

James J. (Jong Hyuk) Park et al. (eds.), Multimedia and Ubiquitous Engineering,
Lecture Notes in Electrical Engineering 308,

259

DOI: 10.1007/978-3-642-54900-7_37, © Springer-Verlag Berlin Heidelberg 2014

Research about Virtualization of ARM-Based Mobile
Smart Devices*

Lei Xu, Wenzhi Chen, and Zonghui Wang

College of Computer Science and Technology
Zhejiang University, Hangzhou, P.R. China

{leixu,chenwz,zjuzhwang}@zju.edu.cn

Abstract. In common sense, virtualization technology is adopted to offer sev-
eral isolated execution environments and makes better use of computational re-
sources which has been an important enabler for cloud computing. However, in
embedded systems, the significance of virtualization does not come into the pic-
ture. The extensive utilization of mobile smart devices has led to a series of is-
sues such as security, power consumption and performance limitation. Mobile
virtualization can offer an effective approach in addressing these challenges. In
this paper, we discuss how mobile virtualization addresses these challenges and
then present a detail analysis of mainstream mobile virtualization solutions: Pa-
ra-virtualization, Hardware-Assisted Full virtualization and Microkernel
Hypervisor. At last, we carry out a series of performance comparison between
these solutions and make some suggestions for further research.

Keywords: Smart Devices, Mobile Virtualization, ARM, Android.

1 Introduction

The ability of traditional virtualization brings immense benefits in terms of reliability,
efficiency and scalability. It enables the datacenters to flexibly provision resource
which makes the computing-as-a-service vision of cloud computing possible [1]. A
substantial amount of works have been carried out on traditional virtualization most
of whose architecture is X86.

Nevertheless, ARM-Based mobile smart devices are becoming more and more
ubiquitous and the preferred platform for users' daily computing needs are shifting
from traditional desktop to mobile smart devices [2]. Undoubtedly, as mobile compu-
ting advances, it brings several tough challenges, as described follows:

─ Security Threats. Mobile device, as a kind of intimate personal portable equip-
ment, contains lots of user's sensitive data, such as SMS, contacts and photos.
People can't pay much more attention on its security issues, especially in a poor se-
cure condition nowadays.

* This research is funded by National Science and Technology Major Project of the Ministry of

Science and Technology of China under grant NO. 2013ZX03003010-002.

260 L. Xu, W. Chen, and Z. Wang

─ Performance Excess. Multi-Core SOC is increasingly adopted by hardware ven-
dor along with 2G RAM or more. It seems that these vendors are participated in a
hardware competition which led to a serious performance wasting. How to make
better use of these multi-core hardware resources is a new challenge.

─ Power Consumption. Power is always the bottleneck of mobile devices. Especial-
ly, modern device architecture is becoming more and more complicated to support
various modem protocol stacks (GSM, WCDMA, and LTE) simultaneously and
many complex applications. People want to find a way to simplify the hardware ar-
chitecture.

─ Shorter time-to-market. For devices manufacturer, they wish to quick release
their newest products to meet dynamic market requirements. They want to find a
way to reduce dependencies among hardware and software components so as to
reuse legacy software or legacy operating system on a new design chip/board and
reduce development and integration time and effort.

To address these challenges, the role of virtualization within the mobile device is
being discussed among academia and industry [3]. Actually, mobile virtualization can
deal well with these challenges. But this technology seems has not yet aroused
people's enough attention until now. So our team carried out this research.

In this paper, we comprehensively analyze mobile virtualization technology: Sec-
tion 2 describes the definition and the benefits of mobile virtualization. Section 3
discusses the mainstream solutions in detail. Section 4 carries out performance com-
parison among those solutions. A summary is described in Section 5.

2 Mobile Virtualization Overview

Mobile device, a modern embedded system, is increasingly taking on characteristics
of general-purpose systems. Their functionality is growing, and so is the complexity
of their software [4]. This creates a demand that run more and more high-level appli-
cations originally developed for the PC world, such as virtual machines. Mobile virtu-
alization is a variant of system virtualization that enables multiple isolated OSs run
simultaneously on a single mobile device.

However, mobile device is a personal communication device rather than a totally
computing devices. This means that we can't deal with it like PC which is obviously
not adequate to mobile virtualization [5]. The requirements of mobile virtualization
includes: (1) A small code size and lightweight hypervisor; (2) A strict system-wide
security policy; (3) Strong interaction to enhance user experience; (4) Minimal impact
on system resources and real-time performance, and so on.

2.1 Mobile Virtualization Benefits

2.1.1 Enhanced Security
The security issues of mobile smart devices are heavily exposed [6]. Viruses, Trojan
horses and malwares from all kinds of external attackers have caused people's
attention. However, deploying a security environment (such as encryption, digital

 Research about Virtualization of ARM-Based Mobile Smart Devices 261

signature, safety audit, access control, digital certification, etc.) on mobile device is
very hard for common users. So people need an innovative solution which can offer a
secure and credible execution environment when use some critical applications
(mobile banking), or access to sensitive data (SMS, contacts).

Fig. 1. Multi-OS isolation for enhanced security

Mobile virtualization is such a kind of solution! As shown in Fig.1, a security do-
main contains pre-installed application for the basic functions of a mobile, such as
SMS, dialer and mailer. The 3rd-party downloaded applications can never affect the
base domain, which are only allowed to execute in a common domain. The isolation
offered by the mobile virtualization makes this possible. We can use security domain
for private telephony, business office, mobile banking and so on. Also, we can create
several common domains for daily use (browsing, gaming, movie, music, etc.).

2.1.2 Simplify Hardware Structure
Current device architecture is very complicated and inevitably brings power con-
sumption problem, as shown in Fig.2. Each core has the different purpose: ARM-A
runs general-purpose operating system, which is up to interact with users; ARM-C
runs a real time operating system, mainly to complete high-level protocol stack
processing of different communication formats; DSP-C has strict real-time require-
ments, mainly to process underlying protocol stack by interrupt trigger; while DSP-M
is always used to decode audio and video.

Mobile virtualization breaks the tightly one-to-one relationship between operating
systems and processors. How to enable devices support multiple new protocol stacks
(GSM/WCDMA/HSPA/LTE) and avoid compatibility problems between different
protocol stacks is a challenge. Instead of using multiple dedicated real-time proces-
sors, mobile virtualization offers a new architecture as shown in Fig.3. In this archi-
tecture, VMM supports multiple general purpose operating systems (GPOS) and real
time operating systems (RTOS) to run concurrently on one ARM processor. And
some underlying protocol processes can be scheduled to the unique DSP by the
VMM. This architecture can authentically simplify hardware structure.

262 L. Xu, W. Chen, and Z. Wang

Fig. 2. Typical mobile device architecture Fig. 3. Simplified hardware architecture

2.1.3 Reuse Legacy Software
Mobile virtualization empowers mobile device manufacturers and semi-conductor
vendors to speed time to market and reduce costs by reusing legacy software assets
while taking advantage of new designed chip. Maintaining a competitive edge is vital
for mobile device manufacturers, who must integrate huge amounts of complex soft-
ware on multiple chipsets and hardware platforms. Native or proprietary device driv-
ers, protocol stacks and system modules can be integrated with ease, and legacy
applications can run unmodified in the new environment because of mobile virtualiza-
tion. This ensures minimum development cost and faster time to market for new
products.

3 Mainstream Mobile Virtualization Solutions

3.1 Solution 1: Para-virtualization of ARM

Para-virtualization is a very mature technology used by Xen, a famous hypervisor. It
refers to a technique where the guest operating system is modified and privileged
instructions are replaced with calls to the hypervisor named hypercalls. The hypervi-
sor layer provides a hypercall interface with services such as memory management,
device usage and interrupts management to the guest. This ensures that all privileged
mode activities are moved from the guest operating system to the hypervisor. Since
para-virtualization requires changes to the guest operating system code to avoid calls
to privileged instructions, it obviates the need for trap & emulate and binary transla-
tion. Of course, this benefit comes with the additional cost of maintaining a modified
guest operating system.

This solution offers several advantages:

─ Relatively High Performance: Para-virtualization provides specially defined
hooks to allow the guest(s) and host to request and acknowledge tasks, which
would otherwise be executed in the virtual domain, so it can reduce the portion of
the guest's execution time spent performing operations.

 Research about Virtualization of ARM-Based Mobile Smart Devices 263

There are some drawbacks:

─ Poor User Experience: Solutions based on para-virtualization is not fit for mobile
device. It has a complex configuration which is not easy for common user and it
need to modify the guest OS code which means it can't support the latest OS and
commercial closed-source operating systems.

3.2 Solution 2: Hardware-Assisted Full Virtualization of ARM

ARM announced their Cortex-A15 processor with architectural virtualization support
in 2010. This virtualization extension provides a new processor mode (HYP mode)
and a number of features to improve performance [7]. HYP mode is entered from
other modes via a new instruction (hvc), and optionally on a configurable set of ex-
ceptions from user or kernel mode. It has banked registers, as well as additional hyp-
only registers for system configuration and information on the event which caused
entry of hyp mode. There is a hyp-only virtual machine identifier (VMID) register.
TLB entries are tagged with the VMID, which supports coexistence of mappings from
multiple guests and thus eliminates the need to flush the TLB on a world switch.

This solution offers several advantages:

─ Hardware Support: This solution is the exclusive way that makes use of ARM
hardware feature. This means it can reduce code size and increase reliability. Pre-
dictably, this solution will be the major way used in ARM-based machines, even
will be applied on the ARM-based server.

There are some drawbacks:

─ Not Mature Enough: As mentioned above, ARM virtualization extension is a new
technology. Meanwhile, KVM is not originally designed based on ARM architec-
ture. So this solution is now not mature and not stable, there is a long way to modi-
fy KVM to be adaptable to ARM hardware extensions.

─ Poor I/O Virtualization Ability: As we know, KVM leverages QEMU (an open-
source hosted hardware emulator) to offer the ability to virtualize diverse I/O de-
vices, which is a so heavyweight software that not suitable for mobile devices. So
this solution has the poor ability to virtualize I/O device without the support of
QEMU.

3.3 Solution 3: Microkernel Hypervisor

With virtual machine based on microkernel architecture, we can convert hardware
resources to various real-time system services, and deliver to client operating systems
which run on virtual machine by mode of virtual devices. In this way, it can support
real-time and non-real-time applications to run simultaneously, and provide a univer-
sal and transparent interactive interface between non-real-time applications and real-
time system functions. The microkernel approach leads to a system structure that
differs significantly from that of classical operating system.

264 L. Xu, W. Chen, and Z. Wang

This solution offers several advantages:

─ Efficient Resource Sharing: Microvisor provides mechanisms for efficient shar-
ing of resources. Arbitrary memory regions can be shared by setting up mappings
between address spaces (providing high-bandwidth communication channels).

─ Flexible Scheduling: Microvisor allows the guest operating system to select the
appropriate global scheduling priority which means it can run at a high priority
when executing real-time threads, and a lower priority when executing background
tasks.

There are some drawbacks:

─ Device Emulation: Microvisor has to provide device support and emulation, an
onerous requirement for mobile devices which provide increasingly diverse hard-
ware devices. For example, we are not aware of any OKL4 implementations that
run Android on any phones other than the dated HTC G1.

4 Performance Comparison

We have carried out a series of experiments to evaluate the performance of these dif-
ferent solutions described in Section 3. To make a comparison, we choose out their
mutual features to test. We built three open source platforms representing correspon-
dingly those solutions: CodeZero (Microvisor), KVM-ARM (Hardware-Assisted Full
virtualization) and EmbeddedXEN (Para-virtualization). Meanwhile, we use Urbetter
S5PV210 development board with Exynos 4412 CPU and 2GB memory as our expe-
riment platform. In addition, our host OS is Archlinux with 3.5.4 kernel and our guest
OS is Android 4.2.2. At last, we choose LMbench3 to be our benchmark.

4.1 Evaluation Results

4.1.1 Context Switching
We measure context switching time between guest OS and host OS. A context switch
is the switching of the CPU from one process or thread to another. When the VMM
receives a hardware interrupt, it generally suspends the progression of the current
process and starts servicing the interrupt. This is an important feature for mobile
software which means a good user experience. As shown in Table 1, hardware-
assisted solution has the fastest switch speed.

Table 1. Context Switching Time

 Full Virtualization Para Virtualization Microvisor
Average Time(µs) 18.3 30.1 23.7

 Research about Virtualization of ARM-Based Mobile Smart Devices 265

4.1.2 Micro Benchmarks
We used the LMbench benchmark suite to evaluate the performance of fork()+exec(),
fork()+exit(), pipe and syscall. As shown in Table 2, the performance of executing a
simple syscall is the most severely impacted because its execution path is very simple.
The other benchmark programs involve fair amounts of work that is executed in the
guest OS, thus the performance degradation is a little severe. Among them, Para-
virtualization solution got a relatively good result.

Table 2. Preliminary Performance

 Full Virtualization Para Virtualization Microkernel
fork + exit (µs) 4,328.53 4012.38 5,117.75
fork + exec (µs) 6,211.51 5,984.14 7,463.90
pipe (µs) 173.30 201.64 1,190.35
syscall (µs) 17.21 13.74 19.93

4.1.3 Macro Benchmarks
In order to see the virtualization's performance impact on common operations in mo-
bile phones, we compared UI loading time, codec performance and image file saving
time in table 3. For UI loading test, we used Qtopia installed at NOR flash memory.
We prepare 100 files whose size are distributed from 10KB to 5MB to test image file
saving and we measure the time taken to save all those image files from a NFS server
to NAND flash disk. For codec tests, WMV stream encoder/decoder is used.

Table 3. UI Performance Evaluation

 Full Virtualization Para Virtualization Microkernel
UI loading (s) 12.32 13.45 5,117.75
Image saving (s) 45.17 54.23 7,463.90
Encoding rate (fps) 5.67 4.76 1,190.35
Decoding rate (fps) 20.41 23.14 19.93

4.1.4 Scalability Analysis
To analyze the scalability performance impact of the number of concurrent VMs (n),
we tested four cases: n =1, 2, 3 … 20 for iterated 10 times shown in Fig.4. Root
filesystems are mounted as read-only, then we run a daemon process simultaneously
on all running VMs to calculate CPU utilization. Average throughputs values of do-
mains are aggregate throughputs don't degrade much as n increases.

266 L. Xu, W. Chen, and Z. Wang

Fig. 4. Scalability performance evaluation

5 Conclusions

Virtualization of mobile devices is becoming a hot research point. Many IT compa-
nies such as VMware, OK Labs, Samsung and Red Bend have changed their atten-
tions on this field. In this paper, we described what mobile virtualization is and the
benefits it brings. We introduced these solutions in detail and talked about their ad-
vantages and limitations. At last, we built an experiment platform and carried out a
series of performance evaluation among three open source projects. In the future, we
plan to explore several lightweight mobile virtualization solutions, like container
technology and multi-execution environments based on detached filesystems.

References

1. Xu, L., Chen, W., Wang, Z., Yang, S.: Smart-DRS: A strategy of dynamic resource sche-
duling in cloud data center. In: 2012 IEEE International Conference on Cluster Computing
Workshops (CLUSTERWORKSHOPS), pp. 120–127. IEEE (2012)

2. Andrus, J., Dall, C., Hof, A.V., Laadan, O., Nieh, J.: Cells: a virtual mobile smartphone ar-
chitecture. In: Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, pp. 173–187. ACM (2011)

3. Yoo, S., Liu, Y., Hong, C.H., Yoo, C., Zhang, Y.: Mobivmm: a virtual machinemonitor for
mobile phones. In: Proceedings of the First Workshop on Virtualizationin Mobile Compu-
ting, pp. 1–5. ACM (2008)

4. Heiser, G.: The role of virtualization in embedded systems. In: Proceedings of the1st Work-
shop on Isolation and Integration in Embedded Systems, pp. 11–16. ACM (2008)

5. Chen, X.: Smartphone virtualization: Status and challenges. In: 2011 International Confe-
rence on Electronics, Communications and Control (ICECC), pp. 2834–2839. IEEE (2011)

6. Kizza, J.M.: Mobile systems and their intractable social, ethical and security issues. In: Eth-
ical and Social Issues in the Information Age, pp. 281–297. Springer (2013)

7. Dall, C., Nieh, J.: Kvm for arm. In: Proceedings of the Ottawa Linux Symposium, Ottawa,
Canada (2010)

	Research about Virtualization of ARM-Based Mobile Smart Devices*
	Introduction
	2 Mobile Virtualization Overview
	3 Mainstream Mobile Virtualization Solutions
	4 Performance Comparison
	5 Conclusions
	References

