This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

IEEE SYSTEMS JOURNAL

Performance-Monitoring-Based Traffic-Aware
Virtual Machine Deployment on NUMA Systems

Yuxia Cheng, Wenzhi Chen, Zonghui Wang, and Xinjie Yu

Abstract—Virtualization technology enables multiple virtual
machines (VMs) to share a single physical server. Commercial
servers increasingly use the nonuniform memory access (NUMA)
architecture due to its scalable memory performance. However,
multiple VMs running on a NUMA physical server will cause
performance overheads such as remote memory access latency
and shared microarchitectural resource contention, which makes
the VM performance less efficient and stable. These performance
overheads are mainly caused by memory traffic from data-
intensive workloads. In this paper, we propose a traffic-aware
VM optimization (TAVO) scheme on NUMA systems. Based on
the performance monitoring of the data traffic and CPU/memory
resource usages in the system, TAVO addresses VM memory access
locality and shared resource contention problems via automatic
VM initial placement and NUMA-aware VM online scheduling.
Our experimental results show that TAVO improves VM perfor-
mance in terms of benchmark runtime by up to 22.6% compared
with the default KVM CFS scheduler. TAVO also achieves a much
stable performance with benchmark’s average runtime variation
under 3%.

Index Terms—Memory traffic, nonuniform memory access
(NUMA), performance monitoring, scheduling, virtual machine
(VM).

I. INTRODUCTION

IRTUALIZATION technology enables multiple virtual

machines (VMs) to share a single physical server. VM
consolidation improves physical resource utilization in cloud
data centers. Cloud platforms commonly use commercial
servers to host as many VMs as possible to reduce the total
cost of ownership. However, cloud providers have to meet the
service level agreement with customers. Achieving high VM
consolidation faces big challenges [11] due to constraints on
performance degradation. Therefore, it becomes increasingly
important to exploit performance opportunities and improve the
efficiency of cloud data centers.

Performance inefficiency largely stems from a lack of under-
standing of the VMs’ behavior and their interactions with the
underlying machine architectures [7]. Traditional VM monitors
(VMMs) regard a physical machine as the resource aggregation
of cores, main memory, storage space, etc., but without an
explicit view of shared microarchitectural resources such as
on-chip caches, memory controllers, and interconnects. These

Manuscript received November 10, 2014; revised April 25, 2015 and
June 29, 2015; accepted August 12, 2015. This work was supported by the
National Science and Technology Major Project of the Ministry of Science and
Technology of China under Grant 2013ZX03003010-002.

The authors are with the College of Computer Science and Technology,
Zhejiang University, Hangzhou 310027, China (e-mail: rainytech@zju.edu.cn;
chenwz@zju.edu.cn; zhwang @zju.edu.cn; yuxinjie @zju.edu.cn).

Digital Object Identifier 10.1109/JSYST.2015.2469652

microarchitectural resources have a large impact on the overall
system performance.

To improve the efficiency of VMs running on modern
servers, we have to understand the physical architecture of
these servers. Today’s physical servers deployed in data centers
typically use the nonuniform memory access (NUMA) archi-
tecture due to its high aggregated memory bandwidth and sys-
tem scalability. However, the NUMA multicore multiprocessor
architecture has performance overheads [14] such as remote
memory access latency and shared microarchitectural resource
contention, which brings significant challenges for optimiz-
ing VM performance. Traditional VM schedulers scheduling
virtual CPUs (VCPUs) onto physical cores depend on CPU
load balance, and there is little consideration of NUMA per-
formance overheads [8]. The NUMA unawareness may lead to
suboptimal and unstable VM performance [23], [27]. Existing
NUMA -aware optimization methods mainly focus on maximiz-
ing memory access locality [3], [4] and seldom consider other
microarchitectural resource contention problems that are found
equally important to the overall system performance.

In this paper, we use hardware performance monitoring
counters to measure microarchitectural resource usages. Based
on the performance monitoring of the data traffic and other
physical resource usages, we propose a traffic-aware VM opti-
mization (TAVO) scheme on NUMA systems. TAVO addresses
both memory access locality and shared resource contention
problems via automatic VM initial placement and NUMA-
aware VM online scheduling. The main contributions of this
paper are described as follows.

1) We implement a low overhead performance monitor us-
ing hardware performance counters. The performance
monitor collects system-level and VM-level performance
events to reflect resource usages. In particular, the per-
formance monitor collects data traffic statistics among
NUMA nodes to effectively reveal microarchitectural
resource contention.

2) Based on the performance monitoring of the NUMA
system, we propose a traffic-aware hybrid (TAH) bin
packing algorithm to initially place new VMs into NUMA
nodes. The TAH algorithm dynamically collects on-
line CPU/memory/bandwidth usages and uses the mul-
tidimensional resource vector that takes the CPU load
balance, memory access locality, and microarchitectural
resource contention into account.

3) Based on the automatic VM initial placement, we further
propose a NUMA-aware VM scheduler to dynamically
adjust virtual to physical resource mappings online. The
scheduler periodically executes NUMA-aware VCPU
scheduling and memory page migration in case of work-
load phase change.

1932-8184 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto: rainytech@zju.edu.cn
mailto: rainytech@zju.edu.cn
mailto: rainytech@zju.edu.cn
mailto: rainytech@zju.edu.cn

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

The proposed TAVO scheme is an integral solution to opti-
mize VM performance on NUMA machines. Our experimental
results demonstrate that the TAVO scheme achieves better
and more stable VM performance on NUMA systems than
the traditional VM scheduling method. The TAVO scheme
improves VM performance by up to 22.6% compared with the
default KVM CEFS scheduler, and TAVO also achieves a much
stable performance with benchmark average runtime variation
under 3%.

The rest of this paper is organized as follows. Section II
discusses related work. Section III describes the background
and the design motivation. Section IV presents a method of per-
formance monitoring of resource usages. Section V presents the
proposed TAVO scheme. Section VI presents the experimental
results. Section VII concludes this paper.

II. RELATED WORK

There has been significant research interest on the multi-
core and NUMA-related optimizations to nonvirtualized and
virtualized systems.

To address shared resource contention on multicore systems,
researchers have proposed hardware partitioning and page
coloring [18] techniques to mitigate the shared cache contention
problem on multicore systems. Efficient coscheduling of
different threads to more constructively use shared on-chip
resources is another promising technique to alleviate contention
problems. Zhuravlev et al. [8] proposed DI and DIO thread
scheduling algorithms to reduce cache contention by spreading
cache-intensive threads apart and coscheduling them with less
cache-intensive threads. References [23] and [27] analyzed the
optimal thread coscheduling on multicore processors. These
researches are mainly focused on the single socket multicore
systems.

On NUMA multiprocessor systems, more performance
factors have to be considered. Besides shared cache contention,
the optimization of NUMA systems should also take care of
memory controller congestion, interconnection congestion, and
remote memory access latency. Awasthi et al. [19] analyzed the
problems and opportunities posed by multiple on-chip memory
controllers. Majo et al. [20] proposed the N-MASS thread
mapping algorithm that considers both data locality and cache
contention problems on NUMA systems. Blagodurov et al. [15]
extended their shared contention research [8] to NUMA
systems and proposed the DINO NUMA-aware management
policy. The DINO policy is a combination of cache-contention-
aware thread scheduling and NUMA -aware memory migration.
Other compiler-based code transformation techniques [21]
are proposed to address resource contention and data locality
problems.

Tang et al. [14] and [16] studied the performance impact
of NUMA systems on large-scale data center applications.
Mars et al. [13] proposed a mechanism named bubble-up to
predict the performance degradation due to colocating multiple
data center scale applications on a single multicore server.
Based on the bubble-up mechanism, they [12] further proposed
the bubble-flux mechanism to efficiently colocate latency sensi-
tive applications and batch jobs. These techniques are proposed
in the nonvirtualized environments.

IEEE SYSTEMS JOURNAL

core core core core
0 1 4 5
Mem core | core core | core Mem
Node 2 3 6 U Node
0 L3 Cache | | L3 Cache 1
QPI Link QPI Link
Mem L3 Cache | | L3 Cache Mem
Node Node
core core core core
2 8 9 12 | 13 3
core core core core
10 | 11 14 | 15

Fig. 1. Simplified architecture of a quad-socket NUMA system.

In virtualized environments, Rao et al. [7] proposed a
NUMA-aware VCPU migration algorithm. The algorithm uses
the uncore penalty metric to predict VCPU performance on
NUMA systems and dynamically migrates VCPUs to minimize
the system-wide uncore penalty. More recently, Liu et al. [11]
proposed a NUMA-overhead-aware hypervisor memory man-
agement policy. They introduced a method to estimate the
memory zone access overhead using hardware performance
counters. Based on the estimation, they proposed two optimiza-
tion techniques: a NUMA-overhead-aware buddy allocator and
a P2M swap FIFO. In contrast to the previous studies, our
proposed TAVO scheme collects the data traffic performance
statistics to help determine VM initial placement and online
scheduling on NUMA systems, which both considers VCPU
scheduling and memory management.

In cloud data centers, many solutions [31]-[35] were pro-
posed to increase server utilization and reduce resource con-
flicts. Nathuji et al. [31] designed a VM QoS-aware control
framework named Q-Clouds. The Q-Clouds framework re-
serves suitable resources and tunes resource allocations to mit-
igate performance interference effects. Delimitrou et al. [32],
[33] proposed a heterogeneity and interference-aware cluster
management system that uses collaborative filtering techniques
to classify and deploy large-scale different workloads in data
centers. Vasic et al. [35] proposed the DeepDive system to
identify and manage performance interference among VMs
colocated on the same physical machine in cloud environments.
Their approach to identify interference is based on VM per-
formance classification and exhaustive interference analysis.
Once the interference is identified, the VM is migrated to a less
loaded machine. In our proposed TAVO scheme, we focused
on more fine-grained NUMA node level performance problems
within each machine.

III. BACKGROUND AND MOTIVATION
A. NUMA Architecture

The NUMA system has multiple memory nodes and mul-
ticore processors. Fig. 1 shows an example of a quad-socket

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

CHENG et al.: PERFORMANCE-MONITORING-BASED TRAFFIC-AWARE VM DEPLOYMENT ON NUMA SYSTEMS 3
I 2 o5 NL‘JMA Performance Overhea‘ld
me | [T) (e) [T] | [[§ os B i comnon ,
[owc] [or Fplem][we]| | o] [f—glam] [we] | | |[owc] [aefi=plam][we]| & oI contnton
L & 34 & | b JU o 04 [_]Remote Memory 7]
°
en [o [][] |
) (b) ' @© £ oo
a e c
| 2 025
I g o2
| I:l Socket g -
[uc]| [uc] [uc | [uc] S s
ICalc, o i) Ml i e vemery £
* L = L | VM1's VCPUSs 2 s
S 0.
[ES I SR N) RS R RS
(©) (d

Fig. 2. Comparison of VM performance degradation caused by different performance overheads on the NUMA virtualized systems. (a) LLC contention. (b) IMC

contention. (c) QPI contention. (d) Remote memory. (e) Base line local execution.

NUMA system. In each socket, there are four cores sharing
the last level cache (LLC or L3 cache) and the integrated
memory controller (IMC). Sockets communicate with each
other via high-speed interconnect (e.g., Intel QPI links shown
in the figure). The IMC in each socket is connected to its local
memory node. A NUMA node is composed of a socket and a
directly connected memory node. The socket can access remote
memory via the remote IMC, and the QPI link is responsible for
data transmission between sockets. Due to intersocket commu-
nication overhead, remote memory access is slower than local
memory access. Although other NUMA multiprocessors (e.g.,
AMD Opteron) may differ in the number of sockets and cores,
the size of shared caches, and the techniques of interconnect
(e.g., AMD HyperTransport), they have very similar architec-
tural designs. Therefore, most of our discussions are applicable
to them. As more cores will be integrated into one socket and
more sockets will be interconnected within one system, the
shared resource contention [9] and data traffic problem [10]
becomes even more severe in the future hardware.

B. Virtualized System

The system virtualization layer, typically the VMM or the hy-
pervisor, provides a virtual abstraction of the machine hardware
for each guest OS. Multiple VMs share hardware resources. In
order to access the actual hardware, each guest OS running on
the VM needs the virtual to machine translation. Therefore,
to better utilize the NUMA physical machines, the mapping
from virtual to machine resources should consider the NUMA
system’s characteristics. However, traditional VMMs provide
a Uniform memory access virtual abstraction for the guest
OS [25]. Without the knowledge of the underlying NUMA ar-
chitecture, VMs cannot be aware of the performance overheads
running on the NUMA systems. The NUMA unawareness in
virtualized systems results in suboptimal and unstable VM
performance.

To study the performance impact of virtual to machine
resource mappings on NUMA systems, we design four dif-
ferent VM mapping scenarios that represent four sources of
performance degradation factors. Fig. 2(a) represents the LLC
contention that two VMs’ VCPUs are bound to the same
socket and their memory is allocated on separate NUMA nodes.
Fig. 2(b) represents the IMC contention that two VMs’ memory

is allocated on the same node and each VM’s VCPUs are bound
to separate sockets. Fig. 2(c) represents the QPI interconnect
contention that two VMs’ VCPUs access their memory from
remote nodes and contend for the QPI link. Fig. 2(d) represents
the remote memory access overhead that one VM accesses its
memory from the remote NUMA node. Fig. 2(e) represents the
base case that the VM’s VCPUs and memory are mapped on
the same node. In each scenario, VMs are allocated with the
same physical resources of CPU and memory. We compare
the VM1’s performance of scenarios Fig. 2(a)—(d) with the
base case scenario Fig. 2(e). The experimental platform and
benchmarks are described in detail in Section VI. We run a
set of benchmarks in VMs under different scenarios and record
their performance results. We plot the benchmark performance
degradation under scenarios Fig. 2(a)—(d) relative to the base
case performance under scenario Fig. 2(e).

From the experimental result, we make three observations.
First, some applications have higher performance degradation
than others under the same VM mapping scenario. We find that
data-intensive applications are more sensitive to the NUMA
performance overheads. Second, all four sources of NUMA
overheads are equally important in terms of impacting on the
application’s performance. Third, each source of NUMA over-
head alone can result in a significant performance degradation.
Therefore, in order to optimize the performance of NUMA
virtualized systems, it is important to identify the NUMA
system performance bottlenecks in terms of microarchitectural
resource usages and to balance each shared resource usage
across the NUMA system.

C. Problems and Challenges

VMs running on multicore NUMA systems have many
shared resources, and different VM corunning combinations
can lead to different levels of performance degradation. Pre-
vious researchers have found that finding an optimal task to
core assignment on the multicore multiprocessor systems to
maximize the overall system throughput is an NP-complete
problem [23], [27]. As the number of cores, the number of
shared resources, the number of NUMA nodes, and the num-
ber of simultaneously running tasks in the system increase,
the number of possible task assignment grows exponentially.
Therefore, it is impractical to enumerate all possible VM

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

DRAM
il LoRAM |
core ENENEINN So =
\
\
RSy | ——— AN
‘ L3 Cache ‘ \ arl
Uncore
mc || an
I — 11 S2 S3

m

(a) (b)

Fig. 3. Performance monitoring of microarchitectural resource usages.
(a) Simplified block diagram of the Nehalem processor. (b) Simplified block
diagram of the quad-socket NUMA system.

assignments to achieve the optimal system performance. What
is more, tasks running in VMs may have changing behaviors,
and once the VM workload changes, the system should adjust
the VM assignment accordingly.

In practice, one simple method that has been used by current
VMMs is to bind a VM to one NUMA node if the NUMA node
has enough free CPU and memory resources. That is to allocate
the VM’s memory in one NUMA node and schedule the VM’s
VCPUs on the same node. This bind policy guarantees the VMs
all memory accesses to be local and achieves a much stable
performance. However, the bind policy only addresses the
remote memory access problem on NUMA systems. The other
performance degradation sources, such as shared cache con-
tention, memory controller contention, etc., remain unsolved.

To more effectively exploit multicore NUMA system perfor-
mance, we should both consider memory access locality and
shared resource contention problems. One practical solution is
to capture the online interactions between VMs and underlying
physical resources and heuristically balance the system load.
Generally, a more balanced use of system resources can achieve
better performance [24]. The VMMSs that can understand
microarchitectural resource utilization on NUMA systems and
dynamically adjust virtual to physical resource mappings are
expected to have better and more stable VM performance.

IV. PERFORMANCE MONITORING OF
MICROARCHITECTURAL RESOURCE USAGE

In this section, we describe the technique of characterizing
microarchitectural resource usages using a hardware perfor-
mance monitoring unit (PMU) in modern multicore proces-
sors. It can help us identify the performance bottlenecks in
the NUMA system and provide the basis for NUMA-aware
performance optimization.

The PMU in modern multicore processors [6] provides the
capabilities of monitoring a wide variety of performance events
to illuminate the code interactions with the architecture. There
are two types of performance events: core events and “uncore”
events. As Fig. 3(a) shows, the core events include the events
of the processing cores (cO—c4), the private L1 and L2 caches;
the “uncore” events include the events related to the shared
L3 cache (LLC), the IMC, and the socket interconnection
interface (QPI).

In the symmetric multicore processor, each core has the same
architecture of the out-of-order pipeline and the private L1 and
L2 caches. Data requests that miss in the private L2 cache are

IEEE SYSTEMS JOURNAL

sent to the “uncore” memory subsystem. The “uncore” memory
subsystem in a multicore socket mainly consists of a shared L3
cache, an IMC, and several QPI links. In a quad-socket NUMA
system, as Fig. 3(b) shows, each socket has four QPI links, with
one linked to the IOH (I/0O hub) and the other three linked to the
remote sockets. Therefore, excessive data requests sent by the
cores will result in resource contention on the “uncore” memory
subsystem.

Data requests that are missed in the shared L3 cache will be
sent either to the IMC attached to the local node or to the QPI
links connected to the remote node, which depends on the
requested data residing either in the local memory node or in the
remote memory node. Through monitoring the data traffic that
passes through the L3 cache, the IMC, and the QPI links, we can
get a holistic view of resource usages on the “uncore” memory
subsystem. Traffic congestions on the memory subsystem can
severely hurt application performance. Therefore, data traffic
management is particularly important for the total throughput
of NUMA systems.

To get a holistic view of the data traffic statistics, we calculate
three kinds of performance metrics: the L3 cache miss rate,
the memory bandwidth usage within each NUMA node, and
the interconnect bandwidth usage between every two NUMA
nodes. The L3 cache miss rate is calculated by using the
number of the L3 cache misses divided by the number of cache
references. The L3 cache events are periodically collected. The
higher the L3 cache miss rate, the more intensive the L3 cache
contention.

The recent Intel processors (microarchitecture code name
Nehalem or newer) [6] provide the capability of counting the
number of memory controller read requests and the number of
full cache line writes to DRAM (the PMU “uncore” events).
This allows us to calculate the memory bandwidth usage within
each NUMA node by counting the total number of memory
controller reads and writes during a certain period of time. In
the same way, the interconnect bandwidth usage between two
NUMA nodes can be estimated by counting the number of data
transmissions coming to and outgoing from the socket through
the QPI links.

Therefore, through monitoring data traffic that passes
through the “uncore” memory subsystem, we can get the
knowledge of the microarchitectural resource usages and
identify the imbalanced use of these resources. This kind of per-
formance monitoring capabilities can help us more effectively
schedule VMs on NUMA systems.

V. NUMA-AWARE VM PLACEMENT AND SCHEDULING

Based on the analysis of the NUMA performance overhead
and the capability of monitoring performance events described
in the previous sections, we propose a TAVO scheme on NUMA
systems. The TAVO scheme strives to balance the NUMA
resource usages in order to achieve better and more stable VM
performance.

A. Overview

The key idea of the TAVO scheme is to optimize perfor-
mance on consolidated virtualized NUMA systems by balanc-
ing physical resource usages among different NUMA nodes

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

CHENG et al.: PERFORMANCE-MONITORING-BASED TRAFFIC-AWARE VM DEPLOYMENT ON NUMA SYSTEMS 5

VM Placement Manager NUMA-aware scheduler

it VMM i

Performance Monitor

core core core core core core core core
0 2 4 6 1 3 5 7
L3 cache | | L3 cache
IMC arl | | api IMC
DDR3 10H/PCH DDR3

Fig. 4. Architecture overview of the proposed TAVO scheme in the virtualized
NUMA system.

and determining efficient VM colocations. The TAVO scheme
involves VM initial placement and NUMA-aware VM schedul-
ing. In order to handle multiple NUMA performance overheads,
TAVO introduces a traffic-aware multicapacity bin packing
algorithm to efficiently determine the VM initial placement.
Taking advantage of the VM initial placement, TAVO further
adjusts virtual to physical resource mappings online through a
flexible NUMA-aware scheduler during the whole VM lifetime.
As Fig. 4 shows, TAVO is composed of three major parts:
the performance monitor, the VM placement manager, and
the NUMA-aware VM scheduler. The performance monitor
is responsible for collecting performance events of each VM
as well as the whole NUMA system. When new VMs need
to be deployed on the NUMA machine, the VM placement
manager is activated and uses the performance events collected
from the performance monitor as input to execute the VM
initial placement algorithm. After the VMs are deployed on the
system, the NUMA-aware VM scheduler periodically detects
workload phase change and schedules proper VMs onto less
loaded NUMA nodes.

B. Performance Monitor

The performance monitor periodically collects performance
events online. There are two kinds of performance events
collected by the monitor: software events (such as CPU and
memory usage statistics that are exported by host OS) and
hardware events (collected by reading hardware performance
counters). The performance monitor gathers these events and
classifies them into system-level and VM-level performance
events.

System-Level Performance Events: To get a holistic view
of the NUMA system physical resource usage, the monitor
periodically updates the following system-level performance
statistics.

1) CPU and memory usage. The system’s CPU usage and
memory usage are two basic indicators for measuring
overall system load. The monitor collects the CPU and
memory usage statistics on a per-node basis.

2) Memory bandwidth and interconnect bandwidth usage.
Imbalanced use of memory bandwidth and interconnect
bandwidth may cause data traffic congestion on the
NUMA system [10]. The monitor collects memory band-
width usage on a per-node basis and collects interconnect
bandwidth usage between NUMA nodes (described in
Section III).

VM-Level Performance Events: To understand the perfor-
mance characteristics of different VMs, the monitor peri-
odically collects the following performance statistics on a
per-VM basis.

1) Per-VM CPU and memory usage. The monitor collects
each VM’s CPU and memory usage information provided
by the host OS.

2) Per-VM LLC miss rate. The monitor also collects the LLC
miss rate on a per-VM basis. Currently, the PMU does
not provide the capability of monitoring per-VM memory
bandwidth usage [6]. Therefore, we use the LLC miss rate
to infer the VM’s memory access intensity.

C. VM Placement Manager

When a new VM needs to be deployed on the NUMA
machine, the VM placement manager decides on which NUMA
node(s) the new VM should initially be placed (the new VM’s
memory and CPU should be allocated). The VM initial place-
ment on NUMA systems can be regarded as an incarnation
of the bin packing problem [5], which is NP-hard. Therefore,
using heuristics is a reasonable way to address the problem.
Traditional NUMA optimization technique uses the first fit
(FF; or best/worst fit) algorithm to find the proper node(s) that
have enough physical CPUs (PCPUs) and enough free memory
to accommodate the new VM. Besides considering CPU and
memory resources, we add NUMA traffic awareness into the
VM placement manager.

The NUMA traffic reflects microarchitectural overheads that
are critical to system performance. Therefore, we propose a new
TAH bin packing algorithm to more intelligently place VMs
into NUMA nodes. The TAH algorithm is a variation of the
multidimensional bin packing algorithm. We regard the physi-
cal NUMA nodes as bins and regard VMs as items. Each bin
has 3-D resource capacities, which represent the CPU, mem-
ory, and bandwidth resources. The capacity of a bin is repre-

-

sented by a vector C= (Cepu, Cmem; Chw), Where Cepy, Crnems

and C},, represent the bin’s available capacities of the CPU,

memory, and bandwidth resources, respectively. Each item

(VM) is represented by a corresponding 3-D resource require-
—

ments vector R= (Rcpu, Rmem, Rbw), where Repy, Rmem, and
Ry, represent the item’s resource requirements of the CPU,
memory, and bandwidth, respectively. We normalize each re-
source’s capacity and requirement such that their value lies
between 0 and 1.

To exploit more performance opportunities, we introduce hy-
brid bins. A hybrid bin aggregates more than one NUMA node
resource capacities. Hybrid bins are dynamically determined by
the interconnect bandwidth usage. The NUMA nodes linked by
interconnects can be formed as a hybrid bin if their interconnect
bandwidth usages are lower than a predefined threshold. If a

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

CPU MEM BW CPU MEM BW

0.4
°2 jom or] 02
3

1 2 1 3 2 3 2 1

< < <

cpu | mem| Bw cpu [mem| Bw cpu [mem| Bw
06 | 04| o3 06| 03| 0a 03| 04| os
06 07 07 | 06
04 0.4
2

1 2 3 1 3

CPU | MEM| BW CPU |MEM| BW CPU |MEM| BW
Bins 0.2 2.1 811 0.2
After | %4 O
Packing
QG 0.7 07 | e
0.4 0.4

Bin1 Bin 2 Bin 3

CPU MEM BW

Items| 0.4

Bins

Fig. 5. Examples for balancing 3-D resource capacities in the TAH bin
packing algorithm.

VM is placed into a hybrid bin, its memory is interleaved among
those NUMA nodes that form the hybrid bin. Thus, the VM
can benefit from the aggregated CPU, memory, and bandwidth
resources of multiple NUMA nodes.

When a new VM needs to be deployed on the NUMA system,
the VM placement manager first collects performance statistics
from the performance monitor and creates multiple bins. The
created bins include single-node bins and multinode hybrid
bins. Each bin is initialized with 3-D resource capacities to
reflect the amount of corresponding resources which are cur-
rently available on the NUMA system. Then, the VM placement
manager looks up a proper bin for the new VM. The look-up
procedure is as follows.

1) Sort the bins by the sum of their three resource capacities
in descending order. The sorted bins fall into two cate-
gories: single-node bins and multinode hybrid bins, with
the single-node bins listed ahead of the multinode bins.
Therefore, VMs can be first put into single-node bins to
prioritize memory access locality.

2) Label the new item (VM) and each bin with the relative
order of three resource requirements and capacities. For

5
example, as Fig. 5 shows, the new item R has resource

—
requirement that R= (0.4, 0.2,0.1), and we label the rel-
ative order of three resource requirements with (1, 2, 3).
Similarly, before the new items are packed into the bins,

2
the Binl’s resource capacity C'= (0.6,0.4,0.3), so we
label the relative order of three resource capacities with
1,2,3).

3) Search the sorted bin list from the beginning until we find
a bin that satisfies the following two conditions: a) the
resource capacities of the bin meets the resource require-
ments of the new item. b) The bin has the same relative

IEEE SYSTEMS JOURNAL

order of resource capacities with the item’s relative order
of resource requirements. By satisfying condition b),
we try to balance 3-D resource usages on each bin. As
Fig. 5 shows, when we pack the items into the bins that
have the same relative order of resource requirements
and capacities, each bin after packing has more balanced
use of 3-D resources. Balanced use of each resource can
minimize system performance bottlenecks, and therefore,
more VMs can be consolidated into the system.

4) If the search failed in 3), we relax search condition b) so
that the bin should satisfy the same maximum resource
capacity with the item’s maximum resource requirement.
If this round search failed again, we further relax the
search condition to only satisfy condition a).

Finally, we assign the satisfied bin’s corresponding NUMA
node(s) as the VM’s “home” node(s) in which the VM’s VCPUs
and memory resources are initially allocated. If the relaxed
search still cannot find the satisfied bin, the VM placement
manager reports that this new VM cannot be deployed on this
NUMA machine due to resource constraint.

D. NUMA-Aware VM Scheduler

The NUMA-aware VM scheduler provides a flexible solution
to dynamically adjust virtual to physical resource mappings
online. The scheduler has two major functionalities: VCPU
scheduling and memory page migration.

VCPU scheduling adaptively maps VM’s VCPUs onto
PCPUs according to the system load. Each VM is assigned the
“home” NUMA node(s) in the VM initial placement phase. To
more flexibly use physical resources, we do not statically pin
the VM’s VCPUs onto PCPUs of its “home” node(s). Instead,
the NUMA-aware scheduler prefers to schedule VCPUs to their
“home” node(s) but provides the opportunity of letting VCPUs
run on other nodes.

Initially, the NUMA-aware scheduler sets the CPU affinity of
each VM to its “home” node(s). VCPU scheduling within each
NUMA node is taken over by the default CFS scheduler, which
preserves the original CPU load balancing within each node.
The NUMA-aware scheduler is responsible for load balancing
across different nodes. System-level and VM-level performance
statistics are periodically collected from the performance mon-
itor. Then, the NUMA-aware scheduler determines whether
there is a need to schedule VCPUs from a heavy loaded node to
a light loaded node. The scheduling process is as follows.

1) The scheduler periodically checks whether the system
has a load imbalance between NUMA nodes. If there
are active VCPUs waiting in the CPU run queue on one
NUMA node while there are idle PCPUs on other NUMA
nodes, then the scheduler determines if there exists a load
imbalance between NUMA nodes. If the load imbalance
is not detected, the NUMA-aware scheduler sleeps for a
period of time (we set 1 s in our implementation).

2) After the load imbalance is detected, the scheduler finds
the VCPU scheduling source node and destination node.
The NUMA node that has the most number of active
VCPUs waiting in the run queue is selected as the
scheduling source node. The NUMA node that has
the most number of idle physical cores is selected as

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

CHENG et al.: PERFORMANCE-MONITORING-BASED TRAFFIC-AWARE VM DEPLOYMENT ON NUMA SYSTEMS 7

the scheduling destination node. If there exist multiple
source nodes and destination nodes, the scheduler selects
the source and destination node pair that has the lowest
interconnect bandwidth usage between these two nodes
to reduce the interconnect contention.

3) The scheduler then determines how many VCPUs should
be scheduled from the source node to the destination
node. The number of VCPUs to be scheduled is equal to
the minimum value of the number of idle physical cores
in the destination node and the number of waiting VCPUs
in the source node. It is better to let the VCPUs run on idle
cores in other nodes rather than waiting in their “home”
node, even if these VCPUs running on other nodes may
have remote memory access latency.

4) The scheduler further decides which VCPUs should be
scheduled out from the source node. To minimize remote
memory access latency and interconnect bandwidth con-
tention, the scheduler selects the VCPUs whose “home”
node is equal to the destination node or the VCPUs that
have the least LLC miss rate in the source node. Finally,
the scheduler updates the CPU affinity of the selected
VCPUs to the destination node. The migrated VCPUs
will be scheduled back to its “home” node, once its
“home” node has idle physical cores or its “home” node
becomes the least loaded node in the system.

Memory page migration provides the capability of mov-
ing memory pages between two NUMA nodes online. Note
that memory page migration causes performance overheads;
we prohibit frequent page moves during VM’s lifetime. The
memory page migration is triggered when a VM’s “home”
node needs to be updated because a long-term load imbalance
between NUMA nodes is detected in the system. During the
VCPU scheduling phase, the NUMA-aware scheduler records
the number of times each VM’s VCPUs are scheduled out from
their “home” node(s) in the last ten scheduling epochs. If one
VM’s VCPUs have more than eight times out of ten being
scheduled out from their “home” node(s), then the scheduler
determines that the VM’s “home” node(s) should be updated
because, most of the time, the VM’s VCPUs are running on
other nodes. Updating VM’s “home” node(s) involves recalcu-
lating the system resource requirements and capacities. More-
over, the scheduler invokes the VM initial placement algorithm
to recalculate the VM’s new “home” node(s). After updating
the VM’s new “home” node(s), the NUMA-aware scheduler
migrates the VM’s corresponding memory pages to its new
“home” node(s).

E. Implementation

We implement a prototype of the proposed TAVO scheme
in the KVM virtualized platform. The performance monitor,
the VM initial placement manager, and the NUMA-aware VM
scheduler are implemented as individual daemons in the KVM
host operating system. The performance monitor accesses the
hardware performance counters via the perf_event module
provided by the Linux kernel, and the monitor also collects
other software performance statistics via parsing the pseudo-
proc file system. The VM initial placement manager obtains
the NUMA topology via parsing the pseudo-sysfs file system
and automatically sets the VM’s configure file according to

the placement decisions. The NUMA-aware scheduler uses
the sched_setaffinity() and move_pages() system calls provided
by the Linux kernel to dynamically adjust VCPU to PCPU
mappings online and migrates VM’s memory pages when the
system load changes.

VI. PERFORMANCE EVALUATION

We run the experiment on the quad-socket Dell R910 server.
The server is configured with four 1.87-GHz Intel Xeon E7520
processors based on the Nehalem-EX architecture. Each pro-
cessor has four cores sharing a 18-MB L3 cache. The processors
are interconnected via the Intel QPI links. The R910 server
has a total of 16 physical cores and 64-GB memory, with each
NUMA node having four physical cores and 16-GB memory.
With the Intel HyperThreading enabled, there are a total of 32
hardware threads in the system.

VMs run on the gemu-kvm (version 1.0) virtualized plat-
form. Both the host and guest operating systems used in the
experiments are Ubuntu 12.04 with the Linux kernel version
3.8.0-35. Each VM is configured with four VCPUs and 8-GB
memory. We select the following benchmarks to run in VMs
and record their execution times for each run.

1) NPB. The NAS parallel benchmark (NPB) suite [1] is a
set of benchmarks developed for evaluating the perfor-
mance of parallel systems. The NPB benchmark suite
consists of five parallel kernels and three simulated ap-
plication benchmarks. We used the OpenMP version with
each benchmark compiled with four threads and set the
scale to class B.

2) SPEC CPU 2006. SPEC CPU 2006 [2] is an industry-
standardized CPU- and memory-intensive benchmark
suite. The benchmarks stress a system’s processor and
memory subsystem resources.

A. Improvement on VM Performance

We evaluate the proposed TAVO scheme with the following
two different scheduling strategies.

1) Default. The QEMU-KVM default strategy uses the ker-
nel’s default completely fair scheduler (CFS) and default
memory allocation policy. The CFS schedules VCPU
threads to different physical cores depending on the
CPU load balance and seldom considers NUMA over-
heads. The default memory allocation policy allocates
a VM’s memory on the NUMA nodes where the VM’s
VCPUs are running. In the default strategy, a VM’s
VCPUs and memory will be scattered around different
NUMA nodes.

2) FF-Pin. The FF-Pin strategy uses the VCPU pinning and
memory binding methods to statically place a VM onto a
NUMA node. The FF algorithm is used to find a proper
NUMA node for each VM. The FF algorithm searches
the NUMA node that first satisfies the CPU and memory
resource requirements for each VM. The FF-Pin strategy
benefits from local memory access but lacks the flexibility
of using other NUMA node resources.

Fig. 6 shows the performance comparison of benchmark
workloads under three different scheduling strategies: default,

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

I Default
I FF-pin]
[Jtavo

Normalized Runtime

ft
Parallel Workload

sp mg lu is ep cg bt

Normalized runtime

IEEE SYSTEMS JOURNAL

- Défault
121 I FF-pin ||
1 [_11AvO
1L i
0.9r q
|
I N .
I N .
LML

Y SR
SRR o @
o° W 0
< Y Q o«

Fig. 6. Performance comparison of VM performance under three different scheduling schemes: default, FF-Pin, and TAVO. The performance results are
normalized to the workload runtime of each individual benchmark under the default scheduling strategy.

20

[Default
FF-pin
[y\Y/e)

Relative standard deviation (%)

bt

lu

sp mg is ft ep cg
Parallel Workload

Relative standard deviation (%)

20 T T T T T T

I Default
[FF-pin
C_JTAVO ||

" N A
509\6* o QX o ‘i\(\{b o q‘ai o ‘(\‘\e@? £?
o

Fig. 7. Performance stability comparison of benchmarks running in VMs under three scheduling strategies: default, FF-Pin, and TAVO. The RSD value is plotted

for each benchmark with five individual runs under each strategy.

FF-Pin, and TAVO. The performance of each benchmark is nor-
malized to the benchmark runtime of the default strategy. Each
benchmark runtime is the average of five runs under the same
strategy. For the NPB benchmark [Fig. 6(a)], the TAVO scheme
outperformed both the default QEMU-KVM and the FF-Pin
strategies. Compared with the default strategy, the performance
improvement of TAVO ranged from 1.2% (ep) to 22.6% (cg).
We examined the benchmarks of ep and cg and found that cg
consumes a much larger memory bandwidth than ep. Thus, cg
is more memory intensive than ep. The TAVO scheme can more
effectively improve the performance of the memory-intensive
workload. For the SPEC CPU 2006 benchmark [Fig. 6(b)],
the TAVO scheme outperformed both the default QEMU-KVM
and the FF-Pin strategies. For example, the performance of
soplex benchmark under TAVO scheme improved by 14.2% and
13.8% compared with the other two strategies, respectively. As
for the povray benchmark, the performance improvement was
not obvious. This is because povray is not a memory-intensive
workload and is not sensitive to NUMA overheads.

There are two reasons that the TAVO scheme has perfor-
mance advantages against the default and FF-Pin strategies.
First, the VM initial placement in the TAVO scheme assigns
each VM the “home” node(s), which guarantees VMs’ most
memory accesses to be local compared with the default strat-
egy. The FF-Pin strategy also guarantees VMs’ local memory
accesses, but it only considers CPU and memory resources
without taking into account microarchitectural resources.
Second, the NUMA-aware scheduler in the TAVO scheme pro-
vides flexible solutions to schedule VCPUs and migrate mem-
ory pages when the system workload phase changes. Therefore,

the TAVO scheme can exploit more performance opportunities
than the default and FF-pin strategies.

B. Reduction on VM Performance Variation

In Fig. 7, we compare the performance variations of work-
loads running in VMs under different scheduling strategies. We
use the relative standard deviations (RSDs) of benchmark run-
time to represent the degree of performance variation. The RSD
value is calculated for each benchmark with five individual runs
under each strategy. The smaller the RSD value, the more stable
the workload performance.

Fig. 7(a) shows the RSD comparison of NPB benchmarks
among three different scheduling strategies. It is obvious that
the default strategy has a much higher performance variation
than the FF-Pin and TAVO strategies. The default strategy only
considers the load balance of physical cores when scheduling
VCPU threads and seldom takes into account the NUMA
performance overheads. Thus, the default strategy causes con-
siderable performance variations. The FF-Pin strategy has fixed
VCPU-to-core mappings, so it has very small RSD values
across all benchmark workloads. On average, the NPB bench-
marks under the FF-Pin strategy have no more than 4% runtime
variations. Except for the is benchmark, which has a very short
runtime. The TAVO scheme achieves a similar performance
variation with the FF-Pin strategy. The average RSD value
of the NPB benchmark under the TAVO scheme does not
exceed 5%.

Fig. 7(b) shows the performance variation of the SPEC
CPU2006 benchmark under three scheduling strategies. The

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

CHENG et al.: PERFORMANCE-MONITORING-BASED TRAFFIC-AWARE VM DEPLOYMENT ON NUMA SYSTEMS 9
0.40% in VMs are long running applications, it is acceptable to
T 035%| | make optimization adjustment due to workload change within

@ seconds.
; 0.30% f In the experimental section, the TAVO scheme is tested in
5 . the KVM virtualized environment. We have tested VM perfor-
§ 0.25% mance overheads in the Xen system and found similar perfor-
£ 0.00%| mance degradations; therefore, we infer that the TAVO scheme
g is also applicable in other VMMs as long as the underlying
g 0.15% physical servers have the same NUMA overheads. However,
é 0.10% | to demonstrate the effectiveness of the TAVO scheme under
8 different VMMs, we need to implement the corresponding
$ 0.05% 1 performance monitor, VM initial placement manager, and VM
0 ‘ ‘ ‘ ‘ scheduler daemons in different systems. We plan to design the

0 4 8 12 16 20 24 28 32
Number of VMs

Fig. 8. Average runtime CPU overhead of the TAVO scheme.

results are similar with the NPB benchmark. From the exper-
imental results, we observe that the memory-intensive work-
loads (soplex, mcf, milc, and sphinx3) have larger RSD values
than the relatively less memory-intensive workloads (povray,
Ibm, omnetpp, and astar). This is because the performances of
the memory-intensive workloads are more likely affected by the
NUMA overheads when their VCPU-to-core mappings change
due to scheduling.

C. Overhead Analysis

Fig. 8 shows the CPU usage of TAVO. The CPU usage
includes the performance monitor thread, the VM initial place-
ment manager thread, and the NUMA-aware scheduler thread.
The main runtime overhead is due to periodically updating
system-wide and per-VM performance statistics. The VM ini-
tial placement manager is only activated when new VMs are
needed to be deployed on the NUMA system. Therefore, the
runtime overhead of the VM initial placement manager is trivial
compared with the performance monitor and the NUMA -aware
scheduler. Updating the system-wide performance statistics
has a constant runtime overhead, while updating the per-VM
performance statistics has a runtime overhead correlated with
the number of VMs in the system. We set the updating cycle
to 1 s, which is a good balance between obtaining accurate
online performance statistics and keeping the runtime overhead
relatively low. As Fig. 8 shows, the performance overhead
increases slightly with the increasing of the number of VMs.
When the system has a total of 32 VMs, the CPU usage of
TAVO is around 0.3%.

VII. DISCUSSION

The proposed TAVO scheme is implemented as low overhead
daemons in the user-level space of the KVM host OS. Unlike
the previous NUMA optimization techniques that mostly need
to modify critical kernel codes [7], [11], the TAVO scheme
can be more easily deployed in the production systems without
updating and recompiling kernels. The major weakness of
TAVO is its relatively slow response to VM’s workload phase
change due to its user-level implementation [17], compared
with more radical optimization methods implemented in the
kernel/hypervisor space. However, as typical services deployed

daemons with an architecture-specific layer, a VMM-specific
layer, and an algorithm layer, so that we can deploy the
TAVO scheme on as many servers and VMMs as possible in
the future.

VIII. CONCLUSION AND FUTURE WORK

Modern NUMA multiprocessor systems impose significant
challenges to the achievement of optimal and stable program
performance. Especially in the virtualized environment, the
virtualization layer limits the visibility of the NUMA topol-
ogy to applications running inside VMs. Server consolidation
further complicates the problem. Multiple VMs with various
memory behaviors consolidated on a single server will contend
for shared resources on NUMA multiprocessor systems. To ad-
dress these problems, we have used the hardware performance
monitoring technique to characterize VM memory behaviors
and monitor data traffic on the NUMA system. Then, we
have proposed the TAVO scheme on NUMA systems. The
TAVO scheme consists of three major parts: the performance
monitor, the VM initial placement manager, and the NUMA-
aware VM scheduler. The three parts work together to minimize
NUMA performance overheads. Experimental results showed
that our proposed scheme achieves better and more stable
VM performance on NUMA systems than the traditional VM
scheduling policy.

Future computer architecture will integrate more cores into
the system. The microarchitecture and memory subsystem
design will become even more complex. Understanding the
interactions between software and hardware is of great impor-
tance to improve system efficiency. The hardware performance
monitoring technique is a promising way to help understand
the software behaviors on the hardware. For future many-
core and heterogeneous systems, scheduling resources based on
hardware performance monitoring can more effectively exploit
performance opportunities on these future hardware platforms.

REFERENCES
[

—

NAS Parallel Benchmarks. [Online]. Available: http://www.nas.nasa.gov/
publication-s/npb.html

[2] SPEC CPU, 2006. [Online]. Available: http://www.spec.org/cpu2006/

[3] AutoNUMA: The other approach to NUMA scheduling. LWN.net,
Mar. 2012. [Online]. Available: http://Iwn.net/Articles/488709/

Xen4.3 NUMA Aware Scheduling. [Online]. Available: http://wiki.
xensource.com/wiki/Xen_4.3_NUMA_Aware_Scheduling

Bin Packing Problem. [Online]. Available: http://en.wikipedia.org/wiki/
Bin_packing_problem

Intel 64 and IA-32 Architectures Software Developer’s Manual, Intel,
Santa Clara, CA, USA, Volume 3: System Programming Guide, 2011.

[4

=

[5

=

[6

=

http://www.nas.nasa.gov/publication- s/npb.html
http://www.nas.nasa.gov/publication- s/npb.html
https://http://www.spec.org/cpu2006/
https://http://lwn.net/Articles/488709/
http://wiki.xensource.com/ wiki/Xen_4.3_NUMA_Aware_Scheduling.
http://wiki.xensource.com/ wiki/Xen_4.3_NUMA_Aware_Scheduling
http://en.wikipedia.org/wiki/Bin_packing _problem
http://en.wikipedia.org/wiki/Bin_packing _problem

[7]

[8]

[9]
(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]
[28]

[29]

[30]

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

J. Rao, K. Wang, X. Zhou, and C. Xu, “Optimizing virtual ma-
chine scheduling in NUMA multicore systems,” in Proc. HPCA, 2013,
pp. 306-317.

S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing shared
resource contention in multicore processors via scheduling,” in Proc.
ASPLOS, 2010, pp. 129-142.

Y. Cheng and W. Chen, “Evaluation of virtual machine performance on
NUMA multicore systems,” in Proc. 3PGCIC, 2013, pp. 136-143.

M. Dashti et al., “Traffic management: A holistic approach to memory
placement on NUMA systems,” in Proc. ASPLOS, 2013, pp. 381-394.

M. Liu and T. Li, “Optimizing virtual machine consolidation performance
on NUMA server architecture for cloud workloads,” in Proc. ISCA, 2014,
pp. 325-336.

H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux: Precise online
QoS management for increased utilization in warehouse scale computers,”
in Proc. ISCA, 2013, pp. 607-618.

J. Mars, L. Tang, K. Skadron, M. L. Soffa, and R. Hundt, “Increasing
utilization in modern warehouse scale computers using bubble-up,” IEEE
Micro, vol. 32, no. 3, pp. 88-99, May/Jun. 2012.

L. Tang et al., “Optimizing Google’s warehouse scale computers: The
NUMA experience,” in Proc. HPCA, 2013, pp. 188-197.

S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fedorova, “A case for
NUMA-aware contention management on multicore systems,” in Proc.
USENIX ATC, 2011, p. 1.

L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa, “The impact
of memory subsystem resource sharing on datacenter applications,” in
Proc. ISCA, 2011, pp. 283-294.

Y. Cheng, W. Chen, X. Chen, B. Xu, and S. Zhang, “A user-level NUMA-
aware scheduler for optimizing virtual machine performance,” in Proc.
APPT, 2013, pp. 32-46.

X. Zhang, S. Dwarkadas, and K. Shen, “Towards practical page
coloring-based multi-core cache management,” in Proc. EuroSys, 2009,
pp- 89-102.

M. Awasthi, D. Nellans, K. Sudan, R. Balasubramonian, and A. Davis,
“Handling the problems and opportunities posed by multiple on-chip
memory controllers,” in Proc. PACT, 2010, pp. 319-330.

Z. Majo and T. R. Gross, “Memory management in NUMA multicore
systems: Trapped between cache contention and interconnect overhead,”
in Proc. ISMM, 2010, pp. 11-20.

Z. Majo and T. R. Gross, “Matching memory access patterns and data
placement for NUMA systems,” in Proc. CGO, 2012, pp. 230-241.

D. Kaseridis, J. Stuecheli, J. Chen, and L. K. John, “A bandwidth-
aware memory-subsystem resource management using non-invasive
resource profilers for large CMP systems,” in Proc. IEEE HPCA, 2010,
pp. 1-11.

Y. Jiang, X. Shen, C. Jie, and R. Tripathi, “Analysis and approximation
of optimal co-scheduling on chip multiprocessors,” in Proc. PACT, 2008,
pp. 220-229.

W. Wang et al., “Performance analysis of thread mappings with a holistic
view of the hardware resources,” in Proc. ISPASS, 2012, pp. 156-167.

D. S. Rao and K. Schwan, “vNUMA-mgr: Managing VM memory on
NUMA platforms,” in Proc. HiPC, 2010, pp. 1-10.

M. Lee and K. Schwan, “Region scheduling: Efficiently using the
cache architectures via page-level affinity,” in Proc. ASPLOS, 2012,
pp. 451-462.

P. Radojkovic et al., “Optimal task assignment in multithreaded proces-
sors: A statistical approach,” in Proc. ASPLOS, 2012, pp. 235-248.

J. Rao, K. Wang, X. Zhou, and C. Z. Xu, “Towards fair and efficient SMP
virtual machine scheduling,” in Proc. HPCA, 2014, pp. 273-286.

W. Wang, T. Dey, J. W. Davidson, and M. L. Soffa, “DraMon: Predicting
memory bandwidth usage of multi-threaded programs with high accuracy
and low overhead,” in Proc. ASPLOS, 2014, pp. 1-13.

R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn, “Using OS obser-
vations to improve performance in multicore systems,” in Proc. MICRO,
2008, pp. 54-66.

[31]

(32]
(33]

[34]

[35]

IEEE SYSTEMS JOURNAL

R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-Clouds: Managing per-
formance interference effects for QoS-aware clouds,” in Proc. Eurosys,
2010, pp. 237-250.

C. Delimitrou and C. Kozyrakis, “Paragon: QoS-aware scheduling for
heterogeneous datacenters,” in Proc. ASPLOS, 2013, pp. 77-88.

C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and QoS-
aware cluster management,” in Proc. ASPLOS, 2014, pp. 1-17.

R. C. Chiang, J. Hwang, H. Huang, and T. Wood, “Matrix: Achieving
predictable virtual machine performance in the clouds,” in Proc. USENIX
ATC, 2014, pp. 1-12.

D. Novakovic et al., “DeepDive: Transparently identifying and managing
performance interference in virtualized environments,” in Proc. USENIX
ATC, 2013, pp. 219-230.

Yuxia Cheng received the B.S. degree in com-
puter science and technology from Hangzhou
Dianzi University, Hangzhou, China, in 2010. He is
currently working toward the Ph.D. degree in com-
puter science and technology at Zhejiang University,
Hangzhou.

His current research interests include operating
systems, virtualization technology, and multicore
systems.

Wenzhi Chen was born in 1969. He received the
Ph.D. degree from Zhejiang University, Hangzhou,
China.

He is currently a Professor and a Ph.D. Supervisor
with the College of Computer Science and Tech-
nology, Zhejiang University. His areas of research
include computer graphics, computer architecture,
system software, embedded systems, and security.

Zonghui Wang was born in March 1979. He re-
ceived the Ph.D. degree from the College of Com-
puter Science and Technology, Zhejiang University,
Hangzhou, China, in 2007.

He is a Lecturer with the College of Computer
Science and Engineering, Zhejiang University. His
research interests focus on cloud computing, dis-
tributed systems, computer architecture, and com-
puter graphics.

Xinjie Yu received the B.S. degree in computer
science and technology from Zhejiang University,
Hangzhou, China, in 2013, where he is currently
working toward the M.S. degree in computer science
and technology.

His current research interests include operating
systems, virtualization technology, and distributed
systems.

