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Abstract—Virtual machine placement (VMP) problem has
been a key issue in IaaS/PaaS cloud infrastructures. Many
recent works on VMP prove that inter-VM relations such as
memory share, traffic dependency and resource competition
should be seriously considered to save energy, increase the
performance of infrastructure, reduce service level agreement
violation rates and provide better administrative capabilities
to the cloud provider. However, most existing works consider
the inter-VM relations without taking the heterogeneity of
cloud data centers into account. In practice, heterogeneous
physical machines (PM) in a heterogeneous data center are
often partitioned into logical groups for load balancing and
specific services, cloud users always assigned their VMs with
specific PM requirements, which make the inter-VM relations
far more complex. In this paper, we propose an efficient
solution for VMP with inter-VM relation constraints in a
heterogeneous data center. The experimental results prove that
our solution can efficiently solve the complex problem with an
acceptable runtime.
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I. INTRODUCTION

With the popularity of cloud computing and the numerous

benefits of virtualization technology, more and more com-

panies, enterprises and organizations have shifted a signif-

icant part of their businesses from local physical servers

to virtual machines (VMs) in data centers to provide cloud

computing services. In a cloud data center, most distributed

applications such as parallel computing applications[1] and

multi-tier e-business web applications[2], are encapsulated

within multiple VMs, the execution of these application jobs

inside VMs generates a large amount of communications or

data exchanges, besides, these VMs always run the same

operating system and libraries that there may exist a lot

of duplicate memory pages in these VMs[3]. The above

dependencies between VMs are identified as affinity relation.

While allocating given VMs on PMs in a cloud data center,

VMs with affinity relation should be placed on the same

physical machine (PM) to improve application performance

and save resource[4–10]. On the other hand, there also exists

conflict relation between VMs that these VMs should not

be placed on the same PM. For example, if VMs running

CPU-intensive applications are allocated on the same PM, it

is easy to reach the CPU hotspot for the PM. Besides, VMs

belonging to different users in a cloud may cause security

risk such as cross-VM attacks[11] that they should be placed

on different PMs for security[12–14]. Moreover, to improve

fault tolerance and high availability for clouds, there may

be a number of duplicate VMs for backups [15, 16], which

should not be allocated on the same PM with the original

VMs.

Many recent works on VMP have proved that the affinity

and conflict relations between VMs should be seriously con-

sidered in order to provide quality and secure cloud services.

However, few of them take the impacts of heterogeneity[17]

in cloud data centers into account. Unlike more traditional

application and organization-specific clusters, modern con-

solidated cloud environments are likely to be constructed

from a variety of machine classes, representing different

points in the con-figuration space of processing to memory

to storage ratios. Several generations of machines, with

different specifications, are likely to be encountered, as the

underlying machine types evolve over time with respect

to economically attractive price-performance. A subset of

machines with specialized accelerators, such as graphics

processors, may also be available in limited numbers. Fi-

nally, as the workload spans multiple organizations, it is

likely to be inherently more diverse in its resource demands

than one from any single organization. Should such a high

degree of heterogeneity and variability in workload demand

be encountered[18], it will significantly complicate inter-VM

relations in VMP since heterogeneous physical machines

(PM) in a heterogeneous data center are often partitioned

into logical groups for load balancing and specific services,

cloud users always assigned their VMs with specific PM

requirements. Such as, some cloud users may require their

VMs to be allocated on a PM group with high-end CPU and

other users’ VMs may require PMs with trusted computing

hardware.

Addressing this problem, we propose a heuristic back-

tracking algorithm for VMP with inter-VM relations in

heterogeneous data centers. In our experiments, we have

collected data sets from a production cloud data center to

validate the availability of our algorithm, the experimental

results prove that our solution can efficiently solve the

complex problem with an acceptable runtime.
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The paper is organized as follows. In Section II we

define the VMP with complex inter-VM relations under

heterogeneous environments. In Section III we describe our

proposed solutions. The simulation results for our algorithm

are given in Section IV. Finally, we describe related work

and present our conclusions.

II. PROBLEM STATEMENT
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Figure 1: Relations between PMs in cloud data centers

In a cloud data center, PMs are distributed on a number

of Racks, the network bandwidth within Racks are much

better than that across Racks. Due to the heterogeneity,

PMs are often partitioned into logical groups for specific

applications. As Fig.1 shows, There exist four relations

between PMs: same rack, different racks, same group and

different groups. For the placement of VMs, as introduced

in section I, VMs with affinity relations such as memory

share or traffic dependency should be allocated on the same

PM to save resource and improve performance, VMs with

resource competition or belonging to different cloud users

should not be allocated on the same PM for load balance

and security. But,in the end these relations can be defined

in the perspective of physical location as follows: (1), same

PM (SP); (2), different PMs (DP); (3), same Rack (SR); (4),

different Racks (DR); (5), same Group (SG); (6), different

Group (DG).

Assuming the above scenario, we address a VM place-

ment problem for cloud data centers in which VMs have

resource demands, and the above six relations are taken as

the affinity and conflict between VMs. Formally, the problem

can be described as: Given a set of VMs, all the VMs have

resource requirements such as (CPU, memory, bandwidth,

etc.), a part of VMs have affinity requirements such as SP,

SR and SG, a part of VMs with conflict have isolation

requirements such as DP, DR and DG. Since the limited

network bandwidth often becomes a bottleneck resource in

modern data centers, network delay requirement and traffic

value between communicating VMs are also assigned. We

give an simple instance for our problem as follows:

1. Given VMs: VM1, V M2, V M3, V M4, V M5, V M6. Each

of them is a vector of resource parameters: (CPU, memory,

network and I/O).

2. Affinity requirements:

(VM1, V M2, SP ), (VM1, V M3, SP ), (VM4, V M5, SR),
(VM3, V M6, SG).
3. Isolation requirements:

(VM1, V M4, DP ), (VM5, V M6, DG).
4. Network-delay requirements: (VM1, V M6, 110ms).
5. Traffic value: (VM3, V M5, 850MB).

Our prior objective is to allocate these VMs on suitable

PMs while meeting affinity, isolation and network delay

requirements, the second objective is to minimize the total

traffic across PMs by allocating VMs with large amount

of traffic on the same PM or the same Rack. As same as

traditional VM bin packing problem, we also consider to

reach the above objectives by consuming as minimum active

PMs as possible.

III. VM PLACEMENT IN HETEROGENEOUS DATA

CENTERS

VM placement has been explored for years and many

excellent algorithms have been developed for it, most of

existing algorithms are based on greedy algorithms. Greedy

algorithms such as First Fit (FF), Best Fit (BF), Nest Fit

(NF), First-Fit-Decreasing (FFD) can be used to solve most

of VM placement problem and achieve an approximate-

optimal solution. However, they are not suitable for our

problem because of the multiple requirements and the het-

erogeneity in heterogeneous data centers. As a result, we

need to develop a new algorithm for our problem.

Our solution can be divided into three steps: 1. pre-

processing; 2. Grouping all the VMs based on their relations;

3.a group-based VM placement algorithm.

A. Pre-processing

Because of the hierarchical structure of physical topology

in cloud data centers, network delay between different pairs

of PMs is also distinct, we compute each PM of their

network delay with other PMs and give a ascending order

of them. In a cloud data center, we compute the network

delay between PMs according to the distance between the

switchboards they connect with. If two PMs connect the

same switchboard, the network delay between them is zero.

Then, because the given affinity relation set is a binary

relation, according to the directionality of affinity, we con-

struct a relation table to find all the direct and indirect affinity

relation. For example, if VM1 and VM2 have “SP” relation,

VM2 and VM3 have “SP” relation, then VM1 and VM3

also have “SP” relation. But for conflict between VMs, the

transitivity is not considered in our problem.
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Figure 2: Virtual Machine Grouping

B. VM grouping

Before allocated onto PMs, all the VMs are divided

into different groups according to their affinity and traffic

relations that VMs with “SP” affinity or traffic relation will

be taken as a group. For example, there is SP relation

between VM1 and VM2, there is traffic relation between

VM1 and VM3, VM5 and VM6 also have SP relation,

VM4 is irrelevant with other VMs, then VM1, VM2, VM3

will be taken as a group, VM5 and VM6 are in a group,

the last group contains only VM4, each VM group will

be allocated on one PM. Fig.2 gives an instance for VM

grouping. The primary benefit of VM grouping is that if

VMs with communication dependency or “SP” are bundled

as whole unit and allocated onto the same PM, then we

can minimize the communication overheads across physical

networks and enhance application performance.

The grouping process finally generates a variety of VM

groups. It should be noted that one VM group should be

allocated on one PM thus the total resource requirements of

one VM group must be less than the total capacity of this

PM, besides, there may exist isolation requirements within

certain VM groups. Therefore, it is necessary to further

divide those unreasonable VM groups into smaller ones. In

this step, we divide those groups using max-flow-min-cut

theorem which can reduce the overall traffic across PMs .

C. Group-based VM placement

After VM grouping, all the VMs are divided into different

groups that our problem is reduced to a group-based VM

placement problem, we formulate it as a searching problem

based on graph theory and design an iteratively heuristic

searching (IHS) algorithm to achieve satisfactory results.

Our algorithm is inspired by IDA*[19]. The details of IHS

will be described as follows:

1. We construct a graph with all the VM groups based on

their affinity and traffic relations. Affinity relation between

VM groups is “SR” or “SG” and the traffic relation mainly

results from the cutting process for the unreasonable VM

groups in VM grouping.

2. To further simplify the problem, we search the VM-

group graph with breadth-first search (BFS) algorithm and

divide it into several subgraphs. For each subgraph, we

iteratively search and place VMs in the subgraph on suitable

PMs. For each iteration in a subgraph, we set a max value

for the number of active PMs, if it fails to place VMs of the

subgraph with the max PMs, we increase the max value and

go on the next iteration, otherwise we go on to place another

subgraph. To avoid meaningless searching and iterations, we

set a threshold of runtime for each subgraph searching.
3. If certain subgraph is placed unsuccessfully , we search

all the VM groups in the subgraph and find those groups

which can be further cut into smaller ones and return to

place the subgraph repeatedly. To avoid over-cutting and

over-searching, we also set another runtime threshold for

this process. The details of our algorithm are presented in

Algorithm 1 and Algorithm 2.

Algorithm 1 VM PLACEMENT

1: RET←− false

2: while RET ≡ false do
3: MAX AVAIL PM ←− 1

4: ret←− false

5: for all vmg ∈ V do
6: if vmg is placed then
7: continue

8: end if
9: queue ←− Get SubGraphs ByBFS(vmg)

10: while ret ≡ false and time not runs out do
11: ret←−RecursiveP lace(0, queue)
12: if ret ≡ false then
13: MAX AVAIL PM ++

14: end if
15: end while
16: if time runs out then
17: break

18: end if
19: end for
20: for all vmg ∈ V 1 do
21: if Cut(vmg) ≡ true then
22: break

23: end if
24: end for
25: if time runs out then
26: break

27: end if
28: end while

As shown in the Algorithm 1, First we get all the VM

groups related to the current VM group from the VM group

sets V with BFS algorithm and append these related groups

into a queue, then we place these VM groups on suitable

PMs recursively. If a certain subgraph fails to be placed, we

cut some lager VM groups of the subgraph into smaller ones

and repeat to place this subgraph until time runs out.
As presented in the Algorithm 2, we check the current

depth, if it is equal to the size of the queue (subgraph),
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Algorithm 2 RecursivePlace

1: if depth ≡ queue size then
2: return success;

3: end if
4: thisVMG ←− queue VMG[depth]

5: total requirement ←−
Estimate PM Number(depth, queue VMG)

6: if total requirement > MAX AV AIL PM then
7: return place failed

8: end if
9: for all pm ∈ G do

10: if CheckRequirements(thisV MG, pm) ≡ success
then

11: Place this VMG on this PM.

12: end if
13: if RecursiveP lace(depth + 1, queue VMG) ≡

place success then
14: return place success

15: else
16: continue

17: end if
18: end for
19: return place failed

it means that all the VM groups in this queue are placed

successfully, we return to Algorithm 1 and place the next

subgraph. Otherwise, we begin to allocate the VM group in

current depth of the queue on a suitable PM. To improve

efficiency, we estimate the number of requiring PMs for

all the VMs in our problem. This estimation take the well

placed VMs into consideration and compute the total number

of PMs with greedy algorithms in which only resource

requirement are considered. Then we compare the PM

number with the max value for PMs in this iteration. If it

is greater than the max value, the rest searching steps of

this iteration will be skipped. This estimation is a pruning

to reduce unavailable searching steps and try to consume as

minimum PMs as possible.

IV. EXPERIMENTS AND EVALUATION

In this section, we first describe the characteristics of our

data sets and then we simulate our algorithm on the data sets.

At the same time, some comparisons are made between IHS

and traditional greedy algorithms.

our data sets are collected from a production cloud data

center and we independently and randomly sample 20, 50,

100, 150, 200 VMs from the data sets for many times and

compute the average results. The data sets are similar with

the sample introduced in section 3. We evaluate IHS in terms

of three metrics: 1. average runtime for a successful VM

placement; 2. total traffic across PMs; 3. total consumption

of active PMs for VM placement.

Table I: Average runtime for a successful VM placement

VM Number Average Runtime(ms)

20 414
50 505
100 580
150 662
200 731

A. Average Runtime

To prove the availability of our algorithm, we test the run-

time for a successful VM placement. The runtime indicates

that for given VMs, how long our algorithm will achieve

an available solution. As shown in table 1, because of the

pruning process in IHS, the average runtime for a successful

VM placement in our simulation is less than one second

which is acceptable for real cloud data centers.

B. Total traffic across PMs
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Figure 3: Total traffic across PMs

The second metric we have tested for IHS is the total

traffic across PMs. In modern data centers especially for t-

elecom cloud data centers, it has been found that the network

bandwidth often becomes the bottleneck resource, causing

both high network contention and reduced performance for

communication and data-intensive applications. In our work,

we try the best to allocate VMs with traffic relationship

on the same PM to minimize the total traffic across PMs.

As shown in Fig.3, its apparent that IHS reduces the total

traffic across PMs comparing to greedy algorithms. Though

greedy algorithms can also utilize the traffic between VMs,

the affinity and conflict relations make it difficult to allocate

most of VMs with traffic on the same PM.
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Figure 4: Total number of active PMs

C. Total number of PMs

For VM packing problem, the total number of active PMs

is an important metric. Because the more PMs consume

more power. Though in our problem, we consider not only

resource requirements but also affinity and conflict relations

between VMs, we still make an optimization to reduce the

consumption of active PMs. In IHS, it utilizes a heuristic

method based on the well placed VMs to estimate the

optimal number of active PMs in each iteration. We can

see from Fig.4 that IHS consumes fewer active PMs than

greedy algorithms and as the problem scale increases, the

superiority is more obvious.

V. RELATED WORK

Affinity and conflict between VMs have been concerned

in VM placement for years, cloud providers can significantly

lower operational costs, and improve hosted application per-

formance, by accounting for affinities and conflicts between

co-placed virtual machines and various related algorithms

for VM placement have been developed. We briefly intro-

duce some of them in this section.

Affinity-aware algorithms: In virtualized data centers, a

few studies have been done on affinity. In[7], Chen and Li

employ affinity to implement a new schedule strategy to

improve the efficiency of virtualized resource scheduling.

The proposed affinity is used to identify the relation between

a virtual CPU and a CPU in VMM or Hypervisor. [9]presents

an affinity-aware VM migration technique to minimize the

communication overhead on a virtualized platform. The

affinity identifies a policy or a technique of VM migration

for a dynamic resource allocation. [8]proposes a traffic-

aware VM placement to improve the network scalability. To

save memory, [5, 6] determine the sharing potential among a

set of VMs and compute more efficient placements. Recently

Sudevalayamet al.[20] attempt to evaluate performance of

virtualized applications hosted among two VMs with co-

location affinity. It focuses on performance evaluation but

not resource allocation. Moreover, VMWare[21] uses affinity

to signify the relationship between VMs which are kept

together as one unit in VM placement. The above studies

prove the practicality of our study on affinity-aware VM

placement in cloud data centers.

Conflict-aware algorithms: Security is one of the top

concerns in clouds. Indeed, cross-VM attacks are an im-

portant and real world threat. [12]presents the problem that

scheduling algorithms can be used to place VMs on the same

PM which leads to the risk of cross-VM attacks between

adversary users in cloud environments. However, among

existing VM placement algorithms there is only one which

takes into account the notion of security, Zaina Afoulki

al.[11] propose a security-aware scheduler that implements

security policies expressing isolation requirements. The poli-

cies are expressed by the cloud users themselves by giving

them the possibility to choose their own adversaries and

they enforce these policies within the VM placement and

migration algorithms.

As above-mentioned, many existing algorithms consider

the affinity or conflict between VMs for VM placement,

which really have brought great benefits for data centers.

But none of them consider the both and the heterogeneity

is also neglected, which is not suitable for modern cloud

data centers. In our work, the main difference between our

algorithm with the above studies is that we concurrently

accounting for the affinity and conflict between VMs and

propose an available algorithm for VM placement. Besides,

we also take the heterogeneity such as PM grouping into

account..

VI. CONCLUSION AND FUTURE WORK

In this paper, we address VM placement problem in

heterogeneous data centers while concurrently considering

affinity and conflict between VMs. Firstly, we analysis

the affinity and conflict between VMs in data centers and

demonstrate the benefits of accounting for the affinity and

conflict in the placement of VMs. Then we introduce the

impact of cloud heterogeneity on inter-VM relations. Lastly,

we propose IHS to solve the placement of VMs for het-

erogeneous data centers and simulate it on data sets from

a production cloud data center. The results prove that our

algorithm is actual available for real cloud data centers and

the performance outperform traditional greedy algorithms.

In the future, we plan to further optimize the performance

of our algorithm, compare it with more related algorithms

and implement it in Openstack to validate our solution. We

believe that our algorithm will be widely applied for VM

placement in cloud data centers.
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