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Fig. 5. Examples for balancing 3-D resource capacities in the TAH bin
packing algorithm.

VM is placed into a hybrid bin, its memory is interleaved among
those NUMA nodes that form the hybrid bin. Thus, the VM
can benefit from the aggregated CPU, memory, and bandwidth
resources of multiple NUMA nodes.

When a new VM needs to be deployed on the NUMA system,
the VM placement manager first collects performance statistics
from the performance monitor and creates multiple bins. The
created bins include single-node bins and multinode hybrid
bins. Each bin is initialized with 3-D resource capacities to
reflect the amount of corresponding resources which are cur-
rently available on the NUMA system. Then, the VM placement
manager looks up a proper bin for the new VM. The look-up
procedure is as follows.

1) Sort the bins by the sum of their three resource capacities
in descending order. The sorted bins fall into two cate-
gories: single-node bins and multinode hybrid bins, with
the single-node bins listed ahead of the multinode bins.
Therefore, VMs can be first put into single-node bins to
prioritize memory access locality.

2) Label the new item (VM) and each bin with the relative
order of three resource requirements and capacities. For

example, as Fig. 5 shows, the new item
→
R has resource

requirement that
→
R= (0.4, 0.2, 0.1), and we label the rel-

ative order of three resource requirements with (1, 2, 3).
Similarly, before the new items are packed into the bins,

the Bin1’s resource capacity
→
C= (0.6, 0.4, 0.3), so we

label the relative order of three resource capacities with
(1, 2, 3).

3) Search the sorted bin list from the beginning until we find
a bin that satisfies the following two conditions: a) the
resource capacities of the bin meets the resource require-
ments of the new item. b) The bin has the same relative

order of resource capacities with the item’s relative order
of resource requirements. By satisfying condition b),
we try to balance 3-D resource usages on each bin. As
Fig. 5 shows, when we pack the items into the bins that
have the same relative order of resource requirements
and capacities, each bin after packing has more balanced
use of 3-D resources. Balanced use of each resource can
minimize system performance bottlenecks, and therefore,
more VMs can be consolidated into the system.

4) If the search failed in 3), we relax search condition b) so
that the bin should satisfy the same maximum resource
capacity with the item’s maximum resource requirement.
If this round search failed again, we further relax the
search condition to only satisfy condition a).

Finally, we assign the satisfied bin’s corresponding NUMA
node(s) as the VM’s “home” node(s) in which the VM’s VCPUs
and memory resources are initially allocated. If the relaxed
search still cannot find the satisfied bin, the VM placement
manager reports that this new VM cannot be deployed on this
NUMA machine due to resource constraint.

D. NUMA-Aware VM Scheduler

The NUMA-aware VM scheduler provides a flexible solution
to dynamically adjust virtual to physical resource mappings
online. The scheduler has two major functionalities: VCPU
scheduling and memory page migration.

VCPU scheduling adaptively maps VM’s VCPUs onto
PCPUs according to the system load. Each VM is assigned the
“home” NUMA node(s) in the VM initial placement phase. To
more flexibly use physical resources, we do not statically pin
the VM’s VCPUs onto PCPUs of its “home” node(s). Instead,
the NUMA-aware scheduler prefers to schedule VCPUs to their
“home” node(s) but provides the opportunity of letting VCPUs
run on other nodes.

Initially, the NUMA-aware scheduler sets the CPU affinity of
each VM to its “home” node(s). VCPU scheduling within each
NUMA node is taken over by the default CFS scheduler, which
preserves the original CPU load balancing within each node.
The NUMA-aware scheduler is responsible for load balancing
across different nodes. System-level and VM-level performance
statistics are periodically collected from the performance mon-
itor. Then, the NUMA-aware scheduler determines whether
there is a need to schedule VCPUs from a heavy loaded node to
a light loaded node. The scheduling process is as follows.

1) The scheduler periodically checks whether the system
has a load imbalance between NUMA nodes. If there
are active VCPUs waiting in the CPU run queue on one
NUMA node while there are idle PCPUs on other NUMA
nodes, then the scheduler determines if there exists a load
imbalance between NUMA nodes. If the load imbalance
is not detected, the NUMA-aware scheduler sleeps for a
period of time (we set 1 s in our implementation).

2) After the load imbalance is detected, the scheduler finds
the VCPU scheduling source node and destination node.
The NUMA node that has the most number of active
VCPUs waiting in the run queue is selected as the
scheduling source node. The NUMA node that has
the most number of idle physical cores is selected as
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the scheduling destination node. If there exist multiple
source nodes and destination nodes, the scheduler selects
the source and destination node pair that has the lowest
interconnect bandwidth usage between these two nodes
to reduce the interconnect contention.

3) The scheduler then determines how many VCPUs should
be scheduled from the source node to the destination
node. The number of VCPUs to be scheduled is equal to
the minimum value of the number of idle physical cores
in the destination node and the number of waiting VCPUs
in the source node. It is better to let the VCPUs run on idle
cores in other nodes rather than waiting in their “home”
node, even if these VCPUs running on other nodes may
have remote memory access latency.

4) The scheduler further decides which VCPUs should be
scheduled out from the source node. To minimize remote
memory access latency and interconnect bandwidth con-
tention, the scheduler selects the VCPUs whose “home”
node is equal to the destination node or the VCPUs that
have the least LLC miss rate in the source node. Finally,
the scheduler updates the CPU affinity of the selected
VCPUs to the destination node. The migrated VCPUs
will be scheduled back to its “home” node, once its
“home” node has idle physical cores or its “home” node
becomes the least loaded node in the system.

Memory page migration provides the capability of mov-
ing memory pages between two NUMA nodes online. Note
that memory page migration causes performance overheads;
we prohibit frequent page moves during VM’s lifetime. The
memory page migration is triggered when a VM’s “home”
node needs to be updated because a long-term load imbalance
between NUMA nodes is detected in the system. During the
VCPU scheduling phase, the NUMA-aware scheduler records
the number of times each VM’s VCPUs are scheduled out from
their “home” node(s) in the last ten scheduling epochs. If one
VM’s VCPUs have more than eight times out of ten being
scheduled out from their “home” node(s), then the scheduler
determines that the VM’s “home” node(s) should be updated
because, most of the time, the VM’s VCPUs are running on
other nodes. Updating VM’s “home” node(s) involves recalcu-
lating the system resource requirements and capacities. More-
over, the scheduler invokes the VM initial placement algorithm
to recalculate the VM’s new “home” node(s). After updating
the VM’s new “home” node(s), the NUMA-aware scheduler
migrates the VM’s corresponding memory pages to its new
“home” node(s).

E. Implementation

We implement a prototype of the proposed TAVO scheme
in the KVM virtualized platform. The performance monitor,
the VM initial placement manager, and the NUMA-aware VM
scheduler are implemented as individual daemons in the KVM
host operating system. The performance monitor accesses the
hardware performance counters via the perf_event module
provided by the Linux kernel, and the monitor also collects
other software performance statistics via parsing the pseudo-
proc file system. The VM initial placement manager obtains
the NUMA topology via parsing the pseudo-sysfs file system
and automatically sets the VM’s configure file according to

the placement decisions. The NUMA-aware scheduler uses
the sched_setaffinity() and move_pages() system calls provided
by the Linux kernel to dynamically adjust VCPU to PCPU
mappings online and migrates VM’s memory pages when the
system load changes.

VI. PERFORMANCE EVALUATION

We run the experiment on the quad-socket Dell R910 server.
The server is configured with four 1.87-GHz Intel Xeon E7520
processors based on the Nehalem-EX architecture. Each pro-
cessor has four cores sharing a 18-MB L3 cache. The processors
are interconnected via the Intel QPI links. The R910 server
has a total of 16 physical cores and 64-GB memory, with each
NUMA node having four physical cores and 16-GB memory.
With the Intel HyperThreading enabled, there are a total of 32
hardware threads in the system.

VMs run on the qemu-kvm (version 1.0) virtualized plat-
form. Both the host and guest operating systems used in the
experiments are Ubuntu 12.04 with the Linux kernel version
3.8.0-35. Each VM is configured with four VCPUs and 8-GB
memory. We select the following benchmarks to run in VMs
and record their execution times for each run.

1) NPB. The NAS parallel benchmark (NPB) suite [1] is a
set of benchmarks developed for evaluating the perfor-
mance of parallel systems. The NPB benchmark suite
consists of five parallel kernels and three simulated ap-
plication benchmarks. We used the OpenMP version with
each benchmark compiled with four threads and set the
scale to class B.

2) SPEC CPU 2006. SPEC CPU 2006 [2] is an industry-
standardized CPU- and memory-intensive benchmark
suite. The benchmarks stress a system’s processor and
memory subsystem resources.

A. Improvement on VM Performance

We evaluate the proposed TAVO scheme with the following
two different scheduling strategies.

1) Default. The QEMU-KVM default strategy uses the ker-
nel’s default completely fair scheduler (CFS) and default
memory allocation policy. The CFS schedules VCPU
threads to different physical cores depending on the
CPU load balance and seldom considers NUMA over-
heads. The default memory allocation policy allocates
a VM’s memory on the NUMA nodes where the VM’s
VCPUs are running. In the default strategy, a VM’s
VCPUs and memory will be scattered around different
NUMA nodes.

2) FF-Pin. The FF-Pin strategy uses the VCPU pinning and
memory binding methods to statically place a VM onto a
NUMA node. The FF algorithm is used to find a proper
NUMA node for each VM. The FF algorithm searches
the NUMA node that first satisfies the CPU and memory
resource requirements for each VM. The FF-Pin strategy
benefits from local memory access but lacks the flexibility
of using other NUMA node resources.

Fig. 6 shows the performance comparison of benchmark
workloads under three different scheduling strategies: default,
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Fig. 6. Performance comparison of VM performance under three different scheduling schemes: default, FF-Pin, and TAVO. The performance results are
normalized to the workload runtime of each individual benchmark under the default scheduling strategy.

Fig. 7. Performance stability comparison of benchmarks running in VMs under three scheduling strategies: default, FF-Pin, and TAVO. The RSD value is plotted
for each benchmark with five individual runs under each strategy.

FF-Pin, and TAVO. The performance of each benchmark is nor-
malized to the benchmark runtime of the default strategy. Each
benchmark runtime is the average of five runs under the same
strategy. For the NPB benchmark [Fig. 6(a)], the TAVO scheme
outperformed both the default QEMU-KVM and the FF-Pin
strategies. Compared with the default strategy, the performance
improvement of TAVO ranged from 1.2% (ep) to 22.6% (cg).
We examined the benchmarks of ep and cg and found that cg
consumes a much larger memory bandwidth than ep. Thus, cg
is more memory intensive than ep. The TAVO scheme can more
effectively improve the performance of the memory-intensive
workload. For the SPEC CPU 2006 benchmark [Fig. 6(b)],
the TAVO scheme outperformed both the default QEMU-KVM
and the FF-Pin strategies. For example, the performance of
soplex benchmark under TAVO scheme improved by 14.2% and
13.8% compared with the other two strategies, respectively. As
for the povray benchmark, the performance improvement was
not obvious. This is because povray is not a memory-intensive
workload and is not sensitive to NUMA overheads.

There are two reasons that the TAVO scheme has perfor-
mance advantages against the default and FF-Pin strategies.
First, the VM initial placement in the TAVO scheme assigns
each VM the “home” node(s), which guarantees VMs’ most
memory accesses to be local compared with the default strat-
egy. The FF-Pin strategy also guarantees VMs’ local memory
accesses, but it only considers CPU and memory resources
without taking into account microarchitectural resources.
Second, the NUMA-aware scheduler in the TAVO scheme pro-
vides flexible solutions to schedule VCPUs and migrate mem-
ory pages when the system workload phase changes. Therefore,

the TAVO scheme can exploit more performance opportunities
than the default and FF-pin strategies.

B. Reduction on VM Performance Variation

In Fig. 7, we compare the performance variations of work-
loads running in VMs under different scheduling strategies. We
use the relative standard deviations (RSDs) of benchmark run-
time to represent the degree of performance variation. The RSD
value is calculated for each benchmark with five individual runs
under each strategy. The smaller the RSD value, the more stable
the workload performance.

Fig. 7(a) shows the RSD comparison of NPB benchmarks
among three different scheduling strategies. It is obvious that
the default strategy has a much higher performance variation
than the FF-Pin and TAVO strategies. The default strategy only
considers the load balance of physical cores when scheduling
VCPU threads and seldom takes into account the NUMA
performance overheads. Thus, the default strategy causes con-
siderable performance variations. The FF-Pin strategy has fixed
VCPU-to-core mappings, so it has very small RSD values
across all benchmark workloads. On average, the NPB bench-
marks under the FF-Pin strategy have no more than 4% runtime
variations. Except for the is benchmark, which has a very short
runtime. The TAVO scheme achieves a similar performance
variation with the FF-Pin strategy. The average RSD value
of the NPB benchmark under the TAVO scheme does not
exceed 5%.

Fig. 7(b) shows the performance variation of the SPEC
CPU2006 benchmark under three scheduling strategies. The
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Fig. 8. Average runtime CPU overhead of the TAVO scheme.

results are similar with the NPB benchmark. From the exper-
imental results, we observe that the memory-intensive work-
loads (soplex, mcf, milc, and sphinx3) have larger RSD values
than the relatively less memory-intensive workloads (povray,
lbm, omnetpp, and astar). This is because the performances of
the memory-intensive workloads are more likely affected by the
NUMA overheads when their VCPU-to-core mappings change
due to scheduling.

C. Overhead Analysis

Fig. 8 shows the CPU usage of TAVO. The CPU usage
includes the performance monitor thread, the VM initial place-
ment manager thread, and the NUMA-aware scheduler thread.
The main runtime overhead is due to periodically updating
system-wide and per-VM performance statistics. The VM ini-
tial placement manager is only activated when new VMs are
needed to be deployed on the NUMA system. Therefore, the
runtime overhead of the VM initial placement manager is trivial
compared with the performance monitor and the NUMA-aware
scheduler. Updating the system-wide performance statistics
has a constant runtime overhead, while updating the per-VM
performance statistics has a runtime overhead correlated with
the number of VMs in the system. We set the updating cycle
to 1 s, which is a good balance between obtaining accurate
online performance statistics and keeping the runtime overhead
relatively low. As Fig. 8 shows, the performance overhead
increases slightly with the increasing of the number of VMs.
When the system has a total of 32 VMs, the CPU usage of
TAVO is around 0.3%.

VII. DISCUSSION

The proposed TAVO scheme is implemented as low overhead
daemons in the user-level space of the KVM host OS. Unlike
the previous NUMA optimization techniques that mostly need
to modify critical kernel codes [7], [11], the TAVO scheme
can be more easily deployed in the production systems without
updating and recompiling kernels. The major weakness of
TAVO is its relatively slow response to VM’s workload phase
change due to its user-level implementation [17], compared
with more radical optimization methods implemented in the
kernel/hypervisor space. However, as typical services deployed

in VMs are long running applications, it is acceptable to
make optimization adjustment due to workload change within
seconds.

In the experimental section, the TAVO scheme is tested in
the KVM virtualized environment. We have tested VM perfor-
mance overheads in the Xen system and found similar perfor-
mance degradations; therefore, we infer that the TAVO scheme
is also applicable in other VMMs as long as the underlying
physical servers have the same NUMA overheads. However,
to demonstrate the effectiveness of the TAVO scheme under
different VMMs, we need to implement the corresponding
performance monitor, VM initial placement manager, and VM
scheduler daemons in different systems. We plan to design the
daemons with an architecture-specific layer, a VMM-specific
layer, and an algorithm layer, so that we can deploy the
TAVO scheme on as many servers and VMMs as possible in
the future.

VIII. CONCLUSION AND FUTURE WORK

Modern NUMA multiprocessor systems impose significant
challenges to the achievement of optimal and stable program
performance. Especially in the virtualized environment, the
virtualization layer limits the visibility of the NUMA topol-
ogy to applications running inside VMs. Server consolidation
further complicates the problem. Multiple VMs with various
memory behaviors consolidated on a single server will contend
for shared resources on NUMA multiprocessor systems. To ad-
dress these problems, we have used the hardware performance
monitoring technique to characterize VM memory behaviors
and monitor data traffic on the NUMA system. Then, we
have proposed the TAVO scheme on NUMA systems. The
TAVO scheme consists of three major parts: the performance
monitor, the VM initial placement manager, and the NUMA-
aware VM scheduler. The three parts work together to minimize
NUMA performance overheads. Experimental results showed
that our proposed scheme achieves better and more stable
VM performance on NUMA systems than the traditional VM
scheduling policy.

Future computer architecture will integrate more cores into
the system. The microarchitecture and memory subsystem
design will become even more complex. Understanding the
interactions between software and hardware is of great impor-
tance to improve system efficiency. The hardware performance
monitoring technique is a promising way to help understand
the software behaviors on the hardware. For future many-
core and heterogeneous systems, scheduling resources based on
hardware performance monitoring can more effectively exploit
performance opportunities on these future hardware platforms.
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