
1

Lecture 4 for pipelining

• What makes pipelining hard
to implement ?

 (execptions)

• Extending the MIPS

Pipeline to Handle
Multicycle Operations

• MIPS R4000 integer
pipeline

2

What Makes Pipelines Hard to
Implement?

• Detecting and resolving hazards
– OK. We have solved this problem.

• Exceptions and Interrupts

• Instruction Set complications
– Very complex multicycle instructions are difficult to

pipeline

– Example:

– stringMov from 0x1234, to 0x4000, 0x1000 bytes

3

Exception causes

• I/O device requests

• User OS service requests

• Breakpoints

• Integer arithmetic overflow/underflow

• FP arithmetic anomaly

• Page fault

• Misaligned memory accesses

• Memory protection violations

• Hardware malfunctions

• Undefined instructions

4

Exceptions and Interrupts

• Exceptions are exceptional events that disrupt
the normal flow of a program

• Terminology varies between different machines
• Examples of Interrupts

– User hitting the keyboard
– Disk drive asking for attention
– Arrival of a network packet

• Examples of Exceptions
– Divide by zero
– Overflow
– Page fault

5

Exception Flow

• When an exception (or interrupt) occurs,
control is transferred to the OS

6

Flow of Instructions During
Exception

7

Characterizing Exceptions and
Interrupts

• Synchronous vs asynchronous events
– Synchronous events occur at the same place every time a

program executes

– Asynchronous events are caused by external devices such as
a keyboard, disk drive or mouse

– Asynchronous events can usually be handled after the
completion of the current instruction, making them easier to
handle

• User requested vs. coerced
– If a user asks for it, it is user requested

– Coerced are hardware events not under user control

– Coerced exceptions are harder to implement since they are

not predictable.

8

Characterizing Exceptions and
Interrupts (continued)

• User maskable vs nonmaskable
– Can a user disable an exception from being detected?

• Within vs. between instructions
– Does the event prevent the current instruction from completing?

– Exceptions occurring within instructions are usually
synchronous, since the instruction triggers the exception.

– Within is more difficult to implement than between since the
former must be restarted.

• Resume vs. terminate
– Can the event be handled (corrected) or must the program be

terminated?

– Restarting is harder (obviously), and is the more common case.

9

Types of Exceptions

10

How to do
when exception occurs ?

• Often, exception occurs while many
instructions are in flight
– Ex: a page fault on a load instruction will

occur in stage 4 of the MIPS pipe

– Pipeline must be safely shutdown when
exception occurs and then restarted at the
offending instruction

11

Stopping and Restarting
Execution

• Force a trap instruction into the pipeline
• Until the trap is taken, turn off all writes for the

faulting instruction and any instruction that issued
after the faulting instruction
– This prevents instructions from changing the state of the

machine

• When the trap is taken, invoking the OS, the OS saves
the PC of the offending instruction

• The OS fixes the exception (if possible) and then
restarts the machine
– Restarting usually means setting PC <-- offending instruction

address
– Replays instruction(s)

12

Precise Exceptions

• If the pipeline can be stopped so that the instructions
issued before the faulting instruction complete and
those after it can be restarted, then the pipeline is said
to implement precise exceptions
– All instructions before the faulting instruction complete

– And instructions following the faulting instruction, including
the faulting instruction, do not change the state of the
machine.

• Under this model, restarting is easy:
– Simply re-execute the original faulting instruction.

– Or, if it is not a resumable instruction, start with the next

instruction.

13

Imprecise Exceptions

• Difficult to do when some instructions take
multiple cycles to complete
– Some instructions may complete before an exception is

detected

– Example
Multiply r1, r2, r3 ; multiply takes 10 cycles

Add r10,r11,r12 ; takes 5 cycles

– Add will complete before multiply is done. If multiply
overflows, then

– an exception will be raised AFTER the add has updated
the value in R10.

– This is an imprecise exception.

14

Precise vs. Imprecise Exceptions

• Some machines implement both modes:
imprecise and precise exceptions
– Special software instructions to guarantee

precise exceptions

– Machine runs slower when one needs precise
exceptions

– In general, integer exceptions are precise,
while FP exceptions may not be.

15

Exceptions and the MIPS
Architecture

• Which stage can exceptions occur in?

• Stage Problem exceptions occurring
IF page fault on instruction fetch;

 misaligned memory access;

 memory protection violation

ID undefined or illegal opcode

EX arithmetic exception

MEM page fault on data fetch;

 misaligned memory access;

 memory-protection violation

WB none

16

Multiple Exceptions
in one clock cycle

• In Clock Cycle 4, LW can have a data page fault while the ADD
has an arithmetic exception

• Handled by servicing the page fault and then restarting the LW
instruction

• The ADD’s arithmetic exception will occur again because the
ADD instruction is restarted after the exception is handled

17

Multiple Exceptions out-of-order

• ADD causes an exception in the instruction fetch stage while
LW causes an exception in the memory access stage

• If we implement precise exceptions, LW exception must be
handled first

• This is done by having hardware post exceptions by order of
instruction

18

Exception ordering

• When the instruction is about to exit the
pipeline (MEM/WB), any pending exceptions for
the instruction are examined.

• If an instruction generates multiple exceptions,
the exception occurring in the earliest stage
takes precedence.

• This is done by keeping an exception status
vector for each instruction:
– If an exception is posted, it is added to the vector

and all writes that affect system state are disabled.

19

About Exceptions

• One of the single messiest parts of designing a modern
CPU
– It isn’t pretty, it’s easy to get wrong
– It’s often not too elegant
– It usually takes huge wads of special logic

• Further complicated by modern CPU mechanisms
– Deep pipes
– Superscalar --lots of instructions in flight in parallel
– Out-of-order execution

 time order of exceptions  program order of the instructions on
which the exceptions happened

– Maintaining illusion of “sequential instruction execution” gets
really complicated.

20

What Makes Pipelines Hard to
Implement?

• Detecting and resolving hazards
– OK. We have solved this problem.

• Exceptions and Interrupts

• Instruction Set complications
– Very complex multicycle instructions are difficult to

pipeline

– Example:

– stringMov from 0x1234, to 0x4000, 0x1000 bytes

21

Instruction set complications-1

• An instruction is committed when it is
guaranteed to complete.
– On MIPS, all instructions are committed at the end

of MEM.

– Since no updates occur before instructions commit,
precise interrupts are straightforward.

• In most RISC systems, each instruction writes
only one result.
– This means that the instruction can be cancelled any

time before the instruction is committed, with no

harm to the system state.

22

Instruction Set Complications-2

• This is not true for many CISC machines, i.e.
VAX
– On these machines, the system state may be

modified well before the instruction or its
predecessors are committed.

– For example, if an instruction using autoincrement
mode is aborted because of an exception, then the
machine state may have been altered.

– This leads to an imprecise exception making it
difficult to restart the instruction.

23

Instruction Set Complications-3

• The situation is worse for instructions
that access and write memory in multiple
places.
– These instructions can generate multiple

faults.

– Therefore, it becomes difficult to know
where to resume.

– This is usually solved by using general
purpose registers as work registers (that are
saved and restored.)

24

Instruction Set Complications-4

• Odd bits of state that may create
additional pipeline hazards or may require
extra hardware to save and restore.
– Example: conditional codes

• Multicycle operation
– The general solution used by more complex

instruction set machines is to pipeline the
microcode.

– In 1990s, all companies moved to simpler ISA.

25

Extending the MIPS pipeline to
handle MultiCycle Operations

• Alternative resolutions to handle
floating-point operations
– Complete operation in 1 or 2 clock cycles,

Which means using a slow clock,

 or/and using enormous amounts of logic in FP
units.

– Allow for a longer latency for operations
The EX cycle may be repeated as many times as

needed to complete the operation

There may be multiple FP units

26

MIPS pipeline with FP units

 EX

Integer unit

 EX

FP/Integer

 multiply

 EX

 FP adder

 EX

 FP/integer

 divider

 IF ID

MEM WB

Handles loads, stores ,

integer ALU ops, and

branches.

Handles FP add,

subtract, and conversion

27

Pipelining some of the FP units

• Two terminologies
– Latency----the number of intervening cycles

between an instruction that produces a result
and an instruction that uses the result.

– Initiation interval----the number of cycles
that must elapse between instructions issue

to the same unit.
 For full pipelined units, initiation interval is 1

 For unpipelined units, initiation interval is always
the latency plus 1.

28

Latencies and initiation intervals
for functional units

Functional unit Latency

Initiation

interval

Integer ALU 0 1

Data memory(integer and FP loads) 1 1

FP add 3 1

FP multiply (also integer multiply) 6 1

FP divide (also integer divide) 24 25

29

Pipeline supports multiple
outstanding FP operations

 IF ID

Integer unit

EX

A3 A4 A1 A2

M4 M5 M2 M3 M1 M6 M7

MEM WB

DIV

FP/integer divider

FP adder

Multiple EX stages require

additional pipeline latches

Unpipelined Divider

FP/integer multiply

30

Specifications

• Memory bandwidth: double words/one cycle
• New pipeline latches are required:

– M1/M2, M2/M3, M3/M4, M4/M5, M5/M6, M6/M7
– A1/A2, A2/A3, A3/A4

• New connection registers are required:
– ID/EX, ID/M1, ID/A1, ID/DIV
– EX/MEM, M7/MEM, A4/MEM, DIV/MEM

• Because the divider unit is unpipelined, structural hazards can
occur.

• Because the instructions have varying running times, the number of
register writes required in a cycle can be larger than 1

• New data hazards: WAW is possible due to disorder WBs
• Due to longer latency of operations, stalls for RAW hazards will be

more frequent.

• Problems with exceptions resulting from disorder completion

31

Issuing in order and
completion out of order

 Instruction 1 2 3 4 5 6 7 8 9 10 11

 MUL.D IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB

 ADD. D IF ID A1 A2 A3 A4 MEM WB

 MUL.D IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB

 LD.D IF ID EX MEM WB

 SD.D IF ID EX MEM WB

32

Structural Hazards for the FP
register write port

Instruction 1 2 3 4 5 6 7 8 9 10 11

MULTD F0, F4, F6 IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB

… IF ID EXi MEM WB

… IF ID EX MEM WB

ADDD F2, F4, F6 IF ID A1 A2 A3 A4 MEM WB

… IF ID EX MEM WB

… IF ID EX MEM WB

LD F8, 0(R2) IF ID EX MEM WB

33

How to solve the write port
conflict ?

• Increase the number of write ports
– Unattractive at all !
– No worthy since steady state usage is close to 1.

• Detect and insert stalls by serializing the writes
– Track the use of the write port in the ID stage and to stall an

instruction before it issues
 Additional Hardware: a shift register+ write conflict logic
 The shift register tracks when already-issued instructions will use

the register file, and right shift 1 bit each clock.
 The stalls might aggravate the data hazards
 All interlock detection and stall insertion occurs in ID stage

– To stall a conflicting instruction when it tries to enter the MEM
or WB stage.
 Easy to detect the conflict at this point
 Complicates pipeline control since stalls can now occur in two places.

34

Types of data hazards

• Consider two instructions, A and B. A occurs before B.

• RAW(Read after write) true dependence
– Instruction A writes Rx，instruction B reads Rx

• WAW(Write after write) output dependence
– Instruction A writes Rx，instruction B writes Rx

• WAR(Write after read) anti-denpendence
– Instruction A reads Rx，instruction B writes Rx

• Hazards are named according to the ordering that
MUST be preserved by the pipeline

35

RAW dependence

• B tries to read a register before A has written
it and gets the old value.

• This is common, and forwarding helps to solve it.

S(A) D(A) S(B) D(B)

Time

No hazard

S(A) D(A)

S(B) D(B)

If D(A)=S(B), hazard occur.

36

WAW dependence

• B tries to write an operand before A has written it.
• After instruction B has executed, the value of the

register should be B's result, but A's result is stored
instead.

• This can only happen with pipelines that write values in
more than one stage, or in variable-length pipelines (i.e. FP
pipelines).

S(A) D(A) S(B) D(B)

Time

No hazard

S(A) D(A)

S(B) D(B)
If D(A)=D(B), hazard occur.

37

WAR dependence

• B tries to write a register before A has read it.
• In this case, A uses the new (incorrect) value.
• This type of hazard is rare because most pipelines read

values early and write results late.
• However, it might happen for a CPU that had complex

addressing modes. i.e. autoincrement.

S(A) D(A) S(B) D(B)

Time

No hazard

S(B) D(B) If S(A)=D(B), hazard occur.

S(A) D(A)

38

Stalls arising from RAW hazards

 Instruction 1 2 3 4 5 6 7 8 9 10 11

 LD
F4, 0(R2)

IF ID EX MEM WB

 MULTD
F0, F4, F6

 IF ID stall M1 M2 M3 M4 M5 M6 M7 MEM WB

 ADDD
F2, F0, F8

 lF stall ID stall stall stall stall stall stall A1 A2 A3 A4 MEM

 SD
0(R2) , F2

 IF stall stall stall stall stall stall ID EX stall stall stall MEM

39

The WAW hazards

Instruction 1 2 3 4 5 6 7 8 9 10 11

MULTD F0, F4, F6 IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB

… IF ID EXi MEM WB

… IF ID EX MEM WB

ADDD F2, F4, F6 IF ID A1 A2 A3 A4 S MEM WB

… IF ID EX MEM WB

LD F2, 0(R2) IF ID EX MEM WB

LD F8, 0(R2) IF ID EX S S MEM WB

40

Solving the WAW hazard

• Stall an instruction that would "pass" another until
after the earlier instruction reaches the MEM phase.

• Cancel the WB phase of the earlier instruction

• Both of these can be done in ID, i.e. when LD is about
to issue.

• Since pure WAW hazards are not common, either
method works.

• Pick the one that simplest to implement.
• The simplest solution for the MIPS pipeline is to hold

the instruction in ID if it writes the same register as an
instruction already issued.

41

What other hazards
are possible ?

• Hazards among FP instructions.

• Hazards between an FP instruction and an
integer instruction.
– Since two register files exist, only FP loads

and stores and FP register moves to integer
registers involve hazards.

42

Checks are required in ID

• Check for structural hazards .
– The divide unit and Register write port.

• Check for RAW hazards
– The CPU simply stalls the instruction at ID stage

until:
 Its source registers are no longer listed as destinations in

any of the execution pipeline registers (registers between
stages of M and A) OR

 Its source registers are no longer listed as the destination
of a load in the EX/MEM register.

• Check for WAW hazards
– Check instructions in A1, ..., A4, Divide, or M1, ...,M7

for the same destination register (check pipeline
registers.)

– Stall instruction in ID if necessary.

43

Performance of MIPS FP pipeline

平均每个浮点操作带来的Stall

0.7
2.1 2.3 1.6 1.71.2

2.5 2.0 1.7
2.9 3.2 2.5

3.7

0.40.6 0.0 0.0 0.0
2.01.5 1.6

15.4

12.4

24.5

18.6

0.0

5.0

10.0

15.0

20.0

25.0

su2cor mdijdp hydro2d ear doduc

 Add/Sub/Convert 1.7(56%) Compares 1.8
Multiply 2.8(46%) Divide 14.2(59%? 101%)
Divide structural

44

Performance of MIPS FP pipeline

平均每个浮点操作带来的Stall

0.61

0.88

0.54 0.52

0.98

0.10

0.22

0.09 0.07
0.03 0.04

0.07 0.08

0.00
0.02 0.01

0.08

0.00
0.00

0.01
0.00

0.20

0.40

0.60

0.80

1.00

su2cor mdijdp hydro2d ear doduc

FP result stalls 0.71(82%) FP compare stalls 0.1

Multiply Branch/Load stalls FP structural

45

Maintaining precise Exception

• Exceptions are difficult because
instructions may now finish out of order .

• Example DIVF F0, F2, F4
 ADDF F10, F10, F8
 SUBF F12, F12, F14
– ADDF and SUBF are expected to complete before

DIVF .----Out-of-order completion.
– Suppose SUBF caused an arithmetic exception at a

point where ADDF completed but DIVF has not.
– The result is an imprecise exception . Fix here is to

let pipeline drain.

46

The worse case

• Worse, suppose DIVF had an exception
after ADDF completed.
– Since ADDF destroys one of its operands, we

can not restore the state to what it was
before the DIVF instruction, even with
software !

47

Handling exceptions
-- first solution

• Ignore the problem (imprecise exceptions):
– This may be fast and easy, but it's difficult to debug

programs without precise exceptions.

– Many modern CPUs, i.e. DEC Alpha 21064, IBM
Power-1 and MIPS R800, provide a precise mode that
allows only a single outstanding FP instruction at any
time.

– This mode is much slower than the imprecise mode,
but it makes debugging possible

48

Handling exceptions
-- Second solution

• Buffer the results and delay commitment

– In this case, the CPU doesn't actually make
any state (register or memory) changes until
the instruction is guaranteed to finish.

– This becomes difficult when the difference
in running time among operations is large.

– Lots of intermediate results have to be
buffered (and forwarded, if necessary).

49

Variations of the second
solution-1

• History file:
– This technique saves the original values of the

registers that have been changed recently.

– If an exception occurs, the original values can be
retrieved from this cache .

– Note that the file has to have enough entries for one
register modification per cycle for the longest
possible instruction.

– Similar to the solution used for the VAX for

autoincrement and autodecrement addressing.

50

Variations of the second
solution-2

• Future file:

– This method stores the newer values for

registers.

– When all earlier instructions have completed,

the main register file is updated from the future

file.

– On an exception, the main register file has the

precise values for the interrupted state.

51

Handling exceptions, third
solution

• Keep enough information for the trap handler to create a precise
sequence for the exception:
– The instructions in the pipeline and the corresponding PCs must be

saved.
– After the exception, the software finishes any instructions that

precede the latest instruction completed.

– Technique is used in the SPARC architecture.

52

Handling exceptions, fourth
solution

• Allow instruction issue only if it is known that
all previous instructions will complete without
causing an exception.
– The floating point function units must determine if

an exception is possible early in the EX stage, first
couple clocks,

– In order to prevent the following instructions from
completing.

– Sometimes it requires stalling the pipeline in order
to maintain precise interrupts.

– The R4000 and Pentium solution.

53

Guidelines for designing
instruction sets for pipelining-1

• Avoid variable instruction lengths and running
times whenever possible :
– Variable length instructions complicate hazard

detection and precise exception handling.

– Sometimes it is worth it because of performance
adv., i.e., caches .

– Cause instruction running times to vary, when they
miss.

– Many times, the added complexity is delt with by
freezing the pipeline.

54

Guidelines for designing
instruction sets for pipelining-2

• Avoid sophisticated addressing modes :
– Addressing modes that update registers

(post-autoincrement) complicates exceptions
and hazard detection.

– It also makes it harder to restart
instructions.

– Allowing addressing modes with multiple
memory accesses also complicates pipelining.

55

Guidelines for designing
instruction sets for pipelining-3

• Don't allow self-modifying code

– Since it is possible that the instruction being
modified is already in the pipeline, the
address being written must constantly be
checked.

– If it is found, then the pipeline must be
flushed or the instruction updated !

– Even if it's not in the pipeline, it could be in
the instruction cache.

56

Guidelines for designing
instruction sets for pipelining-4

• Avoid implicitly setting CCs in instructions
– This makes it harder to avoid control hazards since

it's impossible to determine if CCs are set on
purpose or as a side effect.

– For implementations that set the CC almost
unconditionally :

– Makes instruction reordering difficult since it is
hard to find instructions that can be scheduled

between the condition evaluation and the branch.

57

The MIPS R4000 pipeline

• IF－First half of instruction fetch. PC selection occurs. Cache
access is initiated.

• IS－Second half of instruction fetch.

 －This allows the cache access to take two cycles.

• RF－Decode and register fetch, hazard checking, I-cache hit
detection.

• EX－Execution: address calculation, ALU Ops, branch target
calculation and condition evaluation.

• DF/DS/TC
－ Data fetched from cache in the first two cycles.
－ The third cycle involves checking a tag check to determine

if the cache access was a hit.

• WB－Write back result for loads and R-R operations.

58

Possible stalls and delays

• Load delay: two cycles
– The delay might seem to be three cycles, since the

tag isn't checked until the end of the TC cycle.

– However, if TC indicates a miss, the data must be
fetched from main memory and the pipeline is backed

up to get the real value.

59

Load stalls

 Instruction Mem RegData Memory

A

L
U

Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9 CC10 CC11

 Instruction Mem RegData Memory

A

L
U

Reg

 Instruction Mem RegData Memory

A

L
U

Reg

 Instruction Mem RegData Memory

A

L
U

Reg

LW R1

Instruction 1

Instruction 2

ADD R2, R1

60

Example：load stalls

Instruction 1 2 3 4 5 6 7 8 9

LW R1 IF IS RF EX DF DS TC WB

ADD R2, R1 IF IS RF stall stall EX DF DS

SUB R3, R1 IF IS stall stall RF EX DF

OR R4 , R1 IF stall stall IS RF EX

61

Branch delay: three cycles

• Branch delay: three cycles (including one branch
delay slot)
– The branch is resolved during EX, giving a 3 cycle

delay.

– The first cycle may be a regular branch delay slot
(instruction always executed) or a branch-likely slot
(instruction cancelled if branch not taken).

– MIPS uses a predict-not-taken method presumably

because it requires the least hardware.

62

Branch Delays： 3 stalls

 Instruction Mem RegData Memory

 A
L

U

Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9 CC10 CC11

 Instruction Mem RegData Memory

 A
L

U

Reg

 Instruction Mem RegData Memory

 A
L

U

Reg

 Instruction Mem RegData Memory

 A
L

U

Reg

BZ

Instruction 1

Instruction 2

Instruction 3

Target
 Instruction Mem Data Memory

 A
L

U

Reg

63

Pipeline status for branch
latency

Instruction 1 2 3 4 5 6 7 8 9

Branch Ins. IF IS RF EX DF DS TC WB

Delayed slot IF IS RF EX DF DS TC WB

Stall stall stall stall stall stall stall stall

Stall stall stall stall stall stall stall

Branch target IF IS RF EX DF

Instruction 1 2 3 4 5 6 7 8 9

Branch Ins. IF IS RF EX DF DS TC WB

Delayed slot IF IS RF EX DF DS TC WB

Branch ins +2 IF IS RF EX DF DS TC

Branch ins +3 IF IS RF EX DF DS

64

The FP 8-stage operational
pipeline

Stage Functional unit Description

A FP adder Mantissa ADD stage

D FP divider Divide pipeline stage

E FP Multiplier Exception test stage

M FP Multiplier First stage of multiplier

N FP Multiplier Second stage of multiplier

R FP adder Rounding stage

S FP adder Operand shift stage

U Unpack FP numbers

65

Latency and initiation intervals

FP instruction Latency Initiation interval Pipe stages

Add, subtract 4 3 U, S+A, A+R, R+S

Multiply 8 4 U,E+M,M,M,M,N,N+A,R

Divide 36 35 U,A,R,D27,D+A,D+R,D+A, D+R, A, R

Square root 112 111 U, E, (A+R)108, A, R

Negate 2 1 U, S

Absolute value 2 1 U, S

FP compare 3 2 U, A, R

66

Structural hazards-1

Operation Issue
/stall

0 1 2 3 4 5 6 7 8 9

Multiply Issue U M M M M N N+A R

Add Issue U S+A A+R R+S

Issue U S+A A+R R+S

Issue U S+A A+R R+S

Stall U S+A A+R R+S

Stall U S+A A+R R+S

Issue U S+A A+R R+S

Issue U S+A A+R

67

Structural hazards-2

Operation Issue
/stall

0 1 2 3 4 5 6 7 8 9

Add Issue U S+A A+R R+S

Multiply Issue U M M M M N N+A R

Issue U M M M M N N+A R

68

Structural hazards-3

Operation Issue
/stall

25 26 27 28 29 30 31 32 33 34 35

Divide Issue in
cycle 0

D D D D D D+A D+R D+A D+R A R

Add Issue U S+A A+R R+S
Issue U S+A A+R R+S
Stall U S+A A+R R+S
Stall U S+A A+R R+S
Stall U S+A A+R R+S
Stall U S+A A+R R+S
Stall U S+A A+R R+S
Stall U S+A A+R
Issue U S+A
Issue U

69

Structural hazards-4

 Operation Issue 0 1 2 3 4 5 6 7 8 9

 Add Issue U S+A A+R R+S

 Divide stall U A R D D D D D D

 Issue U A R D D D D D

70

Effects and Benefits
of longer pipeline

• Effects of longer pipeline:
– In addition to the longer (and possibly more frequent)

stalls just mentioned, the longer pipeline requires
additional forwarding hardware.

– It also requires more complex hazard detection to
find dependencies in the additional stages.

• Benefits of longer pipeline
– The major benefit to a longer pipeline is that each

stage may be shorter.
– This means that the clock cycle can be shorter,

allowing more instructions to be issued in a fixed
time.

– Of course, the added stalls might eat up this benefit,
but the hope is that at least some speedup will be
left.

71

Performance issues (integer only)

• The ideal CPI for the pipelined CPU is 1.

• The biggest contributor to stalls is branch
stalls.

• Load stalls contribute very little.
– This is probably because the compiler can usually

reorganize code to avoid stalling on loads.

• Since load latency is two cycles, though, the job
is harder than it might be on processors with a
single-cycle latency.

72

Performance loss measurements

0.00

0.50

1.00

1.50

2.00

2.50

3.00

co
mp
re
ss

eq
nt
ot
t

es
pr
es
so gc
c li

do
du
c

ea
r

hy
dr
o2
d

md
lj
dp

su
2c
or

FP structural
stalls

FP result
stalls

Branch stalls

Load stalls

Base

