
1

A. Pipelining: Basic Concepts

What is pipelining?

How is the pipelining
Implemented?

What makes pipelining

hard to implement?

2

Definition

 Pipelining is an implementation technique

whereby multiple instructions are overlapped in

execution; it takes advantage of parallelism that

exists among the actions needed to execute an

instruction.

 Today, pipelining is the key implementation

technique used to make fast CPUs.

 Not only for CPU: a 12 level pipeline for geometry

transformation in GPU(Clark 1982)

the goal What’s it?

3

Parallelism

• From dictionary: the quality or condition of

being parallel; a parallel relationship.

• The Nature of a TASK. Goal in parallel

computing and Arch. design : seek

parallelism and try using it to improve

performance.

4

Patterns of parallel task handling

TASK

Decompose by steps. Decompose by functionality.

Decompose by data.

(Fighting simulation)

(Satellite remote sensing) (Weather simulation)

5

What is Pipelining ?

• Pipelining:

– “A technique designed into some computers
to increase speed by starting the
execution of one instruction before
completing the previous one.”

 ----Modern English-Chinese Dictionary

– implementation technique whereby different

instructions are overlapped in execution at the

same time.

– implementation technique to make fast CPUs

6

It likes Auto Assembly line

• An arrangement of workers,
machines, and equipment in
which the product being
assembled passes
consecutively from operation
to operation until completed.

• Ford installs first moving
assembly line in 1913. The
right picture shows the moving
assembly line at Ford Motor
Company's michigan plant.

(84 distinct steps)

7

Trucking gas from depot
to gas station

• The steps:
– Get the barrels

– Load them into the truck

– Drive to the gas station

– Unload the gas

– Return for more oil

• Let’s do the math
– Each truck can carry 5 barrels

– Can load a truck with 5 barrels
in 1 hour

– It takes each truck 1 day to
drive to and from gas station

– How many barrels per week are
delivered?

8

Looks a Lot Like a Multi-cycle
Processor

• What are the steps ?
– Fetch an instruction (Get the barrels)

– Decode the instruction (Load them into the truck)

– ALU OP (Drive to the gas station)

– Memory Access (Unload the gas)

– Write-back (Return for more oil)

9

A better way, but dangerous

• Roll the barrels down the road
– Big fire hazard

10

Big idea: Build a pipeline

• Now let’s do the math
– Pipeline can accept 1 barrel every hour

– How many barrels get delivered to the gas
station per day?

11

Trucking vs. Pipelines

• Trucks
– Truck with 5 barrels takes 1

day to drive to and from gas
station, while need 2 hours
for loading and unloading

– LOTS of TIME when loading
area,gas station, and pieces
of the road are unused

• Pipelines
– Pipeline can accept 1

barrel every hour

– Resources (loading
area, gas
station,pipelines)
are always in use

12

Why Pipelining: Its Natural

• Laundry
– Ann, Brian, Cathy, Dave

each have one load of clothes
to wash, dry, and fold

– Washer takes 30 minutes

– Dryer takes 40 minutes

– “Folder” takes 20 minutes

A B C D

13

Sequential Laundry

• Sequential laundry takes 6 hours for 4 loads

• If they learned pipelining, how long would laundry take?

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight
Time

T
a
s
k

O
r
d
e
r

14

 Pipelined Laundry
 ----Start work ASAP

• Pipelined laundry takes 3.5 hours for 4 loads

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

15

Why pipelining : overlapped

• Latches, called
pipeline registers’
break up computation
into 5 stages

• Deal 5 tasks at the
same time.

• Only deal one task
each time.

• This task takes

 “ such a long time”

16

Why pipelining: more faster

• Can “launch” a new
computation every
100ns in this structure

• Can finish 107
computations per
second

• Can launch a new
computation every
20ns in pipelined
structure

• Can finish 5×107
computations per
second

17

Why pipelining : conclusion

• The key implementation technique used to Make

fast CPU: decrease CPUtime.

• Improving of Throughput (rather than individual

execution time)

• Improving of efficiency for resources (functional

unit)

18

What is a pipeline ?

• A pipeline is like an auto assemble line

• A pipeline has many stages

• Each stage carries out a different part of instruction
or operation

• The stages, which cooperates at a synchronized clock,
are connected to form a pipe

• An instruction or operation enters through one end and
progresses through the stages and exit through the
other end

• Pipelining is an implementation technique that exploits
parallelism among the instructions in a sequential
instruction stream

19

Ideal Performance for Pipelining

• If the stages are perfectly balanced, The
time per instruction on the pipelined
processor equal to:

 Time per instruction on unpipelined machine

 Number of pipe stages

• So, Ideal speedup equal to

 Number of pipe stages.

20

Why not just make a 50-stage
pipeline ?

• Some computations just won’t divide into
any finer (shorter in time) logical
implementation.

5 stages OK

50 stages NO. Sorry!

21

Why not just make a 50-stage
pipeline ?

• Those latches are NOT free, they take up area, and
there is a real delay to go THRU the latch itself.

– Machine cycle > latch latency + clock skew

• In modern, deep pipeline (10-20 stages), this is a real
effect

• Typically see logic “depths” in one pipe stage of 10-20
“gates”.

At these speeds, and
with this few
levels of logic,
latch delay is
important

22

How Many Pipeline Stages?

• E.g., Intel
– Pentium III, Pentium 4: 20+ stages

– More than 20 instructions in flight

– High clock frequency (>1GHz)

– High IPC

• Too many stages:
– Lots of complications

– Should take care of possible dependencies among in-flight
instructions

– Control logic is huge

23

Simple implementation of a RISC
Instruction Set (MIPS)

• Start with Implementation without
pipelining
– single-cycle implementation

– multi-cycle implementation

• Pipelining the RISC Instruction Set

• Pipelining performance issues

• How can we do it efficiently ?

• Examples

24

How MIPS instruction set is
implemented without pipelining ?

• Five phases
– IF: Instruction fetch cycle

 Send PC to memory and fetch the Instruction

 Update the PC to NPC by adding 4

– ID: Instruction decode/ register fetch cycle
 Decode the instruction

 read the registers

 If needed, sign-extend the offset field of the instruction.

25

The other three phases

– EX: Execution/ effective address cycle
 Memory reference: calculate the address

 R-R/ R-I ALU: ALU operation on R-R or R-I

 Branch: Do the equality test, compute the possible target
address and send it to NPC if the equality test is true.

– MEM: Memory access
 Load: send the effective address to the data memory and

fetch the data

 Store: write the data from the ID phases using the

effective address.

– WB: Write-back cycle
 Load or ALU: write the result into the register file.

26

Single-cycle implementation

seldom used !

27

Multi-cycle implementation

28

About Multi-cycle implementation

• The temporary storage locations were
added to the datapath of the unpipelined
machine to make it easy to pipeline.

• Note that branch and store instructions
take 4 clock cycles.

– Assuming branch frequency of 12% and
a store frequency of 10%, CPI is 4.78.

• This implementation is not optimal.

29

How to improve the performance ?

• For a possible branch, do the equality test and
compute the possible branch target by adding the
sign-extended offset to the incremented PC earlier
in ID.

• Completing ALU instructions during the MEM cycle

• So, branch instructions take only 2 cycles, store
and ALU instructions take 4 cycles, and load
instruction takes the longest time 5 cycles.

• CPI drops to 4.07 assuming 47% ALU operation
frequency.

 2×12％ ＋4×（10％＋47％）＋ 31%×5＝4.07

30

Optimized Multi-cycle
implementation

PC

Instr.

MEM

NPC

IR

M
U

X

Reg.

File

Data.

MEM

Zero?

A

B

IM

M

M
U

X

4

ALU

output

LMD

M
U

X

Sign Ex

IF ID EX MEM WB

Temporary storage locations

31

Improvement on
hardware redundancy

• ALU can be shared.

• Data and instruction memory can be
combined since access occurs on
different clock cycles.

32

Pipelining MIPS instruction set

• Since there are five separate stages, we can have a
pipeline in which one instruction is in each stage.

• CPI is decreased to 1, since one instruction will be
issued (or finished) each cycle.

• During any cycle, one instruction is present in each
stage.

• Ideally, performance is increased five fold !

33

store

load

5-stage Version of MIPS Datapath

pipeline

registers or

latches

34

How pipelining decrease the
execution time ?

 If your starting point is

• a single clock cycle per instruction
machine then

– pipelining decreases cycle time.

• a multiple clock cycle per instruction
machine then

– pipelining decreases CPI.

35

Single-cycle implementation vs.
pipelining

Load IF ID EX MEM WB

IF ID EX MEM WB Store

IF ID EX MEM WB R-type

Single Cycle Implementation: CPI=1, long clock cycle

Clk

Load Store Waste

Cycle 1 Cycle 2

Pipeline Implementation: CPI=1, clock cycle long clock cycle/5

Clk

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

36

Multi-cycle implementation vs.
pipelining

Load Store R-type

Clk

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Clk

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Multip-Cycle Implementation: CPI=5,

Pipeline Implementation: CPI=1,

Load IF ID EX MEM WB

IF ID EX MEM WB Store

IF ID EX MEM WB R-type

IF ID EX MEM WB IF ID EX MEM WB

37

store

load

How simple as this ! Really ?

pipeline

registers or

latches Why need to add this line?

38

Problems that pipelining introduces

Focus: no different operations with the same
data path resource on the same clock cycle.
(structure hazard)

• There is conflict about the memory !

Mem

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Ld/St

Instr 1

Instr 2

Instr 3

A
L

U

Mem Reg Mem Reg
A

L
U

Mem Reg Mem Reg

A
L

U

Mem Reg Mem Reg

A
L

U

Reg Mem Reg

39

Separate instruction and data
memories

• use split instruction and data cache

• the memory system must deliver 5 times the
bandwidth over the unpipelined version.

IM

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Ld/St

Instr 1

Instr 2

Instr 3
A

L
U

IM Reg DM Reg

A
L

U

IM Reg DM Reg
A

L
U

IM Reg DM Reg

A
L

U

Reg DM Reg

40

The conflict about the registers !

41

Sometimes we can redesign the
resource

• allow WRITE-then-READ in one clock cycle
(double pump)

– Two reads and one write required per clock.
– Need to provide two read port and one write port.

• What happens when a read and a write occur to
the same register ? (Data hazard)

42

Conflict occurs when PC update

• Must increment and store the PC every clock.

• What happens when meet a branch ?
– Branches change the value of the PC -- but the

condition is not evaluated until ID !

– If the branch is taken, the instructions fetched
behind the branch are invalid !

• This is clearly a serious problem (Control
hazard) that needs to be addressed. We will

deal it later.

43

Must latches be engaged ? Yeah !

• Ensure the instructions in different stages do not
interfere with one another .

• Through the latches, can the stages be combined one by
one to form a pipeline.

• The latches are the pipeline registers , which are much
more than those in multi-cycle version
– IR: IF/ID.IR; ID/EX.IR; EX/DM.IR; DM/WB.IR

– B: ID/EX.B; EX/DM.B

– ALUoutput: EX/DM.ALUoutput, DM/WB.ALUoutput

• Any value needed on a later stage must be placed in a
register and copied from one register to the next, until
it is no longer needed.

44

performance issues in pipelining

• Latency: The execution time of each instruction in
pipelining does not decrease, instead, always longer
than that of unpipelined machine.

• Imbalance among stages reduces performance

• Overhead rise from register delay and clock skew
also contribute to the lower limit of machine cycle.

• Pipeline hazards are the major hurdle of pipeline,
which prevent the machine from reaching the ideal
performance.

• Time to “fill” pipeline and time to “drain” it reduces
speedup

45

That’ all for today.

See you next Time

• 1、If you are asked to design an instruction

set architecture for a processor, what are the

tasks that you are supposed to accomplish ?

• 2、Please define the terms “CISC” AND

“RISC”, and describe their advantages and

disadvantages.

46

• 3、Suppose that there are four types of operations in an

application. After making enhancements to the original

function units, each type of operation gains performance

improvement as shown in the following table.

• 1) What’s the enhanced speedup of each operation respectively after

improving?

• 2) What’s the overall speedup of the application respectively after only

improving Op2 or Op4?

– Hint: Calculate the overall speedup considering only one of the enhanced

function units is used. There are 2 situations.

• 3) What’s the overall speedup of the application if all the four enhanced

function units are used together?

47

Operation Type IC (total 100) CPI before enhancement CPI after enhancement

Op1 10 2 1

Op2 30 20 15

Op3 35 10 3

Op4 25 4 1

