Siegel 1979 1=

3K 5 TESERE 48 3k (SIMD)

Bl: EEEH

a C
B=

P g_
b d f h
C= AeB

ae+cf ag+ch
pe+df bg+dh

. BEFEHEEEEIRE

20

3. LB EEM MISD
LAULTRE, K [E] BT A B

DS,

21

HLAVEER: BKBIFETITT L

KR EHNRIELRLEs AL, — B NEs =TT EAL.
K387t ENL (VLIW) FIEFE (Decounted) &AL
4 FHRKENRES] (Systoic arrays) & HLAT LAE Rtk

AL

7 2

22

prev instruct

load A(1)

prev instruct

C(2)=A(1)"2

load A(1)

store C(2)

C(n)=A(1)*n

next instruct

store C(n)

next instruct

23

Flynn432& 04

4. ZI/ESR—ZHER MIMD
ZHILRG---- 2 MBS ARG T EILR S

TN AL FEHL o] IS $0AT 15 2 A AL PR A R
—MIHAT I EHL R Z R X Fh &5 .
1S, SM

MM,

MM

n

24

prev instruct

call funcD

prev instruct

=y~ 2z

do 10 i=1,N

sUM=x"2

alpha=w**3

call sub1(i,j)

zeta=C(i)

next instruct

10 continue

next instruct

25

1.4 Measuring Suits

e Real applications
I.e. C compilers, TeX and Spice.

e Modified (or scripted) applications
To enhance portability or to focus on one particular
aspect of system performance.

e Kernels

Small key pieces (usually small) of real programs. i.e.
Livermore Loops and Linpack.

Used to isolate performance of individual features and
help explain behavior of real programs.

26

e Toy benchmarks

Small programs (10-100) lines that produce a known
result. i.e. QuickSort Sieve of Eratosthenes,Puzzle,

e Synthetic benchmarks

synthetic benchmarks try to match the average frequency
of operations and operands of a large set of programs. i.e.
Whetstone and Dhrystone.

Similar to kernels but are NOT real programs !

27

1.5 Comparing and Summarizing

e (—) Total Execution Time: A Consistent
Summary Measure

o
|
- Z Time,
=]

Arithmetic mean:

28

e () Weighted Execution Time

The gquestion arises: What is the proper
mixture of programs for the workload?

weighted arithmetic mean:

iy
E Weight, = Time,

o where Weighti is the frequency of the ith
program in the workload and Timel is the
execution time of that program.

29

e (=) Normalized Execution Time and the Pros
and Cons of Geometric Means
the geometric mean

o Where Execution time ratioi is the execution time, normalized
to the reference machine, for the ith program of a total of n in

the workload.

Geometric mean(X ;)

= Geometric mean (—
Yi

Geometric mean | ‘1”!-)

30

1.6 Quantitative Principles

—. Make the Common Case Fast

e If a design trade-off Is necessary, favor the
frequent case (which Is often simpler) over the
Infrequent case.

e Perhaps It I1s the most important and pervasive
principle of computer design.

For example, given that overflow in addition is
Infrequent, favor optimizing the case when no
overflow occurs.

Simple is fast! Small is fast!

31

—. Amdahl’s Law

e The performance improvement to be gained from using
some faster mode of execution is limited by the fraction

of the time the faster mode can be used.
Performance for entire task using the enhancement when possible

Speedup =
Performance for entire task without using the enhancement

Alternatively,

Execution time for entire task without using the enhancement

Speedup = . ; . .
Execution time for entire task using the enhancement when possible

32

e Fraction . ..q Always<=1.

The fraction of the computation time Iin the
original machine that can be converted to
take advantage of the enhancement

@ Speed u p enhanced Time of orginal mode

Time of enhanced mode

Always = 1

The improvement gained by the enhanced
execution mode; that I1s, how much faster the
task would run if the enhanced mode were
used for the entire program

33

Fraetmnenimnc&d

Execution time, ., = Execution timejy X | (1 = Fraction_)+

Speedu Denh

anced

The overall speedup 1s the ratio of the execution times:

Execution time

Speedu = — = |
PEeCPoverall = Eyecution time Fraction

" (1 - Fraction

enhanced

SpeEduptnhanccd

anhantad) T

34

e Example

Suppose that we are considering an enhancement to
the processor of a server system used for Web
serving. The new CPU is 10 times faster on
computation in the Web serving application than the
original processor. Assuming that the original CPU is
busy with computation 40% of the time and is waiting
for 1/0O 60% of the time, what is the overall speedup
gained by incorporating the enhancement?

Answer Fraction_ . ceq = 0-4

Speedup.jhanced = 10

Spaedupm,e rall

35

e Example

A common transformation required in graphics engines is
square root. Implementations of floating-point (FP) square root
vary significantly in performance, especially among processors
designed for graphics. Suppose FP square root (FPSQR) is
responsible for 20% of the execution time of a critical graphics

benchmark.One proposal is to enhance the FPSQR hardware
and speed up this operation by a factor of 10. The other
alternative is just to try to make all FP instructions in the
graphics processor run faster by a factor of 1.6; FP instructions
are responsible for a total of 50% of the execution time for the
application. The design team believes that they can make all FP
instructions run 1.6 times faster with the same effort as required
for the fast square root. Compare these two design alternatives.

36

We can compare these two alternatives by comparing the speedups:

1 1
SpEEdUpFPSQR = 02 = m =1.22
(1-02)4 7=

1 1
Speedupp = 05 08125
(1-05)+72 B0

Improving the performance of the FP operations overall is slightly better because
of the higher frequency.

37

=+ The CPU Performance Equation

CPU time = CPU clock cycles for a program x Clock cycle time

CPU clock cycles for a program

CPU time = Clock rate

38

CPI = CPU clock cycles for a program

Instruction count

CPU time = Instruction count X Clock cycle time X Cycles per instruction

CPI
Instruction count X Gl-%el-e—t—mqe-

Clock rate

CPU time =

I[lSIl‘lICIiDI]S}{CIDCk cycle:a}{ Seconds Seconds
Program Instruction ~ Clock cycle Program

= CPU time

39

CPU performance is dependent upon three
characteristics:

clock cycle (or rate)
clock cycles per instruction

and instruction count.

e [t is difficult to change one parameter In
complete isolation from others
Because the basic technologies involved In

changing each characteristic are
Interdependent:

40

Clock cycle time—Hardware technology and
organization

CPIl—Organization and instruction set

architecture

Instruction count—Instruction set
architecture and compiler technology

41

n
CPU clock cycles =)" 1C; x CPI,

=1

M
CPU time = { Z IC, % CPII} x Clock cycle time

I

> IC; x CPI, .
IC,

CPI = = = > — x CPI,
Instruction count - Instruction count !
i=

42

e Examplel.4. Suppose we have made the
following measurements:
Frequency of FP = 25%
Average CPlof FP =4.0
Average CPI of other instructions = 1.33
Frequency of FPSQR= 2%
Average CPI of FPSQR = 20

Assume that the two design alternatives are to
decrease the CPI of FPSQR to 2 or to decrease the
average CPI of all FP operations to 2.5. Compare

these two design alternatives using the CPU
performance equation.

43

Answer

First. observe that only the CPI changes: the clock rate and instruction count
remain identical. We start by finding the original CPI with neither enhancement:

n —
) I')I (_ I'_.I ||-" IL! "||
L Lol = E) - -
original = ' Unstruction count /
=

= (4% 25%) + (133 % 75%) = 2.0

We can compute the CPI for the enhanced FPSQR by subtracting the cycles saved
from the original CPI:

CPLyith new FPSQR = CPlarigina — 2% * (CPlgg gpsor — CPl e ew mPSOR only?

= 2.0-2%x(20-2) = 1.64

We can compute the CPI for the enhancement of all FP instructions the same way
or by summing the FP and non-FP CPIs. Using the latter gives us

CPl o pp = (75% x 1.33) + (25% x 2.5) = 1.625

Since the CPI of the overall FP enhancement is slightly lower, its performance
will be marginally better. Specifically, the speedup for the overall FP enhance-

ment 1s

NEIBET L, B 1wk cvele Pl . .
CPL 11'““‘*:::1'151:131 3 1C = Clock L}L]L w (] IDl’lgl]lEﬂ
¥ . . - - = . S .]

CPu Me .« Fp [C = Clock Yy cle = C1 I]lew FP

CPI

Speedup ow FP

original _ 2.00
CPl . P |.625

= 1.23

JU. Principle of Locality

e Programs tend to reuse data and instructions
they have used recently.

a program spends 90% of its execution time in only

10% of the code.

Temporal locality

o states that recently accessed items are likely to be
accessed in the near future.

Spatial locality

e says that items whose addresses are near one another
tend to be referenced close together in time.

45

~ lake Advantage of Parallelism

e Taking advantage of parallelism is one of
the most important methods for

Improving performance.

46

1.7 Compilers and Architecture

Typical Compilation

Dependencies Function

Language dependent; Transform language to
machine independent common intermediate form

ront-end per
language

Intermediate
representation

Somewhat language dependent,
largely machine independent

For example, procedure inlining
and loop transformations

High-level
optimizations

Small language dependencies; Including global and local
machine dependencies slight Glabal optimizations + register
(e.q., register counts/types) optimizer allocation

Highly machine dependent; Detailed instruction selection
language independent Code generator and machine-dependent
aptimizations; may include

47

