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Lecture 4 for pipelining 

• What makes pipelining hard 
to implement ? 

   (execptions) 
 
• Extending the MIPS 

Pipeline to Handle 
Multicycle Operations 
 

• MIPS R4000 integer 
pipeline 
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What Makes Pipelines Hard to 
Implement? 

• Detecting and resolving hazards 
– OK. We have solved this problem. 

• Exceptions and Interrupts 

• Instruction Set complications  
– Very complex multicycle instructions are difficult to 

pipeline 

– Example: 

– stringMov from 0x1234, to 0x4000, 0x1000 bytes 
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Exception causes  

• I/O device requests  

• User OS service requests  

• Breakpoints  

• Integer arithmetic overflow/underflow  

• FP arithmetic anomaly  

• Page fault  

• Misaligned memory accesses  

• Memory protection violations  

• Hardware malfunctions  

• Undefined instructions  
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Exceptions and Interrupts 

• Exceptions are exceptional events that disrupt 
the normal flow of a program 

• Terminology varies between different machines 
• Examples of Interrupts 

– User hitting the keyboard 
– Disk drive asking for attention 
– Arrival of a network packet 

• Examples of Exceptions 
– Divide by zero 
– Overflow 
– Page fault 
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Exception Flow 

• When an exception (or interrupt) occurs, 
control is transferred to the OS 
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Flow of Instructions During 
Exception 
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Characterizing Exceptions and 
Interrupts 

• Synchronous vs asynchronous events 
– Synchronous events occur at the same place every time a 

program executes 

– Asynchronous events are caused by external devices such as 
a keyboard, disk drive or mouse 

– Asynchronous events can usually be handled after the 
completion of the current instruction, making them easier to 
handle 

• User requested vs. coerced 
– If a user asks for it, it is user requested 

– Coerced are hardware events not under user control 

– Coerced exceptions are harder to implement since they are 

not predictable.  
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Characterizing Exceptions and 
Interrupts (continued) 

• User maskable vs nonmaskable 
– Can a user disable an exception from being detected? 

• Within vs. between instructions 
– Does the event prevent the current instruction from completing? 

– Exceptions occurring within instructions are usually 
synchronous, since the instruction triggers the exception.  

– Within is more difficult to implement than between since the 
former must be restarted.  

• Resume vs. terminate 
– Can the event be handled (corrected) or must the program be 

terminated? 

– Restarting is harder (obviously), and is the more common case.  
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Types of Exceptions 
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How to do  
when exception occurs ? 

• Often, exception occurs while many 
instructions are in flight 
– Ex: a page fault on a load instruction will 

occur in stage 4 of the MIPS pipe 

– Pipeline must be safely shutdown when 
exception occurs and then restarted at the 
offending instruction 
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Stopping and Restarting 
Execution 

• Force a trap instruction into the pipeline 
• Until the trap is taken, turn off all writes for the 

faulting instruction and any instruction that issued 
after the faulting instruction 
– This prevents instructions from changing the state of the 

machine 

• When the trap is taken, invoking the OS, the OS saves 
the PC of the offending instruction 

• The OS fixes the exception (if possible) and then 
restarts the machine 
– Restarting usually means setting PC <-- offending instruction 

address 
– Replays instruction(s) 
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Precise Exceptions 

• If the pipeline can be stopped so that the instructions 
issued before the faulting instruction complete and 
those after it can be restarted, then the pipeline is said 
to implement precise exceptions 
– All instructions before the faulting instruction complete   

– And instructions following the faulting instruction, including 
the faulting instruction, do not change the state of the 
machine.  

• Under this model, restarting is easy:  
– Simply re-execute the original faulting instruction.  

– Or, if it is not a resumable instruction, start with the next 

instruction.  
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Imprecise Exceptions 

• Difficult to do when some instructions take 
multiple cycles to complete 
– Some instructions may complete before an exception is 

detected 

– Example 
Multiply r1, r2, r3 ; multiply takes 10 cycles 

Add r10,r11,r12 ; takes 5 cycles 

– Add will complete before multiply is done. If multiply 
overflows, then 

– an exception will be raised AFTER the add has updated 
the value in R10. 

– This is an imprecise exception. 
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Precise vs. Imprecise Exceptions 

• Some machines implement both modes: 
imprecise and precise exceptions 
– Special software instructions to guarantee 

precise exceptions 

– Machine runs slower when one needs precise 
exceptions 

– In general, integer exceptions are precise, 
while FP exceptions may not be.  
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Exceptions and the MIPS 
Architecture 

• Which stage can exceptions occur in? 

• Stage     Problem exceptions occurring 
IF   page fault on instruction fetch;   

   misaligned memory access; 

   memory protection violation 

ID  undefined or illegal opcode 

EX  arithmetic exception 

MEM  page fault on data fetch;  

   misaligned  memory access; 

   memory-protection violation 

WB  none 
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Multiple Exceptions  
in one clock cycle 

• In Clock Cycle 4, LW can have a data page fault while the ADD 
has an arithmetic exception 

• Handled by servicing the page fault and then restarting the LW 
instruction 

• The ADD’s arithmetic exception will occur again because the 
ADD instruction is restarted after the exception is handled 



17 

Multiple Exceptions out-of-order  

• ADD causes an exception in the instruction fetch stage while 
LW causes an exception in the memory access stage 

• If we implement precise exceptions, LW exception must be 
handled first 

• This is done by having hardware post exceptions by order of 
instruction 
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Exception ordering 

• When the instruction is about to exit the 
pipeline (MEM/WB), any pending exceptions for 
the instruction are examined.  

•  If an instruction generates multiple exceptions, 
the exception occurring in the earliest stage 
takes precedence.  

• This is done by keeping an exception status 
vector for each instruction:  
– If an exception is posted, it is added to the vector 

and all writes that affect system state are disabled. 
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About Exceptions 

• One of the single messiest parts of designing a modern 
CPU 
– It isn’t pretty, it’s easy to get wrong 
– It’s often not too elegant 
– It usually takes huge wads of special logic 

 

• Further complicated by modern CPU mechanisms 
– Deep pipes 
– Superscalar --lots of instructions in flight in parallel 
– Out-of-order execution  

  time order of exceptions  program order of the instructions on 
which the exceptions happened 

– Maintaining illusion of “sequential instruction execution” gets 
really complicated. 
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What Makes Pipelines Hard to 
Implement? 

• Detecting and resolving hazards 
– OK. We have solved this problem. 

• Exceptions and Interrupts 

• Instruction Set complications  
– Very complex multicycle instructions are difficult to 

pipeline 

– Example: 

– stringMov from 0x1234, to 0x4000, 0x1000 bytes 
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Instruction set complications-1  

• An instruction is committed when it is 
guaranteed to complete.  
– On MIPS, all instructions are committed at the end 

of MEM.  

– Since no updates occur before instructions commit, 
precise interrupts are straightforward.  

• In most RISC systems, each instruction writes 
only one result.  
– This means that the instruction can be cancelled any 

time before the instruction is committed, with no 

harm to the system state.  
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Instruction Set Complications-2 

• This is not true for many CISC machines, i.e. 
VAX  
– On these machines, the system state may be 

modified well before the instruction or its 
predecessors are committed.  

–  For example, if an instruction using autoincrement 
mode is aborted because of an exception, then the 
machine state may have been altered.  

– This leads to an imprecise exception making it 
difficult to restart the instruction. 
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Instruction Set Complications-3 

• The situation is worse for instructions 
that access and write memory in multiple 
places.  
– These instructions can generate multiple 

faults.  

– Therefore, it becomes difficult to know 
where to resume. 

– This is usually solved by using general 
purpose registers as work registers (that are 
saved and restored.)  



24 

Instruction Set Complications-4 

• Odd bits of state that may create 
additional pipeline hazards or may require 
extra hardware to save and restore. 
– Example:  conditional codes 

• Multicycle operation 
– The general solution used by more complex 

instruction set machines is to pipeline the 
microcode. 

– In 1990s, all companies moved to simpler ISA. 
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Extending the MIPS pipeline to 
handle MultiCycle Operations 

• Alternative resolutions to handle 
floating-point operations 
– Complete operation in 1 or 2 clock cycles, 

Which means using a slow clock,  

 or/and  using enormous amounts of logic in FP 
units. 

– Allow for a longer latency for operations 
The EX cycle may be repeated as many times as 

needed to complete the operation 

There may be multiple FP units 
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MIPS pipeline with FP units 

    EX 

Integer unit 

 

  
 EX  

FP/Integer
  

  multiply
 

   EX 

 FP adder 

 

   EX 

 FP/integer      

  divider 

 
 IF       ID   

    
MEM    WB   

   

Handles loads, stores ,  

integer ALU ops, and 

branches. 

Handles FP add, 

subtract, and conversion 
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Pipelining some of the FP units 

• Two terminologies 
– Latency----the number of intervening cycles 

between an instruction that produces a result 
and an instruction that uses the result. 

– Initiation interval----the number of cycles 
that must elapse between instructions issue 

to the same unit.  
 For full pipelined units, initiation interval is 1 

 For unpipelined units, initiation interval is always 
the latency plus 1. 
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Latencies and initiation intervals 
for functional units 

      

 
Functional unit Latency 

Initiation 

interval 

 

 
Integer  ALU 0 1 

 

 
Data memory(integer and FP loads) 1 1 

 

 
FP add 3 1 

 

 
FP multiply (also integer multiply) 6 1 

 

 
FP divide (also integer divide) 24 25 
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Pipeline supports multiple 
outstanding FP operations 

 

 IF  ID 

Integer unit 

EX 

A3 A4 A1 A2 

M4 M5 M2 M3 M1 M6 M7 

MEM WB 

DIV 

FP/integer divider 

FP adder 

Multiple EX stages require 

additional pipeline latches  

Unpipelined Divider 

FP/integer multiply 
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Specifications   

• Memory bandwidth:  double words/one cycle 
• New pipeline latches are required: 

– M1/M2, M2/M3, M3/M4, M4/M5, M5/M6, M6/M7 
– A1/A2, A2/A3, A3/A4 

• New connection registers are required: 
– ID/EX, ID/M1, ID/A1, ID/DIV 
– EX/MEM, M7/MEM, A4/MEM, DIV/MEM 

• Because the divider unit is unpipelined, structural hazards can 
occur. 

• Because the instructions have varying running times, the number of 
register writes required in a cycle can be larger than 1 

• New data hazards: WAW is possible due to disorder WBs 
• Due to longer latency of operations, stalls for RAW hazards will be 

more frequent. 

• Problems with exceptions resulting from disorder completion  
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Issuing in order and  
completion out of order 

                

 Instruction 1 2 3 4 5 6 7 8 9 10 11    

 MUL.D IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB    

 ADD. D  IF ID A1 A2 A3 A4 MEM WB      

 MUL.D   IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB  

 LD.D    IF ID EX MEM WB       

 SD.D     IF ID EX MEM WB      
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Structural Hazards for the FP 
register write port 

Instruction 1 2 3 4 5 6 7 8 9 10 11

MULTD F0, F4, F6 IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB

… IF ID EXi MEM WB

… IF ID EX MEM WB

ADDD F2, F4, F6 IF ID A1 A2 A3 A4 MEM WB

… IF ID EX MEM WB

… IF ID EX MEM WB

LD F8, 0(R2) IF ID EX MEM WB
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How to solve the write port 
conflict ? 

• Increase the number of write ports 
– Unattractive at all ! 
– No worthy since steady state usage is close to 1.  

• Detect and insert stalls by serializing the writes  
– Track the use of the write port in the ID stage and to stall an 

instruction before it issues 
 Additional Hardware: a shift register+ write conflict logic 
 The shift register tracks when already-issued instructions will use 

the register file, and right shift 1 bit each clock. 
 The stalls might aggravate the data hazards 
 All interlock detection and stall insertion occurs in ID stage 

– To stall a conflicting instruction when it tries to enter the MEM 
or WB stage. 
 Easy to detect the conflict at this point  
 Complicates pipeline control since stalls can now occur in two places.  
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Types of data hazards  

• Consider two instructions, A and B. A occurs before B. 
 
 
 
 

• RAW( Read after write)  true dependence 
– Instruction A writes Rx，instruction B reads Rx 

• WAW(Write after write) output dependence 
– Instruction A writes Rx，instruction B writes Rx 

• WAR( Write after read) anti-denpendence 
– Instruction A reads Rx，instruction B writes  Rx 

• Hazards are named according to the ordering that 
MUST be preserved by the pipeline 
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RAW dependence 

• B tries to read a register before A has written 
it and gets the old value.  

• This is common, and forwarding helps to solve it.  

S(A) D(A) S(B) D(B) 

Time 

No hazard 

S(A) D(A) 

S(B) D(B) 

If D(A)=S(B), hazard occur. 
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WAW dependence 

• B tries to write an operand before A has written it.  
• After instruction B has executed, the value of the 

register should be B's result, but A's result is stored 
instead.  

• This can only happen with pipelines that write values in 
more than one stage, or in variable-length pipelines (i.e. FP 
pipelines).  

 
S(A) D(A) S(B) D(B) 

Time 

No hazard 

S(A) D(A) 

S(B) D(B) 
If D(A)=D(B), hazard occur. 
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WAR dependence 

• B tries to write a register before A has read it. 
• In this case, A uses the new (incorrect) value.  
• This type of hazard is rare because most pipelines read 

values early and write results late.  
• However, it might happen for a CPU that had complex 

addressing modes. i.e. autoincrement. 

 

S(A) D(A) S(B) D(B) 

Time 

No hazard 

S(B) D(B) If S(A)=D(B), hazard occur. 

S(A) D(A) 
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Stalls arising from RAW hazards 

                   

 Instruction 1 2 3 4 5 6 7 8 9 10 11       

 LD  
F4, 0(R2) 

IF ID EX MEM WB             

 MULTD 
F0, F4, F6 

 IF ID stall M1 M2 M3 M4 M5 M6 M7 MEM WB     

 ADDD  
F2, F0, F8      

  lF stall ID stall stall stall stall stall stall A1 A2 A3 A4 MEM  

 SD  
0(R2) , F2  

    IF stall stall stall stall stall stall ID EX  stall stall stall MEM 
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The WAW hazards 

Instruction 1 2 3 4 5 6 7 8 9 10 11

MULTD F0, F4, F6 IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB

… IF ID EXi MEM WB

… IF ID EX MEM WB

ADDD F2, F4, F6 IF ID A1 A2 A3 A4 S MEM WB

… IF ID EX MEM WB

LD F2, 0(R2) IF ID EX MEM WB

LD F8, 0(R2) IF ID EX S S MEM WB
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Solving the WAW hazard  

• Stall an instruction that would "pass" another until 
after the earlier instruction reaches the MEM phase.  

• Cancel the WB phase of the earlier instruction 

• Both of these can be done in ID, i.e. when LD is about 
to issue.  

• Since pure WAW hazards are not common, either 
method works.  

• Pick the one that simplest to implement.  
• The simplest solution for the MIPS pipeline is to hold 

the instruction in ID if it writes the same register as an 
instruction already issued.  
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What other hazards  
are possible ?  

• Hazards among FP instructions.  

• Hazards between an FP instruction and an 
integer instruction.  
– Since two register files exist, only FP loads 

and stores and FP register moves to integer 
registers involve hazards. 
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Checks are required in ID 

• Check for structural hazards .  
– The divide unit  and Register write port.  

• Check for RAW hazards  
– The CPU simply stalls the instruction at ID stage 

until:  
 Its source registers are no longer listed as destinations in 

any of the execution pipeline registers (registers between 
stages of M and A) OR  

 Its source registers are no longer listed as the destination 
of a load in the EX/MEM register. 

• Check for WAW hazards  
– Check instructions in A1, ..., A4, Divide, or M1, ...,M7 

for the same destination register (check pipeline 
registers.)  

– Stall instruction in ID if necessary.  
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Performance of MIPS FP pipeline 

平均每个浮点操作带来的Stall

0.7
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Performance of MIPS FP pipeline 

平均每个浮点操作带来的Stall

0.61
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Multiply Branch/Load stalls FP structural
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Maintaining precise Exception 

• Exceptions are difficult because 
instructions may now finish out of order .  

• Example   DIVF       F0, F2, F4 
                  ADDF    F10, F10, F8 
                  SUBF      F12, F12, F14 
– ADDF and SUBF are expected to complete before 

DIVF .----Out-of-order completion.  
– Suppose SUBF caused an arithmetic exception at a 

point where ADDF completed but DIVF has not. 
– The result is an imprecise exception . Fix here is to 

let pipeline drain.  
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The worse case  

• Worse, suppose DIVF had an exception 
after ADDF completed.  
– Since ADDF destroys one of its operands, we 

can not restore the state to what it was 
before the DIVF instruction, even with 
software !  
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Handling exceptions 
-- first solution  

• Ignore the problem (imprecise exceptions):  
– This may be fast and easy, but it's difficult to debug 

programs without precise exceptions.  

– Many modern CPUs, i.e. DEC Alpha 21064, IBM 
Power-1 and MIPS R800, provide a precise mode that 
allows only a single outstanding FP instruction at any 
time.  

– This mode is much slower than the imprecise mode, 
but it makes debugging possible 
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Handling exceptions 
-- Second solution 

• Buffer the results and delay commitment 

– In this case, the CPU doesn't actually make 
any state (register or memory) changes until 
the instruction is guaranteed to finish.  

– This becomes difficult when the difference 
in running time among operations is large.  

– Lots of intermediate results have to be 
buffered (and forwarded, if necessary).   
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Variations of the second 
solution-1 

• History file:  
– This technique saves the original values of the 

registers that have been changed recently.  

– If an exception occurs, the original values can be 
retrieved from this cache .  

– Note that the file has to have enough entries for one 
register modification per cycle for the longest 
possible instruction. 

– Similar to the solution used for the VAX for 

autoincrement and autodecrement addressing.   
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Variations of the second 
solution-2 

• Future file:  

– This method stores the newer values for 

registers.  

– When all earlier instructions have completed, 

the main register file is updated from the future 

file.  

– On an exception, the main register file has the 

precise values for the interrupted state.  
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Handling exceptions, third 
solution 

• Keep enough information for the trap handler to create a precise 
sequence for the exception:  
– The instructions in the pipeline and the corresponding PCs must be 

saved.  
–  After the exception, the software finishes any instructions that 

precede the latest instruction completed. 
 
 
 
 

 

 

– Technique is used in the SPARC architecture.  
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Handling exceptions, fourth 
solution 

• Allow instruction issue only if it is known that 
all previous instructions will complete without 
causing an exception. 
– The floating point function units must determine if 

an exception is possible early in the EX stage, first 
couple clocks,  

– In order to prevent the following instructions from 
completing.  

– Sometimes it requires stalling the pipeline in order 
to maintain precise interrupts.  

– The R4000 and Pentium solution.  
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Guidelines for designing 
instruction sets for pipelining-1 

• Avoid variable instruction lengths and running 
times whenever possible :  
– Variable length instructions complicate hazard 

detection and precise exception handling.  

– Sometimes it is worth it because of performance 
adv., i.e., caches .  

– Cause instruction running times to vary, when they 
miss.  

– Many times, the added complexity is delt with by 
freezing the pipeline.  
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Guidelines for designing 
instruction sets for pipelining-2 

• Avoid sophisticated addressing modes :  
– Addressing modes that update registers 

(post-autoincrement) complicates exceptions 
and hazard detection.  

– It also makes it harder to restart 
instructions.  

– Allowing addressing modes with multiple 
memory accesses also complicates pipelining. 
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Guidelines for designing 
instruction sets for pipelining-3 

• Don't allow self-modifying code  

– Since it is possible that the instruction being 
modified is already in the pipeline, the 
address being written must constantly be 
checked.  

– If it is found, then the pipeline must be 
flushed or the instruction updated !  

– Even if it's not in the pipeline, it could be in 
the instruction cache.  
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Guidelines for designing 
instruction sets for pipelining-4 

• Avoid implicitly setting CCs in instructions  
– This makes it harder to avoid control hazards since 

it's impossible to determine if CCs are set on 
purpose or as a side effect.  

– For implementations that set the CC almost 
unconditionally :  

– Makes instruction reordering difficult since it is 
hard to find instructions that can be scheduled 

between the condition evaluation and the branch.  
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The MIPS R4000 pipeline 

• IF－First half of instruction fetch. PC selection occurs. Cache 
access is initiated.  

• IS－Second half of instruction fetch.  

          －This allows the cache access to take two cycles.  

• RF－Decode and register fetch, hazard checking, I-cache hit 
detection.  

• EX－Execution: address calculation, ALU Ops, branch target 
calculation and condition evaluation.  

• DF/DS/TC  
－ Data fetched from cache in the first two cycles.  
－ The third cycle involves checking a tag check to determine 

if the cache access was a hit.  

• WB－Write back result for loads and R-R operations. 
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Possible stalls and delays 

• Load delay: two cycles  
– The delay might seem to be three cycles, since the 

tag isn't checked until the end of the TC cycle.  

– However, if TC indicates a miss, the data must be 
fetched from main memory and the pipeline is backed 

up to get the real value.  
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Load stalls 

 Instruction Mem  RegData Memory

 
A

L
U

 
Reg

CC1    CC2   CC3    CC4    CC5   CC6    CC7    CC8    CC9   CC10  CC11

 Instruction Mem  RegData Memory

 
A

L
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 Instruction Mem  RegData Memory

 
A

L
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 Instruction Mem  RegData Memory
 
A

L
U

 
Reg

LW R1

Instruction 1

Instruction 2

ADD R2, R1
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Example：load stalls 

Instruction 1 2 3 4 5 6 7 8 9

LW  R1 IF IS RF EX DF DS TC WB

ADD R2, R1 IF IS RF stall stall EX DF DS

SUB R3, R1 IF IS stall stall RF EX DF

OR  R4 , R1 IF stall stall IS RF EX
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Branch delay: three cycles 

• Branch delay: three cycles (including one branch 
delay slot) 
– The branch is resolved during EX, giving a 3 cycle 

delay.  

– The first cycle may be a regular branch delay slot 
(instruction always executed) or a branch-likely slot 
(instruction cancelled if branch not taken).  

– MIPS uses a predict-not-taken method presumably 

because it requires the least hardware.  
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Branch Delays： 3 stalls 

 Instruction Mem  RegData Memory

 A
L

U

 
Reg

CC1    CC2   CC3    CC4    CC5   CC6    CC7    CC8    CC9   CC10  CC11
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Instruction 1

Instruction 2

Instruction 3

Target
 Instruction Mem Data Memory

 A
L

U

 
Reg
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Pipeline status for branch 
latency 

Instruction 1 2 3 4 5 6 7 8 9

Branch Ins. IF IS RF EX DF DS TC WB

Delayed slot IF IS RF EX DF DS TC WB

Stall stall stall stall stall stall stall stall

Stall stall stall stall stall stall stall

Branch target IF IS RF EX DF

Instruction 1 2 3 4 5 6 7 8 9

Branch Ins. IF IS RF EX DF DS TC WB

Delayed slot IF IS RF EX DF DS TC WB

Branch ins +2 IF IS RF EX DF DS TC

Branch ins +3 IF IS RF EX DF DS
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The FP 8-stage operational 
pipeline 

Stage Functional unit Description

A FP adder Mantissa ADD stage

D FP divider Divide pipeline stage

E FP Multiplier Exception test stage

M FP Multiplier First stage of multiplier

N FP Multiplier Second stage of multiplier

R FP adder Rounding stage

S FP adder Operand shift stage

U Unpack FP numbers
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Latency and initiation intervals 

FP instruction Latency Initiation interval Pipe stages

Add, subtract 4 3 U, S+A, A+R, R+S

Multiply 8 4 U,E+M,M,M,M,N,N+A,R

Divide 36 35 U,A,R,D27,D+A,D+R,D+A, D+R, A, R

Square root 112 111 U, E, (A+R)108, A, R

Negate 2 1 U, S

Absolute value 2 1 U, S

FP compare 3 2 U, A, R



66 

Structural hazards-1 

Operation Issue
/stall

0 1 2 3 4 5 6 7 8 9

Multiply Issue U M M M M N N+A R

Add Issue U S+A A+R R+S

Issue U S+A A+R R+S

Issue U S+A A+R R+S

Stall U S+A A+R R+S

Stall U S+A A+R R+S

Issue U S+A A+R R+S

Issue U S+A A+R
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Structural hazards-2 

Operation Issue
/stall

0 1 2 3 4 5 6 7 8 9

Add Issue U S+A A+R R+S

Multiply Issue U M M M M N N+A R

Issue U M M M M N N+A R
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Structural hazards-3 

Operation Issue
/stall

25 26 27 28 29 30 31 32 33 34 35

Divide Issue in
cycle 0

D D D D D D+A D+R D+A D+R A R

Add Issue U S+A A+R R+S
Issue U S+A A+R R+S
Stall U S+A A+R R+S
Stall U S+A A+R R+S
Stall U S+A A+R R+S
Stall U S+A A+R R+S
Stall U S+A A+R R+S
Stall U S+A A+R
Issue U S+A
Issue U
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Structural hazards-4 

              

 Operation Issue 0 1 2 3 4 5 6 7 8 9  

 Add Issue  U S+A A+R R+S        

 Divide stall  U A  R D D D D D D  

  Issue   U A  R D D D D D  
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Effects and Benefits  
of longer pipeline 

• Effects of longer pipeline:  
– In addition to the longer (and possibly more frequent) 

stalls just mentioned, the longer pipeline requires 
additional forwarding hardware.  

– It also requires more complex hazard detection to 
find dependencies in the additional stages.  

• Benefits of longer pipeline  
– The major benefit to a longer pipeline is that each 

stage may be shorter.  
– This means that the clock cycle can be shorter, 

allowing more instructions to be issued in a fixed 
time.  

– Of course, the added stalls might eat up this benefit, 
but the hope is that at least some speedup will be 
left.  
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Performance issues (integer only)  

• The ideal CPI for the pipelined CPU is 1.  

• The biggest contributor to stalls is branch 
stalls.  

• Load stalls contribute very little.  
– This is probably because the compiler can usually 

reorganize code to avoid stalling on loads.  

• Since load latency is two cycles, though, the job 
is harder than it might be on processors with a 
single-cycle latency. 



72 

Performance loss measurements 
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