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Abstract—Virtualization technology enables various applica-
tion services to be distributed and encapsulated within virtual
machines (VMs), which are dynamically allocated to physical
machines (PMs) in cloud computing environments. However,
in many existing virtualized systems, the limited network
bandwidth often becomes a bottleneck resource, leading to the
intensification of network competition and the performance
degradation for communication or data intensive applications.
Aiming at reducing communication overheads and improv-
ing the application performance, in this paper, we propose
an Affinity-Aware Grouping method for Allocation of VMs
(AAGA). Firstly, we identity and model the problem of affinity-
aware grouping-based allocation for virtual machines, and
propose a detailed grouping method based on which a heuristic
bin packing algorithm is used to deploy VM groups into PMs.
In order to demonstrate the effectiveness of AAGA, we create
multiple real virtual clusters (multi-VCs) with 56 VMs running
multi-VM applications and compare application performance
with Non-Affinity-aware Grouping-based Allocation methods
(NAGA). Experimental results show that AAGA achieves better
performance than NAGA.

Keywords-Virtualization; Affinity Grouping; Resource Allo-
cation; VM Packing; Virtual Cluster; Cloud Computing

I. INTRODUCTION

Virtualization has become a crucial technology in cloud

computing, in which applications, such as parallel comput-

ing applications [1] and multi-tier e-business web applica-

tions [2], are encapsulated within multiple virtual machines

(VMs), and dynamically assigned to a pool of physical

machines (PMs) for provisioning cloud services [3], [4].

The execution of application jobs inside VMs generates a

large amount of communications or data exchanges across

these VMs [5]. With the increasingly growing demands

of handling cloud service provision tasks, the network, as

a key infrastructure in a cloud datacenter, is sustaining a

tremendous pressure. Due to the poor efficiency of network

virtualization and resource allocation, the network band-

width becomes a bottleneck in many existing virtualized

datacenters, leading to the intensification of network con-

gestion and performance degradation for communication or

data intensive applications [6].

To run communication intensive applications in a cloud

datacenter, allocating VMs to various PMs in the same

or different racks leads in both distinct performance for

applications and obvious impacts on the network perfor-

mance. Actually, frequent communications of VMs imply

a large amount of network traffic, blocking the network and

affecting the availability of a cloud datacenter when VMs

are decentralizedly placed [7] onto different PMs or racks

underlying various network topologies, such as Tree, Fat-

Tree, and VL2 [8]. Indeed, virtualization owns a mechanism

of Inter Domain Communication (IDC) [9], where two

VMs co-located in the same PM process communications

without getting through physical network interface card

(NIC) but via memory sharing ways. This mechanism in-

dicates that colocating communicating-VMs can reduce the

communication overhead and improve the performance for

communication-intensive applications, and implies that co-

locating such VMs during VMs allocation is meaningful.

Besides, co-locating VMs onto the same PM can also offer

benefit of saving memory while sharing memory pages [10].

However, consolidating over-loaded VMs to the same PM

can bring with resource contention of CPUs and reduce

application performance.

Unfortunately, dependency across VMs, such as

communication-awareness, is rarely considered in the

existing research on the resource allocation based on

VMs [3], [11]–[14]. These allocation solutions, without

considering dependency across VMs, adopt virtual machine

packing (VMP) techniques, a type of vector bin packing

method [12], [15], in which the VMs and PMs are

multi-dimensional vectors including dimensions like CPU,

RAM, disk and network I/O, etc., aiming at assigning

a given number of VMs (items) with distinct resource

requirement to a minimal number of PMs (bins) with a

fixed resource capacity one-by-one according to the VM

size, and matching that the total size of VMs in each PM

is less than PM capacity.

In our work, we address a resource allocation problem in

which VMs have resource demands and dependency across
VMs is identified as affinity relationship. We present case

study to find affinity of VMs and group affine VMs as a

whole unit for allocation of VMs. The observations motivate

us to allocate affine VMs so that they are co-located so as to
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improve system performance. Then we model the Affinity-

aware Grouping for Allocation of VMs Problem (AGAP).

Further, we propose a solution that includes a tool which can

automatically obtain affinity of VMs, and an Affinity-Aware

Grouping-based Allocation method (AAGA).

The major contribution we made in this work is the

method to identify the affinity relationship among VMs

together with an algorithm for grouping affine VMs for PM

resource allocation, by which we can significantly improve

the system performance measured by running communica-

tion/data intensive applications such as HPCC [1] on a real

cloud environment.

The remaining sections are organized as follows. We give

the background and motivation in Section II and present the

problem and solutions in Sections III & IV, followed by

experiments in Section V and related work in Section VI

before concluding the paper in Section VII .

II. BACKGROUND AND MOTIVATION

In this section, we present several case studies on mea-

suring traffics and performance derived from several typical

cloud benchmark applications running amongst multiple

VMs. The observations motivate us to identify affinity

relationships between VMs and engage in affinity-aware

grouping VMs for resource allocation.

A. Measuring Traffic Dependency Between VMs

1) Traffic Dependency: In cloud datacenters, applications

are hosted among one or more VMs, thus they can be

classified into two classes, namely single- and multi- VM

applications.

The running of many multi-VM applications will bring

with communications between VMs in realtime, generating

communication dependency and showing up traffic flows

passing through the shared network, which naturally is a

traffic dependency between VMs. We assume that a VM

hosting a single-VM application has not traffic dependency

with other VMs except a domain within a Hypervisor, such

as domain0 in Xen [9]. Moreover, application running in

different time window will show both distinct resource usage

and dynamic change of traffic volume between VM pairs.

Besides, let a and b denote two VMs, the traffics have

a bidirectional transmission feature because traffic volume

from a to b is different from that from b to a within a time

window or total application runtime.

2) Traffic Measuring Case Study: We are interested in

finding traffic dependency between VMs and provide a case

study, in which we measure traffic between VM pairs in the

process of running typical cloud applications in datacenter

network. Generally, we can benefit from the prior knowledge

of traffic dependency between VMs while allocating VMs

to PMs for minimizing network communication overhead.

To do this, a crucial step is to capture and analyze the mass

traffic fingerprinting.
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Figure 1. Traffic rate amongst 3 VMs (1–3) running RUBiS benchmark

Based on tcpdump [16] method we implement a software

tool to monitor traffic among physical network automatically

and capture traffic fingerprinting between VM pairs. In every

time interval (e.g., second or minute) during the application

running, a total bytes of all the transferred packets between

VM pairs are summed up as traffic volume. Actually a pair

of VMs (a, b) will have a different traffic volume in the two

transmission directions. For simplicity, we assume they are

identical otherwise we use average of them. Therefore we

give a metric of average bandwidth (AVG BW): bps (bytes

per second) or pps (packet-amounts per second) to denote

the communication dependency between a VM pair. We can

conclude this metric by dividing the total traffic volume

to a total runtime like total seconds consumed in running

application, as shown in the following formula. Obviously

it also denotes an average traffic rate between a VM pair.

AV G BW = Total traffic volume/Total time(sec.).

Three typical cloud applications are chosen in this case

study. The first is RUBiS [17], a multi-tier emulation of

e-bay web application. It simulates various tasks done by

various clients, including user & item registration, browsing

items per category & per region, bidding for or buying

items and so on. RUBiS contains three modules: a web

server, a database server and an emulation client, which

are setup onto three VMs under one PM, respectively. In

traffic measurement of RUBiS , the number of clients, a

primary parameter determining the workload size, is set to

1400, and other parameters are set default. We run five times,

each run lasts twenty minutes and get the average of total

traffic volumes, then concludes the traffic rate of all VM

pairs. Figure 1 shows the traffic rate among three VMs. We

observe that different VM pair exists distinct traffic rate, i.e.,

the traffic rate between client and web server VM performs

17.6 times of the one between web and DB server VM.

The second cloud application is Hadoop [18], which

provides a distributed file system by using the MapReduce

paradigm to analyze and transform very large data sets. It

tackles computation from files distributed amongst multi-

plicative nodes. We construct a virtual cluster (VC) with 16

VMs, which are placed onto one PM and all VM image

files are uniformly stored in a network file system (NFS)

server. We select one typical workload: wordcount which is

used to count all words inside a certain word file under a

distributed multi-nodes platform. The word file size, a chief

parameter, is set to 100MB. We capture traffic fingerprinting
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Figure 2. Traffic amongst 16 VMs (1–16) running a Hadoop workload:
wordcount
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Figure 3. Traffic amongst 4 VMs (1–4) running HPCC benchmark

between all VM pairs and conclude the traffic rate as shown

in Figure 2.

The third cloud application is the HPC Challenge bench-

mark (HPCC) [1], which is used to measure the performance

of parallel computing in a cluster with several nodes. In this

case study a virtual cluster (VC) is set up with four VMs.

There are four main parameters relating to workload size,

i.e., A, NB, P and Q, in which A denotes the order of the

coefficient matrix, NB the partitioning blocking factor, P

the number of process rows, and Q the number of process

columns. We set matrix A to 1000× 1000 and others to be

default. We run three times the test and get the average of

the results as shown in Figure 3.

By comparison of all traffic measurement results from

the three typical cloud applications, HPCC performs the

largest traffic rates, which indicates the largest dependency

between the VMs. While Hadoop performs the counter-

productive, the traffic rates between VM pairs are very

small and much less than the one derived from RUBiS.

The large amount of traffic indicates that the VMs hosting

HPCC benchmark application require much more network

bandwidth than others.

In conclusion, the case study tells us that the traffic

dependency between VM pairs reveals a great difference

among distinct multi-VM applications. It is natural that

colocation-placing VMs with the larger or heavier traffic

dependency will offer us much better benefit for application

and physical network performance. This motivates us to try
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Figure 4. The performance evaluation of running efficiency for HPCC

another case study in the next subsection.

B. Collocation of VMs for More Performance Gains

In the next, we provide a case study to prove that co-

location of VMs hosting communication intensive appli-

cations can offer much more benefit for performance. We

choose the HPCC benchmark for our case study and consider

the application performance underlying different schemes

for allocation of VMs to PMs.

For simplicity, we identify two deployment patterns as

follows. (1) Colocation-placement, denoted by CP(·), for

example, CP(8) denotes 8 VMs as one group placed onto one

PM whilst idling the other PM; and (2) disperse-placement,

denoted by DP(·), for example, DP(7 + 1) denotes eight

VMs are divided into two groups with 7 VMs as a group

placed onto a PM and 1 VM as a group place onto the other

PM. Given eight VMs and two PMs, there are totally five

combinations to allocate these VMs to two PMs, namely

CP(8), DP(7 + 1), DP(6 + 2), DP(5 + 3), and DP(4 + 4).

Moreover, concerning that the number of PM is three or

four, for eight VMs, we also try other two special scenarios:

a scheme DP(3+3+2) where 8 VMs deployed among three

PMs, and a scheme DP(2 + 2 + 2 + 2) deployed onto four

PMs each with two VMs, respectively.

After running HPCC under all schemes we obtain

the runtime metric and other four metrics from four

communication-aware benchmarks, namely, HPL, PTRANS,

FFT and Avgpingpong from HPCC benchmark.

We first compares the runtime of all schemes as shown

in Figure 4. We can see that CP(8) needs the least runtime

as compared with others, meaning that all eight VMs placed

onto one PM can finish running with the runtime less than

half of that of DP(4 + 4) or one fourth of that of DP(2 +
2 + 2 + 2).

Figure 5 shows the performance comparison in terms of

the different metrics from communication/data-dependence

benchmarks under different VM deployment schemes. It

tells that CP(8) outperforms all other schemes for the four

metrics; especially, for metric PTRANS, CP(8) outperforms

five times than DP(7 + 1) or 10 times than others.

From the above observations, we conclude that for

heavy communication intensive applications, colocation

placing VMs can obtain much better performance, and the
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(a) Floating point rate of execution
HPL
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(b) Total communication capacity of
the system interconnect
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(c) Floating point rate of running
DFT based on MPI
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(d) Communication bandwidth

Figure 5. The HPCC benchmark performance evaluation amongst different
metrics in distinct CP and DP schemes

colocation-placing VMs with communication dependency

can reduce the communication overhead of physical network

but not sure of improving the performance.

C. Motivation of Affinity Grouping

The above observations imply that there is a certain rela-

tionship such as communication dependency derived from

network traffic amongst VMs during application running

process, such that if some of VMs with communication

dependency are bundled as whole unit and allocated to a PM,

then we can minimize the communication overheads across

physical network and enhance application performance. We

refer to the dependency between the VM pair as affinity

of VMs (to be elaborated later). These findings motivate us

to further investigate how to group an array of VMs given

that there exists affinity relationship across some of them,

and how to allocate and place these groups of VMs to PMs

so as to reduce the communication overhead and improve

performance as required in real applications.

III. PROBLEM STATEMENT

In this section, we first provide two definitions: VM affin-

ity relation and VM-affinity group, respectively, and several

rules for grouping VMs based upon affinity, followed by a

statement of problem of AAGA: Affinity-Aware Grouping

based Allocation of VMs problem.

A. Affinity of VMs

Definition 1: Affinity of VMs. The dependency between

VMs is defined as affinity of VMs.

According to Definition 1, in cloud computing we can also

have many types of affinity, such as communication affinity

(CA), data affinity (DA), memory affinity (MA), and user-

defined affinity (UA) as all others.

CA is derived from the communication dependency be-

tween VMs running communication intensive applications.

While MA is derived from memory dependency between

VMs when two VMs colocation benefits for sharing mem-

ory [10]. DA is induced from the dependency between

VMs running data-intensive applications. Besides, a cloud

customer requires his VMs be tackled with colocation. In

this regard, these VMs with affinity are derived from user-

aware dependency, named as user-defined affinity.

Regardless of various affinity types, our work denotes

affinity of VMs as a key factor for allocation of VMs onto

PMs, and takes communication affinity as an example.

B. Rules of Affinity-Aware Grouping VMs

In the next, we detail some rules for performing affinity-

aware grouping VMs and provide mathematically formalized

definitions and claims based on set relation theory.

Definition 2: Affinity Relation. Two VMs having affinity

defines an affinity relation.

Mathematically, affinity relation is a binary relation. Given

a set V of VMs, V ×V be the product set of V and V , AR
be an affinity relation set, and AR ⊂ V × V . If ∀x, y ∈ V ,

(x, y) ∈ AR, then we call x and y have an affinity relation

AR, denoted by x ∼ y.

In addition, according to the directionality of affinity, we

can have two other classes of affinity relations: direct affinity
relation and indirect affinity relation. A VM pair (x, y) with

affinity forms a direct affinity relation, while if three VMs

x, y and z, matching x ∼ y and y ∼ z, then we say x and

z have an indirect affinity relation.

Definition 3: Affinity VM Group (AVMG). Given a set

V of VMs, let x be a VM, an affinity VM group AG is

defined as a non-empty subset of V , ∀x, y ∈ AG, x and y
have a direct affinity relation or indirect affinity relation. Let

x = y, then one single VM forms an affinity VM group.

Besides, we also can use a graph to signify an affinity

VM group based on graph theory. In an affinity VM group,

all VMs form a set of vertices and the affinity relations can

be viewed as edges. Every two VMs with direct or indirect

affinity relation equal to a direct or indirect path from one

VM vertex to another VM vertex. From this point of view,

one affinity VM group constructs a complete graph.

We provide the affinity VM group to decide allocation

of VMs to PMs and to guarantee the VMs with affinity as

being closely placed as possible.

From these definitions, we have the following claims as

rules to generate affinity VM groups as follows.

Given a finite set V of VMs, let x, y ∈ V be two VMs.

Claim 1: A single VM forms an affinity VM group.

Proof: A VM and itself have affinity relationship, because

it will be obviously allocated to the same PM.

Claim 2: A set of VMs with two VMs, which have

affinity relationship form an affinity VM group.
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Proof: Given two VMs x and y, x ∼ y, AG is the union

of set {x} and {y}, i.e., AG = {x}∪{y} = {x, y}, a subset

of V , generates a VM-affinity group on x and y. Due to x
and y having affinity relation, x and y are allocated to the

same PM, namely, all VMs in AG are allocated to one PM.

Claim 3: The union of two affinity VM groups forms an

affinity VM group, i.e., let AG1 and AG2 be two affinity

VM groups, and AG1 ∩ AG2 = ∅, if ∃x ∈ AG1, y ∈ AG2,

and x ∼ y, then the union of AG = AG1 ∪AG2 is a union

affinity VM group for two disjoint affinity VM groups.

Proof: If AG1 and AG2 are not allocated to the same PM,

then x and y are not allocated to the same PM, which means

x and y are not grouped into the same group, or the affinity

between x and y is broken. So if and only if AG1 and AG2

are allocated to the same PM, the affinity between x and y
is guaranteed.

C. Affinity Grouping-based Allocation Problem

We consider a basic scenario that comprises a large

number of VMs and PMs in a cloud datacenter. The VMs

are deployed to run a variety of application services with

resource demands. The PM has a resource capacity in each

dimension corresponding to the dimension of VM resource

vector. There are traffic dependency between a part of

VMs. We aim at minimizing the number of PMs for high

consolidation-based energy-saving in a cloud datacenter.

In this scenario, we describe an Affinity Grouping-based

Allocation (AGAP) problem as follows. Given n VMs and

m PMs, some affinity relationships across VMs, finding an

optimal grouping and allocation scheme, such that the VMs

are grouped into a set of affinity groups which are allocated

into the minimal number of PMs.

This problem includes two parts, namely (1) affinity

grouping; (2) affinity group allocation. We accordingly can

have the following two assumptions, namely (1) an optimal

grouping enables each VM group to have the maximal

number of VMs and each VM has affinity relationship with

at least one VM in the same group and has no affinity

relationship with any VM outside this group; (2) the total

resource demand of each affinity VM group is less than the

resource capacity of one PM.

IV. METHODOLOGIES

In this section we present some methodologies to solve

our problem. We first introduce a tool to find affinity of

VMs, and then propose a grouping algorithm to group VMs

into affinity groups as the basic units for allocation, and give

several heuristic bin packing techniques to make decision of

allocating all these groups of VMs onto PMs.

A. Finding Affinity of VMs

To find affinity of VMs, we implement an affinity prober

tool based on tcpdump and analyze the traffic fingerprinting

results to extract affinity of VMs. The tool is deployed onto

each PM hosting a Hypervisor, such as Xen’s domain0, and

runs in realtime, and captures network traffics over the NIC.

Each traffic record signifies a network packet transferred

from a source server to a destination server. It is a triple like

<sourceID, destinationID, volume>, in which the sourceID

and destinationID denote the source VM and distinction

VM IP address, respectively, and the volume denotes the

total summed packet size (bytes) of traffic captured within

a period of monitoring time.

B. Affinity-Aware Grouping Algorithm

The claims in Section III are used as rules to group the

VMs into VM-affinity groups. According to the rules we

provide an affinity-aware grouping algorithm to do grouping

for affinity-aware resource allocation.

Given a set V of VMs and a set AR of VM-affinity

relation between VMs, the VM-affinity grouping algorithm

aims to group the VMs into a set of disjoint subsets of

V each of which is a maximized VM-affinity group. A

maximized VM-affinity group is such a group inside which

any VM has VM-affinity relation with at least one VM in

the group and does not have VM-affinity relation with any

other VM outside the group. We denote our VM-Affinity

grouping algorithm as Max-VA-Grouping (MVAG).

The detailed steps of MVAG algorithm is as follows.

Step 1. Input a VM set V with the number N , and a

VM-affinity relation set V R with the number E.

Step 2. Initially each VM of V is built as a VM-affinity

group set (singleton set).

Step 3. For each VM in a VM-affinity relation of AR,

find the VM-affinity group set which contains the VM, and

get two VM-affinity group sets.

Step 4. Apply union operation to the two VM-affinity

group sets to get a new VM-affinity group set.

Step 5. If there are any other VM-affinity relations, then

goto Step 3; otherwise goto Step 6.

Step 6. Output all the VM-affinity group sets as final

grouping result.

The time complexity consists of the time for three opera-

tions, namely build-set (Step 2), find-set (Step 3), and union-

set (Step 4) operations. We use tree-based data structure and

path compression to minimize the computation complexity.

Similar as disjoint set algorithm, the time complexity of

MVAG algorithm is O(N+E), where N is the number of

VMs and E is the number of edges.

C. Allocation of VM-affinity Groups

After affinity grouping, the next step is to allocate these

affine groups onto a minimal number of PMs.

Bin packing in VM placement is called VM pack-

ing (VMP), which is also a type of vector bin packing

(VBP) [19]. In our affinity group allocation problem, we

target to allocate affinity VM groups to PMs. This is an
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optimization problem as follows. Given a list of VM affinity

groups (items), an affinity group set AG of k d-dimensional

vectors g1, g2, ..., gk from [0, 1]d, find a packing scheme of

AG into B1, B2, ..., Bm such that
∑

g∈Bi
gh � 1, ∀i, h (gh

denotes the projection of the hth dimension of vector g).

The objective is to minimize the number of PMs.

Many greedy algorithms, such as heuristic bin pack-

ing, can be used to solve the affinity group allocation

problem. These heuristics include the First Fit (FF), Best

Fit (BF), Nest Fit (NF), First-Fit-Decreasing (FFD), Best-

Fit-Decreasing (BFD) for one dimensional item, and many

variants of FFD, such as FFDProd, FFDAvgSum etc., for

multi-dimensional items according to a measure used to

decompose a vector item as a numerical value used for

sorting items in a decreasing order [19].

D. Discussion

It is reasonable to suppose that each affine-VM-group can

be allocated onto one PM, namely no group resource demand

exceeds the limited PM capacity. Firstly, the increasingly

growing hardware technology brings one PM with increasing

size of resource capacity, such as CPU and RAM. Then, we

can use a virtual-large-PM, which is a cluster of several PMs

deployed onto one or more racks connected with infiband.

Further, cloud tenants apply for several VMs to run their

cloud services. We assume that for each service most tenants

use a small number of VMs across which having affinity

leading to a small affinity group. Only a few services require

a large number of VMs with affinity generating one large

affinity group with total resource requests overstepping the

PM resource limit. If there are no PMs can take in all VMs

in one large affinity group, then a mini-cut method [7] can

be used to divide the large group into several small groups,

across which having minimized communication, such that

each group resource request is less than one PM capacity and

the network communication overhead is minimized. This is

another interesting problem of our future work.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we provide experiments to demonstrate the

effectiveness of the AAGA method by comparing it to the

NAGA method.

A. Experimental Schemes

Given many VMs and PMs, we present two schemes

based on two VM deployment schemes corresponding to

AAGA and NAGA method, respectively. In each scheme

we run the same multi-VMs application and compare the

application performance results. Here multi-VMs application

is defined by an application hosted on multiple VMs to run.

B. Experimental Environment

A cloud datacenter generally runs many kinds of applica-

tions hosted amongst multiple VMs, and we denote a group

Table I
THE CONFIGURATION OF EACH VIRTUAL CLUSTER

VC VM RAM/VM CPU Total
number (MB) RAM(GB)

VC1 16 512 shared 8
VC2 8 768 shared 6
VC3 6 640 shared 3.75
VC4 12 384 shared 4.5
VC5 10 512 shared 5
VC6 4 896 shared 3.5

of the VMs for running one application as a VC. Hence

a cloud datacenter comprises several VCs. Different VCs

may run different applications or the same application with

different input workloads or data scales. We focus on the

case that one application is hosted with many VMs. For

simplicity, we only choose one multi-VM application with

different size of parameter input for each VC.

To construct an experimental environment imitating a real

cloud datacenter, we chose four identical Dell PowerEdge

T710 server machines with dual Intel(R) Xeon(R) CPU

E5620 @ 2.40GHz, each of which has totally 16 Cores

and 32GB RAM running Xen-3.3.1. The Linux VMs and

domain0 run Linux Kernel-2.6.18.8-xen. The domain0 is

configured with many virtual CPU cores. All VM images

are stored in a Network Filesystem Server (NFS). The VMs

in different VC share CPU cores, and are allocated with

different size of memory.

We choose HPCC benchmark generating several VCs in

according the different number of nodes and application

scale parameters. We construct 6 distinct VCs with total

56 VMs as nodes by given different configurations. Each

VC is configured with distinct number of VM nodes with

different total CPU and memory. The VMs of a VC are set

with identical amount of resource RAM.

The configuration of VC1–VC6 is listed in Table I. The

VMs in one PM share the CPU limited to 32 VMs, and the

RAM capacity is limited to 12GB (total 32GB) considering

the resource reservation [20]. As shown in Table I, we limit

each affinity-group with a total resource (RAM) demands

less than the PM capacity, and are deployed in one PM.

C. Deployment Schemes

According to the two experimental schemes we imple-

ment two specific deployment schemes. In each scheme the

deployment pattern is determined by a certain placement

strategy. The placement solution is concluded by a given

allocation strategy, denoted as a table, in which the row

denotes PM, the column denotes VC and a numerical value

in a cell (i, j) denotes the VM number of V Cj allocated to

PMi. One VC runs a multi-VM application and the VMs

exist traffic dependency, generating one affinity group.

The first scheme adopts the AAGA method, denoted

by AAGA. The VMs are firstly identified with affinity

relationships and grouped into several affinity groups via
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Table II
FFD-BASED AFFINITY GROUP VM PLACEMENT

PM—VC VC1 VC2 VC3 VC4 VC5 VC6
PM1 16 0 0 0 0 0
PM2 0 8 0 0 10 0
PM3 0 0 6 12 0 4

Table III
FFD-BASED VM PLACEMENT

PM—VC VC1 VC2 VC3 VC4 VC5 VC6
PM1 0 8 4 0 0 4
PM2 16 0 2 0 5 0
PM3 0 0 0 12 5 0

Max-VA-Grouping. Then, we arbitrarily use a bin packing

method FFD to allocate these VM-affinity groups onto PMs

and the detailed deployment is listed in Table II.

The other scheme employs the VM packing method

without considering affinity of VMs, which is denoted by

NAGA. The VMs are deployed onto PMs one by one using

the same bin packing method as AAGA, i.e., FFD. The

detailed deployment is listed in Table III, from which we can

see that the VMs of VC3 and VC5 are deployed amongst

two PMs, i.e., VC3 as (4 + 2+ 0) and VC5 as (0 + 5+ 5),
while the VMs of other VCs are still placed centrally on

one PM, e.g., VC1 as (0 + 16 + 0).

D. Running and Results Analysis

The HPCC multi-VM applications over the six VCs in

each scheme run concurrently three times and result in

several files each time. To evaluate the performance, we

extract from the result files and pick four metrics from

four communication-intensive benchmarks of HPCC, i.e.,

HPL Tflops for HPL, PTRANS GBs for PTRANS, Avg-

PingPongBandwidth GBytes for PingPong benchmark of

b eff, MPIFFT Gflops for FFT. Table IV gives the average

result for each metric value.

From Table IV, we can observe that all performance of

VC3 and VC5 generated from scheme AAGA are better

than those generated by scheme NAGA. Particularly, the

performance of MPIFFT benchmark in VC5 derived from

AAGA scheme outperforms 23.5 times of the one from

NAGA scheme, while VC3 outperforms 5 times. For other

VCs, AAGA scheme has better performance than NAGA

scheme. However, because of the impact of resource con-

tention derived from VMs sharing CPU and memory, a few

cases do not show expected performance, such as MPIFFT

in VC6, AvgPingPong in VC2 and VC6, VC6 under AAGA

and NAGA scheme.

In addition, in our experiments, we take the summation

of metric value for each benchmark from these VCs to

compare the overall performance of the simulated cloud

multi-VCs system, because all VCs run the same benchmark

within AAGA and NAGA deployment schemes. Figure 6

shows the overall performance results which demonstrate
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Figure 6. The overall system performance evaluation for each benchmark
under AAGA and NAGA

the effectiveness of the AAGA method, because AAGA

outperforms NAGA in all four performance metrics, i.e.,

HPL improves 28.3%, PTRANS 16.3%, MPIFFT 87.6%,

and AvgPingPong 19.7%, respectively.

VI. RELATED WORK

The related work is categorized into two parts: affinity

and non-affinity.

A. Affinity-aware Studies in Virtualized Systems

In virtualized systems, a few study have been done on

affinity. First, Chen and Li [21] employ affinity to imple-

ment a new schedule strategy to improve the efficiency

of virtualized resource scheduling. The proposed affinity

is used to identify the relation between a virtual CPU

and a CPU in VMM or Hypervisor. Second, Sonnek et
al. [6] presented an affinity-aware VM migration technique

to minimize the communication overhead on a virtualized

platform. The affinity identified a policy or a technique of

VM migration for a dynamic resource allocation. Moreover,

Meng et al. [7] proposed a traffic-aware VM placement to

improve the network scalability.

Recently Sudevalayam et al. [5] attempted to evaluate per-

formance of virtualized applications hosted among two VMs

with colocation affinity. It focuses on performance evaluation

but not resource allocation. Besides, VMWare [22] use

affinity to signify the relationship between VMs which are

kept together as one unit in VM placement. This proves

the practicality of our study on affinity-aware resource

allocation.

B. Non-affinity Resource Allocation In Virtualized Systems

Virtualization enables easily resource allocation in dat-

acenters and cloud computing. Many efficient solutions

have been proposed for VM resource management, together

with some resource allocation methods [11], [13], [14]. As

a resource allocation problem, researchers have proposed

various algorithms such as bin packing and optimization

methods to VM initial placement problem. Wilcox et al. [15]

solved the VM placement as vector packing with Grouping

Genetic Algorithm. Panigrahy et al. [19] addressed the

heuristics vector bin packing based on FFD approximate

approaches to the vector backing problem. Their work is

241



Table IV
THE METRIC RESULTS OF BENCHMARKS IN ALL VCS UNDER AAGA AND NAGA SCHEME

Benchmark
(Metric)

Deployment
Scheme

VC1 VC2 VC3 VC4 VC5 VC6 Total

HPL(Tflop/s)
AAGA 0.0087 0.0094 0.0026 0.0046 0.0045 0.0060 0.0358
NAGA 0.0078 0.0059 0.0010 0.0054 0.0017 0.0061 0.0279

PTRANS(GB/s)
AAGA 0.3648 0.3711 0.0497 0.1621 0.0594 0.4659 1.4731
NAGA 0.3959 0.2454 0.0100 0.2793 0.0135 0.3662 1.3103

MPIFFT(Gflop/s)
AAGA 0.5606 0.4468 0.3198 0.5565 0.5859 0.1478 2.6174
NAGA 0.3944 0.4014 0.0623 0.5363 0.0249 0.3226 1.7419

AvgPingPong(Gbyte/s)
AAGA 0.3208 0.1679 0.2673 0.2931 0.3826 0.1316 1.5634
NAGA 0.2166 0.2682 0.1763 0.2999 0.1048 0.2399 1.3056

non-affinity-awareness and the techniques can be helpful to

our affinity-aware work.

VII. CONCLUSION

In this paper, we have studied the problem of affinity

aware grouping for allocation of virtual machines. The

contribution we made is three-fold. (1) We have identified

the relationship of affinity across VMs from real application

cases. (2) We have proposed an affinity grouping algorithm

to group the VMs which are known with affinity relation-

ships across VMs. (3) We have conducted comprehensive

experiments with different allocation methods to show that

affinity grouping can help us improve system performance.

For future study, we will investigate some techniques to

identify affinity relationships from a list of VMs, and study

how to handle the case when the capacity of a PM is less

than the resource demand of a group of VMs with affinity.
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